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Abstract. Nonrenormalizable massless ~4 theory is made finite by regutariza- 
tion via higher derivatives in the kinetic part of the Lagrangean. The theory 
is shown to remain finite in the infinite cutoff limit if certain integrals over 
functions of one variable, with computable Taylor expansion at the origin, 
are finite. The values of these integrals are the only unknowns in the double 
series in powers of 9 and f:~ obtained for the Green's functions in massless 
(~4)4+~ with generic e. For e=  1 and e=2, these series reduce to double series 
in powers of 9 and ln g. The problems of extension to (~4)4+~ with mass, of 
causality and unitarity, of the relation to the BPHZ formalism, and of the 
indeterminacy of the result are discussed. 

0. Introduction 

~4 theory in more than four space-time dimension is not renormalizable. This 
means that there is no choice of bare parameters such that all ultraviolet (UV) 
divergences in the perturbation theoretical construction are cancelled. Equiva- 
lently, construction of the perturbation expansions by BPHZ [11 or Epstein- 
Glaser [2] methods introduces an infinite number of arbitrary constants, and 
any finite choice of these constants apparently corresponds to actually employing 
a Lagrangean that is not the ~4 one. 

Introducing a (sufficiently strong) cutoff A, however, removes all these UV 
divergences identically in all parameters. Our aim is to analyze the mechanism 
of this removal for A < ~ ,  to find sufficient conditions for the cancellation in- 
volved to persist in the limit A - ~ ,  and to obtain and discuss the A = ~  result 
if these conditions are satisfied. For a certain class of regularizations, this program 
can be carried out. 

We introduce the cutoff in terms of higher derivatives in the kinetic part of 
the Lagrangean as proposed by Pais and Uhlenbeck [3], which is here equivalent 
to the method of Pauli and Villars [4]. Specifically, we set 

L =  - ½ ~ [ : ] ( l + A - 2 D ) ~ - ( 1 / 4 ! ) 9 ~  4 -  71 t'tB0"a'~2 ,4~2 , ( 0 . ] a )  

where 

rn~o = Az ~k% x ak(e) (gsA*) k (0.1b) 
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is the bare mass squared of the zero-physical-mass theory, to which we restrict 
ourselves, for simplicity, in this paper. The number of space-time dimensions is 
4 + e, such that 9~ has dimension -e ,  and it is advantageous to keep e generic [5], 
e.g. also complex, rather than positive integer, since hereby dimensional de- 
generacies are lifted that otherwise would require the consideration of logarithms, 
which are less easily handled than powers, in almost all formulae below. The 
restriction ofe to positive integers is a special case of the one to positive rationals, 
which will be discussed. 

The connected amputated one-particle-irreducible parts of the Green's 
functions 

Z-Z(T~(xO. . .  ~(x2,)~2(y0 ... ~2(y/)) 
are called vertex functions, and their Fourier transform, with a factor 
(2re) 4 + ~6(~p + ~q)  taken out, we denote as 

F AB(Pl ... P2n, q l . . .  ql; gB, e) =- F AB((2n), (/); gB, e). 

AS shown in Appendix A, these functions possess the expansion 

F An((2n ), (l); gB, e)= ~ =  o ~ =  o A -  2j + ,k f~k((2n) ' (l); gB, e). (0.2) 

Here foo is the function obtained from the Lagrangean (0.1a), with no cutoff 
and m2o set zero, employing the analytic integration method [5] of Wilson, and 
't Hooft and Veltman, and is singular at (in sufficiently high order, all) nonnegative 
rational e (in the present massless case, also at negative rational e). The fjk are 
power series in gB with similar properties, whereby ~- loop diagrams do not 
contribute to the fj~ with k> ~ .  The expansion coefficients of all f~k are mero- 
morphic in e. 

The mechanism of e-singularity cancellation (for 0 < e < 3) is transparent in 
the expansion (0.2): Singularities in foo at e = R  are cancelled by singularities 
in the fjk with 2j/k = R, giving rise to powers of In A. Likewise, the singularities 
in all fjk with equal - 2 j + R k  cancel. 

We show in Appendix B how by a process of renormalization, functions are 
obtained for which 

Fa((2n), (/); #, 9, e)=hoo((2n), (/); #, g, e)+ ~ =  1 ~ = o  A-2~+~kh~k((Zn), (/);/Z, 9, ~) 

(0.3) 

holds, where g is dimensionless and # a unit of mass, both appearing only in the 
combination #-~9- The FA are proven to be singularity free for 0<e<4 .  hoo has 
e-singularities again at positive rational e, and thus the total residuum of the 
double sum in (0.3) at the singularity is A-independent. Our aim is to convert, 
in the limit A~oe,  that double sum into a A-free expression that has precisely 
these same singularities, and thus yields, together with hoo, an expression for 
F~ without e-singularities, which we define as the renormalized vertex function 
of the nonrenormalizable theory. That we start hereto from F A of (0.3) rather than 
from FAB of (0.2) is suggested by the success [6] of an analogous program for the 
construction of massless superrenormalizable ~4 theory, where the expansion 
one starts from is analogous to (0.3) rather than to (0.2). 
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In Section 1 we state the Feynman rules for direct construction of the /'A" 
Normal operator products at zero momentum transfer, as needed later, are 
introduced in Section 2. Differention and reintegration with respect to A, which 
are the basic process in setting up the expansion (0.3), are treated in Section 3. 
The sufficient conditions for the limit A--,oo to be possible are obtained in 
Section 4. The result, a quasi-perturbation expansion as well as its relation to 
BPHZ formalism, and also the unitarity problem, are discussed in Section 5. 
In Appendix A the expansion (0.2), from which (0.3) follows, is derived. In Ap- 
pendix B we describe an informative method, alternative to that of Section 1, 
to construct the functions F a. 

1. Feynman Rules for Regularized Massless (~4)4 + e Theory 

We choose the zeroth-order propagator i ( p 2 + i O ) - l [ 1 - A - 2 ( p 2 + i O ) ]  -1 and 
vertex - ig#-~ and apply the well-known integration rules [5] for 4 + e dimensions. 
Subtractions tbr divergent (sub)graphs are made just as in 4 dimensions (with 
one exception, see below), which would suffice for £0-1oop graphs if 0 < 8 < 2£  ° -  1 
in case A = oo, but here always suffices for 0 <8 <4. Exploiting that infrared (IR) 
divergences that are only logarithmic in 4 dimensions disappear in 4+e  dimen- 
sions, we impose the renormalization conditions (which require 0 < e < 4 )  for 
vertex functions 

FA(O0,; #, g, 8) = O, 

[ ~ / ~ p 2 ] F  A(p( - p), ; # ,  g,  8)Iv = o = i ,  

Fa(0000,; #, g, 8) = - i#- ~g, 

Fa(O0  , 0; #, g, 8)= 1, 

F A(, 00; #, g, 8) = O . 

(1.1a) 

(1.1b) 

(1.1c) 

(1.1d) 

(1.1e) 

Hereby, however, we stipulate that when (1.1b) is implemented, not a term const 
p2 but const pZ(1-A-Zp z) is subtracted. This secures that the total kinetic part 
of the Lagrangean remains of the form -½Z3~ren[N(l+A-2fN)~re,  such that 
there is no "renormalization" of A relative to Lagrangean (0.1). It is easy to 
verify that for 8 <4  this modification of subtraction rules does not affect the 
convergence discussion. 

The perturbation theoretical construction using these rules (for 0<8<4)  
yields vertex functions obeying obviously 

(Pf iFa((2n) ,  (I); #, g, 8)=0 (1.2a) 

with 

(.Off _= #[0/~#] + eg[~/Og]. (1.2b) 

The relation of these functions to more conventionally parametrized ones, 
defined for 0<8 <4, is discussed in Appendix B. While (1.2) and all of the following 
would remain valid for the functions obtained by usual implementation of (1. lb), 
this suggestive interpretation of the FA would then be less direct. 
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2. Normal Operator Products at Zero Momentum Transfer 

In later sections, we will need insertions of the operators 0 i, i= 1 ... 6, whose 
characteristic form is listed here without regard to counter terms and dimensionless 
overall factors: 

i =  1 2 3 4 5 6 
0 i :  (~2 ~ [ ~  ~]~4 ~ [~ 2 (j~ ¢~i3 E] ~ ~6 

d i m 0 i = 2 + e  4 + e  4 + 2 e  6 + e  6+2e  6 + 3 e .  

The dimension given, 

dim 0i = 2ai + ebi , 1 < b i < a i 

is the ordinary one, and we have listed only the operators that are, at zero mo- 
mentum transfer, linearly independent. As counterterms to 0i only operators 0 r 
with a t < a~ are admitted. 

To construct the vertex functions with these insertions, 

F Ai(Pl ... P2,; P, g, 5)= ( T(N(Oi(O))~I@ 0 . . .  (/3z,)))Pr°P 

in the sense of Zimmermann [7], we choose minimal degree and no extra ~z 
arguments for simplicity. As renormalization conditions we take 

Fai(O0; N, 9, e)= C~il, Vi, (2.1a) 

[O/~P2]['Ai(P(-- P); #, g, 5)[p= 0 =~i2, i>  1, (2.1b) 

FAi(0000;/Z, 9, 5) ---- ~ i3 ,  i > 1 ,  (2. lC) 

[O/Op2]2FA~(P(-- P); ~, g, 5)lp=o =26i4, i>  3, (2.1d) 

[~/(?p2]Fa~(p(--p)OO;12,9,,e)[p=o=6is, i > 3 ,  (2.1e) 

Fa~(OOOOOO;#,9, z)=fii6, i > 3 .  (2.1t) 

Then all FA~ are specified hereby (for 0 < 5 <  3, to which we restrict ourselves 
from here on), admit expansions analogous to (0.3), and obey 

(~JA~((2n); ~, O, 5)= 0 (2.2) 

since in the Feynman rules and all renormalization conditions (1.1), (2.1) # and g 
appear only in the combination #-~g. 

On the basis of the Lagrangean (1.1), the counting identity [8] 

nF a((2n); #, 9, 5)= ~6= 1 ei(#, g, A, 5)F a~((2n); #, 9, 5) (2.3) 

holds. Because of (1.2) and (2.2), the ei satisfy (9/~ei(#, g, A, 5)= 0, Vi i.e. 

ei(tl , g, A, e)= A4 +e-dim°iei(A*g-~g, e) , (2.4) 

due to linear independence of the FAi which is obvious from (2.1). (1.1), (2.1), and 
(2.3) give 

el = O, e2(z, ~) = i, e3(z, e) = - 2iz (2.5) 
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and, using these, also expressions for the e 4, es, ee in terms of the F a, FA~ at zero 
momenta and derivatives there. 

Also 

[a/ao]ra((2n); #, ~, e)= #-~ ~ 6 ,  djl,, g, A, ~)rA~((2n); #, 0, e) (2.6) 

holds, with 

d i (#,  g, A, e)= A 4+ 2~-aim O,di(A~ # -  ~9, 8), (2.7) 

d 1 = d 2 --- O, d3(z, ~) = - i .  (2.8) 

Using (0.1), formulae of Appendix B give 

d i (z, e) = - 2e -  t z -  17(0(z, ~), e)ei(z, e),, i = 4, 5, 6. (2.9) 

3. Differentiation and Reintegration with Respect to the Cutoff 

The Schwinger action principle together with the counting identity (2.3) leads, 
as for Lowenstein's differential vertex operation [8], for the Lagrangean (1.1) to 

A[(?/~A]F A((2n); p, g, e)= Y'.L 1 ci(#, 9, A, e)F ai((2n); p, 9, 8). (3.1) 

(1.2) and (2.2) give, again due to linear independence,:(gflci(#, 9, A, e )=0,  Vi i.e. 

ci(#, 9, A,  8) = A 4 +~- dim O,ci(A~ # -  ~9, e) . (3.2) 

Furthermore, from (1.1) and (2.t) follows c 1 = c  2 =c3=0 ,  while the explicit form 
(0.1) yields for i=4,  5, 6 

ci (z, 8)= -211 + 7(9(Z, 8), e)] ei(z, 8) (3.3) 

in terms of functions introduced in Appendix B. Alternatively, from (3.1), (1.1), 
and (2.1) 

c "A ~ -~ 4t # 9, 8)= ½ A3[O/c~A] [O/@2]2FA(p(-p) ;  #, g, 8)tp=O, (3.4a) 

c5(A~l ~-  "g, 8)= A 3 + "[~?/~?A] [ O/OpZ]F a ( p ( -  p)00; #, g, 8)1,: 0, (3.4b) 

c d  A~#-~ 9, 8) = A 3 + 2~[O/c~A]F A(O00000; #, O, 8). (3.4c) 

As a consequence of the validity of (3.1), the perturbation expansion coefficients 
cik(8) in 

• co Z k cl (z, 8) = 2~6i¢ + ~kmln, Cik(8) i = 4, 5, 6 (3.5a) 

are holomorphic outside ( -  0% 0]<3[3, oo), and this property we ascribe also to 
the functions ci(z, e). The Feynman rules of Section 1 give 

kmin~=2,2,3 for i = 4 , 5 , 6 .  (3.5b) 

It is worth noting that the vertex functions (or p2-derivatives of vertex functions) 
in (3.4) are IR finite only for 8 > 2. However, the A-differentiation removes the 
IR singularities in 0 < e_< 2, in conformity with the mentioned analytic properties 
of the functions % 
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The integral of (3.1), taking (3.2) and (3.5a) into account, is 

FA((2n); #, g, e)=hoo((2n); #, g, e)+ ~ 6  4 (anal. cont. from e sumc. small) 

• ~ dt t -  3 - (be- 1)~ci(t~#-~g, 8)r,i((2n); f2, g, e). (3.6) 

Here "sufficiently small" is only defined in perturbation theory: For 58-1oop 
diagrams (where 58 = N -  n + 1 at order gN), 0 < e < 258-1. The A-free term hoo 
is then the one of (0.3), as follows from the discussion at the beginning of Section 1. 
In (3.6), partial integration gives 

~ dt . . . .  F~i((2n); kt, g, e) ,(~ dt t -3  -(b~- t)eCi(te#-e9, ~) 

_ ~a dt{[8/&]Fa((2n); #, g, e)} ~5 ds s -3 -(hi- 1)~Ci(S~#-~g ' e). (3.7) 

The analytic continuation, as indicated before, of the first part is 

- iA-2hoog((2n);  #, g, e)6i4 
(3.8) 

+ h0oi((2n); ~L, g, e)- ~ - 2 + (k + 1 - bi)e ] - ~ cik(e)A- 2 +(k. 1 -b~)~#-~kgk 

where the hoo~ are constructed without cutoff as hoo is and have singularities at 
(zero and) positive-rational. The evaluation and analytic continuation of the last 
term in (3.7) requires to analyze the functions A[8/OA]Fm, which we defer to a 
later publication. It is easy to see, however, that the j = 1 terms in (0.3) are precisely 
those obtained by inserting (3.8) into the sum in (3.6), and continuation of the 
procedure would yield the terms in (0.3) with j = 2 ,  3, etc. Since the %(e) are 
holomorphic as described before, the e singularities of the hlk in (0.3) are, besides 
those of the functions hoo i, the ones explicit in (3.8) stemming from the integration. 

4. Removal of the Cutoff 

For A ~ ,  the last term in (3.6) does not vanish since the analytic continuation 
destroys the form of the integral for any e > 0  if one considers perturbation theo- 
retical orders N > n - i  +2e -1. It is possible, however, to replace that term by 
an expression whose evaluation prescription does not depend on the order 
considered. 

We write instead of (3.7) 

- ~ dr{ [8/&]F,i((2n); #, g, ~)} ~2 ds s -  3 -(b, - 1 ) e c i ( s ¢ ] 2  - eg, 8). (4. t) 

The analytic continuation in e of FAg is trivial since it is singularity free. For the 
corresponding continuation of the first integral we write, instead of (3.8), in view 
of(3.5), 

- i A -  26i4 + (anal. cont. from e > 2)~A dt t -3  -(b,-  1)e[ci(t~ #-eg ,  e ,)-  2i6i~ ] 

= - iA - 2(~i4 
_1_/Z- 2 -(b~- 1)~g(2/e) +b l -  1 { c~ ~k~i.i [--  2 + (k + 1 -- b)~]-  1Cik(e) 

+ (anal. cont. from e > 2) e-~ ~a~,-~0 dz z-(2/~)- b,[c~(z, e)-- 2i6~4] }. (4.2) 
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Here the A- ,oo  limit is trivial provided the integral converges at oo for 
2 < e < 3 (or e in some subinterval), and the analytic continuation is then formally 
given by the integral from 1 to oo also for 0 < e < 2 since the ci(z, e) were argued 
before to be holomorphic in an environment of the 0 < e < 3 interval. In any case, 
at this stage we have 

F~((2n); #, g, e) = hoo((2n); #, g, e) 

+ ~6= 4 #-2-(b'-l)~9(2m+b'-l(V~° [ - 2 + ( k +  1 -bi)~ 3- Xqk(e ) Z. .~ in i  

+ c~(e)}F~i((2n); #, 9, e) + higher terms, (4.3) 

where 

ci(e) = (anal. cont. from 2 < e < 3 ) e  -1 ~ dzz-{2/e)-b'[ei(z, e)--2i6i4], (4•4) 

and where the "higher terms" are to be obtained from the analysis of the last 
term in (4.1) along lines analogous to the ones followed here, and are characterized 
by having factors 9 4/e, g6/e etc. Also for the F ~  in (4.3) an expansion analogous 
to (4.3) should be inserted, and so forth. 

Thus, our result can be written 

F~((2n); #, 9, 8)= ~/=  o #-2j92J/~'hj((2n); #, 9, e), (4•5) 

where the hj are (integer-) power series in #-eg, with h0 the hoo of before. These 
series, however, except ho contain constants, like the c~(e) of (4.4), that are not 
computable by finite-order perturbation theory, but are not expected to be 
singular in 0 <  e < 3. There are e-singularities, however, in the expansions of the 
functions h j, computable apart from the constants c~(e) and, possibly, similar 
ones, at e positive rational; however, at such e, all singularities to any finite order 
of perturbation theory will cancel, leading to logarithms of 9. Namely, any sur- 
viving singularity would be in contradiction to the regularity in 8 of Fa, as the 
comparison of (4•2) with (3.8) and extension to "higher terms" shows, the regularity 
of the ci(e) being supposed. In particular, at e = l  and e=2,  (4.5) reduces to a 
double power series in 9 and In 9, 

F ~ ( ( 2 n ) ; # , 9 , ~ = l o r 2 ) =  ~ =  o (lng) i Hj( (2n ) ;# ,9 , e= l  or 2) (4.6) 

with functions H~ that are obtained linearly from the complete set of functions 
hj of (4•5). 

Insertion of (3.4a)-(3.4c) into (4.4) yields 

c4(8) = ½ 929- 2/~ 

• (anal. cont, from 2 < e < 3) t i m  {[0/@ 2] 2F,a_ ~/~(p(- p); #, 9, e)Iv = o (4.7a) 

- [ O / ~ p 2 ] ~ r A p ( -  p); #, 9, 8)1~ = o} 

C5(e ) D. #2  + e 9 - Z/e)- 1 

. (anal. cont. from 2 < e < 3) lim {[8/SpZ]Fuo_ ~/.(p( - p)00; #, 9, e)[p = o 
A"*m 

- [o/@a]FA(P(--p)00; #, g, e)]p= o}, (4.7b) 

C6(~ ) = #2  + 2e 9 - (2 /e ) -  2 (4.7C) 

• (anal. cont. from 2 <e  < 3) alim {F,o-,/,(000000; #, Y, 8 ) -  Fa(000000; #, 9, e)} 
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such that existence of these constants is equivalent to existence of the limites 
herein. The separate terms in the curly brackets are (in perturbation theory) 
infrared divergent unless e > 2; these divergences however, cancel in the difference 
as they did in (3.4), Thus, a limit zero for the FA in (4.7) might upset the cancellation 
of e-singularities in (4.5) discussed before. 

5. Discussion and Outlook 

In (4.5) and, in particular, (4.6) we have obtained a quasi-perturbation expansion 
for F~o. In (4.5) all functions hj satisfy (9fihj=0; in (4.6) the PDE (gfiF~o =0  reduces 
to a coupled system in an obvious way. These PDEs take a less trivial form if the 
parametrization is changed to a Gell-Mann-Low one [9], i.e. one normalizes, 
rather than by (1.1), away from the origin in momentum space. Then there wilt 
arise for generic e broken powers, or for e=  1 and e=2  logarithms, also in the 
familiar parametric functions [9, 10], and the result appears then to be related 
to the one of Blokhintsev, Efremov, and Shirkov [11]. These authors found 
broken power, or for integer e logarithmic, terms to be necessary in the parametric 
functions of nonrenormalizable q~* theory for consistency with the renormaliza- 
tion group. We have shown the origin of such terms, and that there remains no 
arbitrariness, in principle, given the manner of regularization. 

If one pursues the present approach, the following problems arise: 
1) Definition and A-differential relations for vertex functions with insertions 

so far as not given here, in particular, for FAi i, Faijk, etc. This is relatively straight- 
forward, given Zimmermann's analysis [7]. 

2) The number of constants, uncomputable in perturbation theory like the 
c,{e) of (4.4), if one carries the analysis to higher j in (0.3). It is easy to see that the 
ci(e ) will then reappear in higher powers, but the occurrence of further constants 
is to be expected, as comparison of our approach with the BPHZ one, given later, 
will show. 

3) Extension to massive ~* theory. The most suggestive way hereto appears 
to be the addition of a mass to the Lagrangean (1.1), in the manner of t' Hooft and 
Weinberg [12]. The nonregularity in the mass [13], for integer dimension, is 
avoided by the use of 4+e  dimensions with e generic. It would be necessary to 
carry out point 1) with arbitrarily many ~2-insertions at zero momentum. Inspite 
of potential IR difficulties, we do not see an obstacle of principle hereby. - Alterna- 
tively, one may carry out the analysis directly for the massive theory. Because 
of the inhomogeneous PDEs then [if one does not want to have extra mass 
ratios appear in constants such as the q(e)], the problem of insertions of several 
operators, see 1) above, arises already with the j = 1 terms of (0.3). 

4) The problematics of considering A ~  oo for seperate j in (0.3). For generic e, 
the fh line obtains an overall factor g2j/~ and thus is functionally different for 
different j. Thus, if the limit A ~ co should exist for generic e and a range of values 
of g, it appears mandatory that each line possess a A~oo limit separately, and, 
as we displayed for j =  1, the different momenta dependence of the hoo~, i=4,  5, 6, 
then requires also the c~(e) to be finite separately. This argument is supported by 
the formulae (4.7): if the limit A~oo  of the F a exists, the ci(e), i=4,  5, 6 should 
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exist at least for 2 < e < 3. For integer (or positive rational) e, on the other hand, 
the requirement of separate A- ,oo existence for the j-lines appears possibly too 
strong. This could be discussed and, probably, excluded if the momenta de- 
pendence in the different lines, which factorizes in each line similarly as for j = 1, 
were analyzed after cancelling the A-independent singularities for integer e. 

5) The dependence of the renormalized theory (4.6) on the manner of re- 
gularization. We have in mind here replacing ( t + A - Z U ] )  in (1.1) by 
1~=1 (I+a~A-2V])  - In that case, the sum in (3.1) will have to go over more 
terms, and the detailed form of (4.5) and perhaps also (4.6) might change. In 
particular, for fixed R, a dependence on the ratios of the a, might appear in the 
"noncomputable" constants. While a direct treatment of this question appears 
difficult, the discussion of the relation to the BPHZ approach, given below, will 
be revealing. - Note that in (3.5a), (4.2), (4.3) the c~k(e) are also regularization 
dependent, only their values at e = 2/(k + 1 - bi) are not, in order that the cancella- 
tion of e-singularities in the regularization independent function hoo((2n); #, 9, e ) -  
foo((2n); P-~9, ~) take place. Clearly, the replacement of the cik(e) by these re- 
gularization independent values is compensated by a redefinition of the c~(e), 
which in the following we consider to have been done. - It must also be remarked 
that in the transition from (3.8) or (4.1) to (4.2) or (4.3), possible parts in the func- 
tions ci(t~#-~ 9, e) with vanishing asymptotic expansion in 9 are in general not 
treated correctly. E.g., 

~a dt t -  3 exp ( -- t -  ~/~9 - 1 ) + .i~ dt t - 3 exp ( - t -  ~#~9- t ) 

and a fictitious (nonsingular) contribution to c4(e) of (4.4) would arise from such 
a term. We are obviously unable to control such terms by perturbation theo- 
retical methods and shall not discuss them here. 

6) Finiteness, and computation, of the c~(e) and similar constants. This also 
requires non-perturbation theoretical methods, possibly to be applied to the 
formulae (4.7). It is presumably only in special approximations (comparable to 
e.g. the vertex approximation of Arbuzov and Filippov [14]) that the A--,oo 
limit can be controlled directly. There are, of course, brute-force summation 
procedures, such as the Pad6 one, that could produce from a finite number of 
terms in (3.5) functions integrable in the sense required in (4.4). - A different 
approach to these problems is the Parisi one E15] mentioned later. 

7) Causality and unitarity, i.e. validity of a nonlinear system of integral 
equations for the F~ such as the one of Glaser, Lehmann, and Zimmermann [ t6]  
(GLZ) (modified, if convenient, along the lines described in Refs. [17] and adapted 
to time-ordered functions [2]). This will require to perform the A ~ o o  limit 
carefully on the GLZ system satisfied by the FA by virtue of their construction 
in terms of the Feynman rules of Section 1. Only if in the phase space integrations 
merely the contributions from O(po)6(p 2) survive will indefinite metric have been 
avoided and a viable theory been obtained. It is to be expected that such check 
of causality and unitarity will also give insight into the role of the constants like 
ci(~) though that role might be exhausted by the formulae (4.7). In principle, as 
is well known (see, e.g., Ref. [18]), any solution of the GLZ system represents 
a candidate for a "physical" theory. - Closely related to the check of the GLZ 
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equations is the problem of the precise relation to the BPHZ construction, 
handled in the way of Ref. [11] where broken powers, or logarithms, of the 
renormalized coupling constant are introduced via BPHZ subtraction coefficients. 
It is known 1-2, 16] that any formal BPHZ-type series yields a formal solution 
of the GLZ system or equivalent ones. In fact, without need of carrying out the 
details of our construction for j > 1, the result is directly obtained by performing 
the limit A~oe  in Lagrangean (A.8) as described there, and is as follows: 

For generic e, the theory yielding the expansions (4.5) is described by the 
Lagrangean 

Loo = ½ c~u¢'ctU~ - (1/4 !)#-~g4~ 4 
tZrs 

r = O s = l  v = l  
r+s>__3 

Here the v-sum goes over the n,, scalar monomials, involving 2r derivatives and 
2s factors 4~, that are linearly independent at zero momentum transfer (n,,= 1 
for r+  s=  3). The operator products are ordinary ones, and the integrations with 
the obvious Feynman rules, all terms in the triple sum being treated as insertions, 
are the usual analytic ones [5]. Then (5.1) yields vertex functions F~ satisfying 
(_9/eF~ =0 and also the conditions (1.1a)-(1.1c). The %,(e) are meromorphic in 
e, with poles at (zero and) positive rational e such that at e ~ R  positive rational, 
in the F~ all e-singularities cancel: 

Consider the 2s-point vertex function. At order N, its superficial divergence 
will be DN~(e)=2[~ ~ e(N-s+ 1)] + 4 - 2 s .  At that e at which this divergence first 
appears, and thus the square bracket can be omitted, Dm(e ) takes the value 2r 
which allows it to be cancelled by a singular term of order N in the triple sum in 
(5.1). The subdivergences being cancelled by lower-order terms in (5.1), finiteness 
of the F~ at e~R can thus be brought about. The validity of (gfiF~ =0 hereby 
has the consequence that each operator in the triple sum in (5.1) has as coefficient 
a definite power of 9 rather than a polynomial or power series, which means that 
the nonleading final divergences do not actually require subtractions. 

For e close to an integer, e =2  say, one may write in (5.1) 

9 s - 1 + (r  + s - 2) (Z /e )  = g r  + 2 s  - 3 _~. o r  + 2s  - 3 ( g ( r  + s - 2)[(2/~) - 11 __ 1 )  

such that for a first-order pole in %,.(e), the first term on the r.h.s, would still give 
the required singularity cancellation at e=2, while the second term then leads 
to a factoring, as appears in (4.6), already on the Lagrangean level. (Presumably, 
higher-order poles also occur.) Thus, the necessity of lng terms for consistency 
with the renormalization group, as observed in Ref. [11], is a direct consequence 
of (5.1). - T h e  theory should admit also for integer e a Lagrangean Lo~ to be written 
down, involving, however, normal products similar to Zimmermann's [-7] ex- 
plicitly, and leading directly to the expansions (4.6). 

Not embodied in (5.1), however, is the particular choice of finite parts of the 
coefficients %~(e) in (5.1) arrived at by starting from the Lagrangean (0.1) in 
combination with the renormalization described in Appendix B, rather than from 
a general nonrenormalizable Lagrangean subjected merely to renormalization 
group validity. Namely, the procedure of Sections 1-4 leads not only to a construc- 



Nonrenormalizable Massless cb ~ Theory 89 

tion of the correct singular and, apart from induced effects, regularization in- 
dependent parts of the c,s~(8,) but also to definite finite parts, if one assumes that the 
limites discussed in Section 4 and Point 6) above do exist. We shall try to discuss 
what is involved here and forward a conjecture. 

Consider the GLZ system as described under Point 7) above, and modified 
by using full propagators as described in Ref. [17]. The A-~oe limit hereon 
will lead to a GLZ system for the F~o functions (4.5), constructed e.g. from La- 
grangean (5.1), in which as propagators to be cut the functions 

- F~o(p(- p); #, g, e)- 1 _ i(p2 + is)- i f ( p 2 p -  292/e ' 8,)- 1 

appear, the only scale for these functions, as for all F~ functions, being the mass 
pg-1/~. If f(z,  e), which satisfies f(0,  8,)= 1, has a first zero at Z=Zo>0,  then 

- V~(p(- p); #, o, e)- 1 = i(p2 + i8,)- 1 + i(p2 _ Zo#2g- 2/~)- 1 [zof'(zo)] - 1 + . . .  

i.e. there will be, due to f ' (zo)<0,  a negative-metric particle [or, if f ' ( zo)= O, a 
dipole ghost], and unitarity will be violated. Whether or not such a zero exists 
cannot be decided knowing only the expansion (4.5), since at such zero all terms 
in Foo(p(-p);#,g,  8,) will have the same order of magnitude (namely, unity). 
Generally, for momenta much smaller than #g-~/~, the quasi-perturbation 
expansion (4.5) will be usable, but not for momenta >#g-i/~,  and the specific 
physical content of the theory can only be seen at large momenta. 

Nevertheless, there are some indications that the theory derived from (0.1) 
might make physical sense. What is its large-momenta limit, under conventional 
assumptions? In the Zinn-Justin parametrization, P~, which is related to F~ 
in the A-independent manner described in (B.13), (B.4) holds and suggests that 
if fl(~, 8,) has a first zero .qoo(e) with negative slope, then the theory becomes at 
large (nonexceptional) momenta a scale invariant one with dimension 
t+(8,/2)+7(O~(e),e) for ~ and 2+e+~/(~(8,),8,) for ~2. That these dimensions 
are not suggested by the equivalent PDE (1.2) satisfied by the Fo~ is due to a 
pathology in the reparametrization (B.13): For the scale-invariant limit theory 
itself, the parametrization b y  (1.1) is unsuitable due to infrared divergences. 
[A finite 9(g~(0, e), as would be caused by a zero of flO, 8,) of less than first order 
at g~(0, would lead to a paradox related to the one Landau [19] arrived at, on 
the basis of effectively the assumption that the function fl(g) of a renormalizable 
theory is well represented by its second order term alone, for all g.] 

The scale (and conformal [20]) invariant theory for g=~oo(e) is expected to 
be the one that one aims to construct more directly by exploiting conformal 
invariance ([15,21], and references given there) for integer and, by suitable 
analytic interpolation, also generic 5. The g < oe or ~<  ~(8,) theory would be the 
corresponding praeasymptotic [22] one. 

If 7(.q(g, e), e) for g ~ o e  is bounded away from minus one (it should, for real 8,, 
have a nonnegative limit value if the discussion before applies), then, because of 
c~(p,g, 00,8,)=0 in (3.1) due to the assumed existence of the F~ and F~,, (3.3) 
yields ei(#, g, o% 0 = 0  for i=4 ,5 ,6 ,  and then (2.9) yields di(#,g, 0 % 0 = 0  for 
i=4,  5, 6. This means that the counting identity (2.3) and the DVO [8] identity 
(2.6) take the form they would in regularization - free ~4 theory. We take this 
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as a support of the conjecture that the "noncomputable" constants arrived at 
from (0.1) lead to a more physical theory than one with arbitrary, albeit renor- 
realization-group-conform [11], "noncomputable" constants in (5.1). 

If one would have started with a (nonlocal) Lagrangean with a space-mo- 
mentum cutoff, or with a Euclidean "Lagrangean" (exponent in a function-space 
integral) with absolute-momentum cutoff [23], the method of this paper becomes 
unavailable~since for the derivatives with respect to the cutoff no simple formulae 
like (3.1) exist, and thus an expansion like (0.2) is not valid. Still, the renormaliza- 
tion procedure discussed in Appendix B can be carried out (at least in the co- 
variant case), since the functions g(~, e), 7(g, e), t/(~, e), and K(~, ~) remain com- 
putable from formulae (B.11a)-(B.1 l d), as discussed there, without reference to 
the precise manner of the cutoff. The question of the A~oo limit can be posed, 
and since (at least in the noncovariant case) no indefinite metric is involved, one 
would not expect indefinite metric to appear if that limit does exist. This argument 
merely is to make plausible the possibility of a choice of constants in (5.1) (or, at 
least, in its integer-e form) such that indefinite metric is avoided. 

Finally, assuming that in particular the unitarity conjecture holds, the question 
must be answered as to what the theory might be useful for. It appears certain 
that the large-momenta behaviour, also on the mass shell, of the terms in the 
double series expansion obtained from (4.6) violates bounds such as Froissart's 
[24] the more strongly the higher the order. A meaningful theory would require 
a summation to be performed, by which e.g. acceptable high-energy behaviour 
should be brought about. A nonrenormalizable theory with the multitude of 
arbitrary parameters as e.g. the BPHZ method introduces, as explained above 
in detail, appears to have little chance to yield a meaningful result with any 
summation procedure (unless it is the summation procedure itself that enforces 
physically acceptable behaviour, in which case that procedure would outmode 
Lagrangean quantum field theory). The more the arbitrary constants are con- 
strained, the better are the chances for imaginable summation procedures to be 
successful. The A--,oo procedure discussed here appears to be the most efficient 
systematic way to obtain meaningful constraints and, as we discussed, to lead 
to a unitary theory. 

Mentioning summation procedures, Parisi's proposals [15] for constructing 
nonrenormalizable theories come to mind. These proposals are predominantly 
made for theories that are "asymptotically free" in some space-time dimension, 
such that they can be expected to have an UV fixed point close to the origin 
if the number of dimensions is increased somewhat. (In the case relevant here, 
(~4)4 theory, g < 0  would be required [25].) While Parisi's methods, which rely 
on anomalous dimensions, might lead more easily to physically meaningful 
approximations, the method appears restricted in applicability, and its principles 
(cp. also Ref. [26]) have not yet been described in detail. However, Parisi's idea 
[15] that the problems of masstess superrenormalizable theories and of non- 
renormalizable theories are technically related is the backbone also of our ap- 
proach. 

Lee's work [27] is, like ours, based on the principle of using a cutoff and 
obtaining nonregular behaviour in the coupling constant in the process of cutoff 
removal. We are able, in the framework of our approach, to confirm arguments 
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advanced by Lee in connection with the i-limiting procedure, whereby ~ is 
analogous to A -2 in our  case. (See the end of Appendix A). 

The method of the present paper applies to all theories that are strictly re- 
normalizable in some space-time dimension, provided the continous increase 
of dimension does not meet (e.g. the well-known 75) difficulties. In particular, 
((~tP)2)2 + 2 theories would be of greater physical interest than (~4)4 + 1 and (~4)4 + 2. 
The method might apply also to nonpolynomial chiral invariant theories [28] 
in 2 + 2  dimensions. It would also be instructive to compare (~6)3 + t theory 
(e.g., with respect to large-momenta behaviour) with (~4)4 theory. 

Acknowledgment. That the method the author used to analyze the m~0 limit of(fb4)4 theory [6] 
might be applicable to nonrenormalizable theory" was suggested to him by G. Parisi some time ago. 
A discussion with J. Zinn-Justin, in which he explained to the author his results on the lattice-cutoff 
dependence of Green's function in statistical mechanics proved to be most helpful and stimulating. 
The author is greatly indebted to G. Parisi and J. Zinn-Justin for these discussions. He also thanks 
H. Trute for discussions. 

Appendix A 

Vertex Functions Expansions for Large Cutoff 

In this appendix we derive the expansions (0.2) for FAB((2n), (/); gB, e). For  brevity, 
we shall only consider / = 0  and shall furthermore start from two properties of 
FAB, which will be proven elsewhere: 

i) For  large A, graphs contributing to FA~ possess an asymptotic expansion 
with terms proportional A-Zi+~(lnA)*, with j, k, l integers, j > 0 ,  0 <  k<_ S ( t h e  
number of loops), and l > 0  bounded, and coefficients meromorphic in e. 

2) The k - 0  terms in this expansion have / = 0  only, and are obtained by 
treating the term -½A-Zq~[-]2q~ in (0.1a) as a perturbation, i.e. inserting it j 
times into the graphs defined by Feynman rules without regularization, and 
integrating analytically. Both these properties will be used only very weakly, i.e. 
they will appear self-evident at the end of this appendix. 

Concerning 2), we add that vertex functions with insertions as described obey 

F(00; g~, e)=O , (A.la) 

[g/~p23 F(p( - p); gs, e)l p: o = i,  (A. 1 b) 

F(0000; 9~, ~)= - igB, (A.1 c) 

since for nonrational e > 0  all corrections to the lowest-order terms on the r.h.s. 
vanish for dimensional reasons. 

Starting from the Lagrangean (0.1a) with the self mass term omitted, we 
construct renormalized vertex functions as follows: We determine the superficial 
divergence degree O of any vertex function graph as if it were to be computed in 
4 + E  dimensions, E real positive nonrational, and there were no regularisation. 
This yields O = 4 - 2 n  +5~E.We now insert into the Lagrangian the counter terms 
for corresponding minimal subtraction at the origin of momentum space. If 
Re ~ is sufficiently close to E, these subtractions yield vertex functions that admit 
A--oo. (We use here an extension of Zimmermann's convergence proof [1] to 
complex dimension, which has been discussed by several authors, e.g., [29], and 
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to massless propagators, see [30].) These subtractions also leave the vertex 
functions IR convergent: the counter terms are, due to minimality, UV divergent 
for A ~  oe and thus IR convergent for dimensional reasons. 

The Lagrangean yielding these vertex functions can be written 

La, E-- ½ ~ D ( I + A - 2 1 - 1 ) ~ - ( 1 / 4 ! ) g ~  4 

-- 2~=1 Z ~ = I  22~'~ +[½ELp] Zn~ l  Jrs,,fv(g, E)  

(,,l'12rdaZs"l s- 1 +SfA4-zr- 2s+e~ (A.2) 
" ~. ~" W JvQB 

The v-sum goes over the n,s scalar monomials, involving 2r derivatives and 2s 
factors ~b, that are linearly independent at zero momentum transfe r. Eachfrs~(e, E) 
is piecewise constant in E in intervals of length 22,-1, and is holomorphic in e 
in the strip 

2 ~ -  I[1E,,~] < Ree < 22 , -  1([½E2,] + 1). 

For e to the left of this strip, f,~e~(e, E) is meromorphic with (IR) singularities at 
g--22,-  1[½ E2,] =0, - 2 2 , - * ,  - 4 2 ,  -1 .... 

Moreover, for E > 22,-1[½2' Re el, f,,~e~(e, E) is independent of E. This is due 
to the fact that oversubtraction on subgraphs, the origin of E-dependence, does 
not affect the counter terms in the final, analytically [5] computed, integration, 
again for dimensional reasons. 

The vertex functions computed with Lagrangean (A.2) we denote as FA, e. 
[The functions FA, o((2n); 9# -~, e) will be denoted FA((2n),; #, 9, e) in Section 1.] 
They are meromorphic in e. 

The properties t) and 2) described at the beginning imply that for E > R e  e, 
due to the existence of the A+c~ limit, 

e)= ~ A-2/fjo((2n);oB, e)+ Z O(A-ZJ+:k) • (A.3) F a.~((2n); 9B, 
j=0 j.k 

-2j+Ek<0 
k_>_l 

Here the O(A -2)+"k) are a sum of terms having factors A-2j+ek(lnA) l, with co- 
efficients meromorphic in e. The J)0 terms in (A.3) are the ones in (0.2) since the 
quadruple sum in (A.2) involves only terms with factors A-ZJ+ 'k , k>l ,  and 
graphs with ("D2rq~ 2~'') insertions have properties analogous to 1), 2) before. 

We now can write for the Lagrangean (0.1) 

L = LA, ~ -  ½ m2oq~ 2 

+ ~ = o  ~-~,s~= 1 ~i frsv(gBA~,e,E)("D2r~p2s")v 9B -1A4-2r-2s , (A.4a) 

where 

f,~,(gBA ~, ~, E ) -  ~=U~x(1,-t2E-~(2-,-~)1)f~se~(e, E)(g~A~) ~ • (A.4b) 

For E sufficiently large, in the meaning explained later, (A.3) becomes 

LA, E ~ L A ,  o~-- ½ q~ E] q~ -- (1/4 !)gB~b 4 -  ½ A -  2q~[-]2~b. (A.5) 

The difference between LA. o~ and L of (0.1a), disregarding the mass term, is that 
in (A.5), the last term is meant as insertion into the Lagrange function, to be 
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treated as a perturbation i.e. as repeated insertion into vertex functions, while 
in (0.1a) that term modifies the bare propagator. Thus, LA. o~ requires no self mass 
counter terms, and indeed its vertex functions, computed analytically [5], satisfy 
(A.la)-(A.lc), while for the FAB the quite different relations (B.11a) and (B.11b) 
hold, and FAB(00, ;9B, e)= 0 requires the self mass term (0.1b). 

Using (A.5) in (A.4a), and in view of the E -  independence of the f~z~(~, E) 
for E large, we can write 

L ~ L a  = _ ½ qSl-lqS_ (1/4 !)98q~4_ 7t "'Bow'-2 .~2 _ ½ A-2~b[S]zq5 

+ ~ = o  Z~%~ ~ f~(gBa~, e, °o)("D2r~z~")~g~ -1A4-2r-2~ (a.6) 

whereby the first two terms on the r.h.s, define the Feynman rules and all other 
terms are to be treated as insertions. It is this proviso which demasks L A as an 
effective Lagrangean, equivalent to the genuine Lagrangean L only in the limited 
sense of yielding the asymptotic expansions (0.2) directly. Hereby we must have 

m2o = 2AZfol l(qb,/P, e, oo) (A.7) 

since all other insertions, upon analytic computation, leave self energy parts 
vanishing at zero momentum, for dimensional reasons. 

We now explain what was meant by "E sufficiently large". We want to compute 
the expansion (0.2) from Lagrangean (A.6) to a prescribed accuracy. We should 
more correctly start from (A.4a); hereby insertions are to be made in the vertex 
functions (A.3). Since the counter terms give rise to at most a factor A ~se- 1)~, in 
view of (A.7), using them as insertions in "correction graphs" yields at most a 
factor A (£e-1)a-zj+& with - 2 j + E k < O , k > l .  Thus the factor is smaller than 
A(W-1)~-(~-~)k, which is arbitrarily small for large E due to k >  1. This means that 
(A.6) is adequate to generate the whole expansion (0.2) correctly. 

We will now use results of Appendix B to rewrite (A.6). The passage from 
Fa8 via (B.1) to/~A and from there via (B.13) to FA amounts to introducing re- 
normalized operators q ~  = Z;-1/2q5 with [using (B.9b)] 

Z 3 = exp [ -  2 t'g,,A~ d-  - _ jo a/~(~, ~)- ~(O, ~ ) ] - - z ~ ( g S ,  ~) 

and to write (B.9a) gB= A-~-'gtgA ~#-~, e'). 
Then we obtain 

L a =  - (1/4 !)g#-~b~n ½ f/Jren U~ ~bre n - 
(A.8) O(3 nrs 

+ ~ ~ G,~(gA~p -~, e)("D2~.)v-92~" s - l+( r+s -2 ) (2 / e )~ - z ( s -1 ) -2 ( r+s -2 )  

r=O s = l  v = l  
r+s>3 

_Z3(t, e)[1 - 2 f ,  a ~(t, e, oo)] = 1, (A.9a) 

tZ_ 3(t, e)2[1 - 4 ! fo21( t, ~, oo)] = .q(t, ~), (A.9b) 

and set 
frsv(t ' g, o o ) Z 3 ( t  ' ,F,)sts- 19(t,  g)l  - s + ( 2 - r - s ) ( 2 / e )  

- ½cS,za~lZa(t,g)O(t,e)-z/"=%~(9(t,e),e), r + s > 3 .  (A.10) 

The identifications (A.9a) and (A.9b) are necessary for the conditions (1.tb) and 
(1.1c) of Section 1 to be satisfied, as (A.7) was necessary for (1.1a) to hold. [In 
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writing (A.9a) we have chosen "D2q~z"=~b[-]~b.] The coefficients c211, c12a, and 
co3 ~ in (A.8) are closely related to c4, c5, and c 6, respectively, of Eq. (3.2). 

It is now manifest that the limit L~o of (A.8) yields (5.1) [¢p~, in (A.8) is the (p 
of Sections 1 through 5] if lim c~(t ,  e)=Cr~(e ). The condition for existence of 

t--¢- 00 

this limit can be written in a similar way as (4.4), by differentiating with respect 
to t, reintegrating to infinity and splitting the integration region into two parts. 

Formula (A.6) allows to read off the composition of the contributions to 
FAn((2n),;g~, e) in (0.2) that are "leading", "next-to-leading" etc., i.e. that have in a 
given order of 9n the highest, next-to-highest ect. power of A. For e such that 
degeneracies occur, there will in addition result In A, (In A) 2 etc. factors as discussed 
in the Introduction. 

In order to obtain (0.3) from (A.8), one writes 

c,~(gA~# - ~, e) = c'~(gA~l~- ~, e)g - (~ + ~- 2)(2]e) ~t2(r  + s  - 2)A4- 2r - 2 s  

where c'~ is an (integer) power series in its first argument. The leading, next-to- 
leading etc. terms can then be identified as for (A.6). One observes that for A--->~ 
all terms, including highly nonleading ones, survive to yield (5.1). However, to 
generate the expansion (4.5) up to a given power of 9, only the corresponding 
"not too nonleading" terms of the rewritten (A.8) need be kept. A similar remark 
applies for e = 1 or 2 to (4.6). This confirms arguments advanced by Lee [273 in 
connection with the ~-limiting procedure. 

Appendix B 
Zinn-Justin Parametrization 

To the vertex function (0.2) calculated directly from Lagrangean (0.1) we associate 
a renormalized vertex-function/~A by 

ffA((2n), (/); #, ~, e) 

= Z3(~, A/#,  e)"Z z (9, A/#, 0ZFA,((2n), (/); 9n(.q, #, A, ~), e) 

--iOno612AeZ2(~], A/p, 8)2K(.q, A/#, e) . (B.1) 

Herein we set 

#B(9, #, A, e )=#-~{9+  ~ =  1 [(A/it) ' k -  1]ak(~, e)}, (B.Za) 

Z3(~, A/#,  e)= 1 + ~ =  1 [ (A/# f f  - t]z3k(~, e), (B.Zb) 

Z2(O, A/lt, e)= 1 + ~t= 1 [(A/i t f f  - 13Zzk(~t, e) , (B.2c) 

K(O, A/#, e)= #~A-~ ~ =  ~ [(A/#) ~k- 1]bk(O, a), (B.2d) 

with functions ak, Zak, Zzk, bk chosen uniquely (as power series in tT) such that 
(except for n=0 ,  l=  1) in the A-expansion analogous to (0.3) no A ~k, k>0,  terms 
arise: 

FA((Zn), (/); #, ~, 0 =/7o o((2n), (/); #, ~, e) 

+ Z?- l Z :o (t); (B.3) 
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That  this is possible is implied in the demonstra t ion in Appendix A. 
Applying #[0/0/~]Io,,,A to (B.1) yields 

(9fi2,, tFa((2n), (/); #, ~, 5)= -- ib,oCStz~etc(g, 5) (B.4a) 

with 

(Qfi2n, l ~" ~ [ ~ / ~ t ]  ~- ]~(g, e)[O/~g~ --  2n?( ~, 5) + lt/(.~, 0 ,  (B.4b) 

where 

/~(i, 5) = ~ [ a / a ~ ] i l . = ,  A 

- { [ a / a F ~ ] g = l , , , } -  ' u [ a / a u ] g = l ~ ,  ~ = ~9 + bo(e) i  = + . . . ,  (B.5a) 

~(i, 5) = ~ u [a /au ]  In Z~l . . ,  ~ = ½ C0Aooln z~ -- Co(~)i = + . . . .  ( B . 5 b )  

t/(0, 5) = - #[0/0#] In Z21o=, A = -- (gfioo In Z2 = ho(0:0 + . . . ,  (B.5c) 

and 

~:(O, 5) = ~-=A=Z~#[a/a#]KIo=,  A = ~-=A=Z~ (~Aoo K = ko(0 + k,(e)O + . . . .  (B.5d) 

The A-independence of the functions fi, 7, q, and ~ follows thereby from (B.2) 
and (B.4): the first implies that  no factors A-2 j  + ek j > 0, may occur, and the second, 
with (B.3), excludes the occurrence of A ~k, k > 0. - This argument  was first used by 
Zinn-Justin [31] in the case e=  0, where lnA replaces A =, and later extended [321 
to ~<0.  

We now introduce the function 

g(~, ~) - ~ exp {~ S~ d~' [fl(~', ~)- 1 _ (E~')- 1] } (B.6) 

which obeys 

[O/~9-]g(~, ~)= ~g(~, a) fi(.~, 5)-~, (B.7a) 

and 

9(g, 5) = ~ -  e- 1 bo(e)O2 + . . . .  (B.7b) 

It is a monotonical ly  increasing function of ~ in the interval 0<O<O~o(e) where 
.~(e) is the first positive zero of fi(.~, e), if any, and we will only consider ~ in this 
interval. The inverse function we denote by g(9, e): 

O(g, 5) = g + e-  lbo(0g2 + . . . .  (B.8) 

Then from (B.5), together with the boundary  conditions incorporated in the forms 
(B.2), follows 

gB = A -  =~(g(~, ~)A=#-~, O, (B.9a) 

~" d - ' ' - '  Z a = e x p [ 2  ~o~A = g p tg ,e) -~?(~, ,e )]=exp[2e-1  fo(~,=) , . ~ - a  - e Jg(~', ~>a~#-~ uU,~t rl(g(g, ), e ) ] ,  

(B.9b) 

Z 2 = e x p [ -  ~ g p t g , O - l q ( O , , e ) ] = e x p [ _ e - ~  o<~,~) -~ - So.A" d . . . . . .  So(m =)A:u -= dg g rl(g(g , e), e)], 

(B.9c) 
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and 

K = g(g~A ~, e)-  1 ~oBA" dO'fl(O', e)- 1 g(0', e)~c(0', e) exp [2 ~'~a~ dO"fl(O", 8)rl(fi,", e)] 

= e -  1A-~#~9( O, e)- 1 

g I r -- i -- t • Jo(~',f°(g" ~)A~u ~) - ~ dgtc(O(g, 8), e) exp [2E- 1 ~b(~, ~)A°u ~ dg (g) tl(g(g, e), e)] . (B.9d) 

Applying A[~/OA]lu,~ to (B.1) and using (B.3) and (B.9) yields 

{A [O/~A]Io,A, + ff(gnA ~, ~) [O/O(9BA*)]Ia 

- -  2n?(oB A~, e) + ltl(gBA ~, 8)}F A~((2n), (/); gB, e) + i3,obl2A~tc(gBA ~, 8) 

= Z f " Z 7  *A[UOA] l,,~Fa((Zn), (/);/4 9, e)= 0(A-2 + ,k), (B. 10) 

the PDE for unrenormalized vertex functions due to Zinn-Justin [31, 32]. For 
8<0,  the r.h.s, in (B.10) vanishes for A ~  (we do not discuss the IR problem [6] 
here); for e > 0 it vanishes in this limit if the assumption of Section 5 applies. 

It follows easily from (B.10) and regularity in 9B A~ that 

['AB( 0000, ; gs, e) = -- iA -~g(gB Ae, 8)exp [4 ~OoBA~ dOff(9, 8) - 17(~,  8 ) 3 ,  (B. 1 la) 

[C3/C~p2]FAB(P( -- P),; 9B, 8)lp = 0 = i exp [2 ~,A°  dOff(O, e) - 1~/( o, ~)3, (B. 1 lb) 

Fa,(00, 0; g,, 8)=exp {~,A~ dOff(9, @- 1 [27(0, e) - t/(0, e)]}, (B.1 lc) 

and 

FA~(, 00; g,, e) = -- iA~[9(gBA ~, e)] - 1 

• ~'a~dOfl(~,e)-lg(O,e)~(O,e)exp[2~o,A~dO'ff(O' ,e)-l t l (~' ,@], (B.11d) 

where g(.,e) is the function (B.6), and we have used that (B.3) alsoholds for the 
momenta sets appearing in (B.11) on the 1.h. sides since the, for e = 0  only lo- 
garithmic, IR divergences disappear in 4 + e  dimensions. These 1.h. sides are 
computable in a relatively straightforward way for 0 <  e < 3, and thus also the 
functions ff(-, 8), 7(-, e), r/(-, @, and ~. ,  e) are; moreover, these are manifestly regular 
in e (at least in their power series expansion in 9-) for 0 < e < 3, and actually exist 
also for 8 = 0. 

It now follows from (B.1) that also the functions/~a themselves are regular in 
0 <  e<  3, since the functions _NAB a r e  and the substitution for 0B and multiplication 
by factors Z3 and Z2 does not introduce singularities there as follows from their 
forms (B.9a)-(B.9c) and the just proved regularity of the parametric functions 
therein. This also holds in the case n = 0, I= 2. The functions/~a exist, as do the 
parametric functions r, 7, t/, and to, also for 8=0;  in this case (B.9a) must be re- 
placed by its e ~ 0  limit 

9B = Q- 1 [ln (A/#) + ~(0)] = exp {ln (A/#)fl(O, 0)[O/t?0] }0, (B. 12a) 

where 0(9) is the monotonically increasing function 

= d O ' f f ( Y ,  0 )  - 1  . (B.12b) 
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Finally, we perform the finite (i.e., A-independent) renormalization 

rA(2n), (/); ~, g, ~) 

= exp {~o. ,) d~t'fl(~t', e) - t [ - 2n7(,~', e) + It/(~', e)] } FA((2n ), (/); #, ,~(q, e), e) 

0 ' - ' g ( o )  , ( 0 ( 9 . ) . ~ ) 3 .  + i6,o612#~g- 1 e -  1 ~o dg K(g(g, e), e) exp [2e- 1 ~'  d . . . . .  1 - ,, e 

(B.13) 

One easily verifies that these functions obey the conditions (1.1) and the PDE 
(1.2) of Section 1. Thus, the F A are identical with the functions defined there by 
Feynman rules, since also the bare propagators that introduce A, by virtue of 
our convention concerning the implementation of (1.1b), are the same. The 
regularity of the F A for 0 < e < 3, which actually extends till e < 4, proven in this 
appendix confirms the deduction of this property from the Feynman rules in 
Section 1. 

We add two remarks: 
1) The e--*+0 limit in (B.11a)-(B.11d) is subtle: the 1.h. sides do not have 

limites termwise in the power series expansion in g~W since the coefficients 
become infrared divergent (like e- 1, e-2 etc.). This can be seen by writing out the 
r.h. sides, whereby the e~ term in (B.5a) is crucial. The same term, however, allows 
a resummation on the r.h. sides of (B.11a)-(B.11d) such that for e =  + r.h. sides 
regular in 08 are obtained, without A dependence for dimensional reasons. [Only 
the manner of cutoff remains reflected in the higher terms of the fl, 7, t/, ~ functions. 
It is presupposed that g~A~<~(e),  and g ~ < ~ ( 0 )  for e=0.]  A representative 
example of such resummation is the one of the function g(3, e) in (B.6) and(B.7b). 
Let (B.5a) be 

fl(g, e) = gg -I- bog 2 -t- eb o 1~ 2 + b 1~ 3 + 0(e2g 2, eg 3, ~4), (B. 14) 

where b0 and bl are the usual universal ones but bol is convention dependent 
and here depends on the particular way of regularisation. Then 

9(g, e) = bo le  + bo 3 b l e21n(e/bo) + g2(bo 3b 1 --  bo 2b01) 

+ bo le2(2~zi)- 1 l ~  io dzfl(z, 0)- l l n ( -  z) + O(e31n e, ca), (B. 15) J~+i0 

where the integration path encircles the segment [0, Olin the z-plane counter- 
clockwise but no poles of fl(z, 0)- 1 other than the double one at the origin. It is 
the eZ-terms in (B.15) that lead from (B.9a) for e =  + 0  to (B.12).- Other apparent 
paradoxes than the one in (B. t 1) for e =  + 0  arise upon interchange of the limits 
A ~ o o  and e ~ + 0 .  

2) If one uses a regularisation more general than the one in (0.1), e.g. by 
absolute-momentum cutoff [23], then the double sum in (B.3) must be replaced 
by O(A-2  +~k), and terms with non-power A-dependence, e.g. involving logarithms 
of A or oscillatory factors, can be expected in the asymptotic expansions. (B. 10) 
remains valid as it stands, however [31, 32]. For the functions (B.11a)-(B.11d) 
the given formulae remain valid since the r.h.s, in (B.10) vanishes identically in 
these cases for reasons of regularity in g~W. 
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