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ANOMALIES OF CURRENTS IN THE QUANTIZED SINE-GORDON EQUATION
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We investigate the meaning of the (infinitely many) conserved non-trivial currents of the classical Sine-Gordon
equation for conventional quantum perturbation theory of a scalar field ¢ with selfinteraction (cos(B¢) — 1 +
(86)%/2). Radiation corrections produce for all currents anomalies with contributions on the mass shell.

It is well known that the integrability of the classical Sine-Gordon equation in 1 + 1 dimensions
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is neatly connected with the existence of infinitely many conserved local currents [1]. The respective current
densities can be found recursively from the so called trace identities [1]. For a derivation of these 1dentities we
refer to the work of Zakkarov and Shabat {2]. We only quote the results. To make expressions simpler we use
characteristic coordinates.

u=3(x+0, v=%(-1.

Eq. (1) becomes in these coordinates
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Use the equation of motion to calculate
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The content of the trace identities is simply that p,, can be expressed identically as a total derivative with respect
tou
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Interchanging the roles of u and v one obtains another series of conservation laws independent from (4).
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The first two conservation laws (n=1) in (4) and (4a) give energy and momentum conservation. We are interested
in the densities j;, 4 1, /2,41 (1 <n<o0). (The densities with an even index lead to zero charges.)

To start with we look, 1n tree graph approximation, for consequences of the laws (4) and (4a) for a quantized
scalar field ¢ with selfinteraction (cos 8¢)/82 — 1/82 + ¢2/2 = £(¢)*. For concreteness we concentrate on the
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density j3. The arguments apply equally well to all the other currents j,,, j_n(n =3).
We decompose, by an elementary calculation, the integrated Ward identity
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tr

With (7(...));, we denote the Gell—-Mann—Law expansion of a time ordered vacuum expectation value in tree graph
approximation. The double points indicate Wick normal ordering.
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Restricting (5) to the mass shell one obtains after Fourier transformation a relation for the S-matrix

0= Er'P134,in t ?jpz,out (6)

Pu,m(outy denote the momenta of the asymptotic particles conjugate to the variables u;. To arrive at (6) from (5)
one has only to note that the first term in (5) fd221 (. .)/ou; drops out per se and that from the second term the
part with a factor 84 vanishes on the mass shell because of the nonlinearity in the field.

Eq. (6) is the first of an infinite number of relations for the S-matrix emerging from the conservation laws (4),
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It 1s an observation due to Polyakov [3] that the relations (7) are equivalent to the statement: the S-matnix is a
pure phase.

Turning now to the radiation corrections of eq. (5) we collect several pieces of information.

(i) Whatever normal product prescription ": :" we choose for the current density

A =gt ia + 620,95,

(compatible with generalized unitarity and causality) we can write down an identity of the form
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where the (unambiguously given) term 21 Zj_,(.. ) comes from the contractions of the bilinear part of /§ with an
external propagator leg. The relation (6) for the S-matrix will be true after the inclusion of radiation corrections
if and only if the rest R does not contribute on the mass shell. This makes us, in a sense, independent of the
peculiarities of any chosen subtraction scheme.

(ii) The requirements of a minimal number of subtractions and Lorentz covariance determine uniquely the Green’s

# We choose units such that the mass of ¢ 1s equal to 1.

94



Volume 62B, number 1 PHYSICS LETTERS 10 May 1976

functions of an arbitrary set of Wick ordered monomials in ¢ with any number of derivatives (in 8/0u or 3/dv
exclusively) distributed over one monomial.

Proof" It follows from general principles {4, 5] that it is always possible to define mmnimally subtracted Green’s
functions, of any coliection of fields, which carry as distributions only those representations of the Lorentz group
which occur in the tensor product of the same collection of fields. Let P(¢) be a monomial in the field ¢ with
derivatives 8/0u, e.g.
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Consider a minimally subtracted covariantly defined Green’s function
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From the point of a minimal subtraction scheme the allowed addition to (9) is a distribution concentrated at the
comcidence point x = y; = ... =y, that 1s a §-function with (/-2k) derivatives at most. The latter number can be
derived from power counting for scalar fields in 2 dimensions.

Lorentz covariance on the other hand requires that the §-function addition is of the form
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’We see that the conditions of a minimal number of subtractions and Lorentz covanance clash. This completes the
proof.

(ii1) Let P(») be a monomal of the form given in (8). Consider the free field time ordered vacuum expectation
values
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obeying the conditions of (ii). There is a number C(7; . .i,) # 0 such that
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Note that the absorptive part of (10) vanishes. For reasons exploited already in (ii) the right hand side of (10) can
be only of the given form. By inspection of the behaviour at large momenta of the two terms on the left hand side
of (10) one easily verifies that C(7, .. i,) must be non-zero. This fact is the source of the anomalies.

Putting results (1), (ii) and (iii) together we inspect now the general Gell--Mann—Low expansion of the inte-
grated Ward identity (5)
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Every single term in this formal series is according to the remarks in (ii) uniquely determined under the given
conditions. (Without mentioning it further we suppose all Green’s functions we speak about to be renormalized by
the unique “minimal” and covariant prescriptions). The strategy we follow to evaluate (11) consists (as in the tree
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graph calculations above) in an application of the equation of motion for ¢ including anomaties (c.f. (iii)), which
we organize as counter terms.
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To justify the equality (12) = (12a) we remark that the listed anomalies with coefficients C(...), which spoil the
naiveté of the tree graph calculation, emerge generically from graphs with two vertices. This may be alternatively
expressed: An anomally which appears for the first time in a graph with more than two vertices would give there
a 6-function contribution with the same Lorentz covariance as the normal term. However, such a §-function is
excluded by power counting arguments (c.f. (ii)).

Restricting (12b) to the mass shell we see that in general (if 2 #9 C(2)/C(3)= 47) the anomalous terms with
coefficients C(. ) are not cancelled. It follows from the considerations under (1) that the S-matrix is not a pure
phase and that no over subtraction scheme for the renormalization of the current will cure this on mass shell
anomaly. We have so far not been able to verify the interesting conjecture that the anomalies of all currentsj,,,
Jn (n > 3) happen to drop out for the same value of the coupling constant.

One should note that the exceptional value 82 = 4 is the one for which Coleman [6] asserts an equivalence
of the Sine-Gordon equation and the massive free Dirac field.

I am greatly indebted to Professor K. Symanzik for a careful revision of the manuscript and a check of the
number C(2)/C(3).
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