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Abstract. Let ~01(x ) and q)2(Y) be two local fields in a conformal quantum field 
theory (CQFT) in two dimensional spacetime. It is then shown that the vector- 
valued distribution ~01(x)~02(y)40 ) is a boundary value of a vectorvalued 
holomorphic function which is defined on a large conformally invariant 
domain. By group theoretical arguments alone it is proved that (pl(X)q~z(y)]0) 
can be expanded into conformal partial waves. These have all the properties 
of a global version of Wilson's operat6r product expansions when applied to 
the vacuum state t0). Finally, the corresponding calculations are carried out 
more explicitly in the Thirring model. Here, a complete set of local conformally 
covariant fields is found, which is closed under vacuum expansion of any two 
it its elements (a vacuum expansion is an operator product expansion applied 
to the vacuum). 

I. Introduction 

Some time ago partial wave expansions of the euclidean Greensfunctions (i.e. 
the Schwingerfunctions) of a CQFT have been established [1]. These expansions 
are useful to solve the nonlinear dynamical integralequations and also help to 
study the implications of locality. However, when one tries to express Oster- 
walder-Schrader-positivity (i.e. the euclidean counterpart of ordinary Wightman- 
positivity) in terms of the conformal partial waves, a complicated process of 
analytic continuation in the expansion parameters is needed [2]. In fact, one 
performs something like an inverse Sommerfeld-Watson-transform. The resulting 
discrete expansion is then termwise positive. Moreover the series looks exactly 
like a globally valid form of an operator product expansion applied to the vacuum. 
The above mentioned manipulations with the euclidean partial waves can only 
be done under suitable technical assumptions. For instance, to prove the validity 
of the inverse Sommerfeld-Walson-transform one must make sure that the partial 
waves have appropriate asymptotic properties in the expansion parameters. 

* Work supported by "Deutsche Forschungsgemeinschaft" 
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Therefore, it is natural to try to obtain the discrete expansions directly from an 
analysis of the Wightmandistributions rather than making the detour via the 
euclidean formalism. It is the aim of this paper to carD' out such a program [3]. 

Globally valid operator product expansions in CQFT are also interesting 
from the following point of view. A CQFT is in general not a particle theory. 
Therefore, there is a priori no natural language to describe such a theory. In case 
there are "sufficiently" many local, conformally covariant fields, they call be 
looked at as the fundamental entities of a new language. The interelation between 
them (i.e. the dynamics) is then expressed by the operator product expansions. 
As will be discussed later, the Thirring model exhibits such a structure. 
Considering CQFT'ies as valuable models for more realistic QFT'ies, one can 
try to translate the above picture to the general case. Such a proposal has recently 
been advanced by Mack [4]. 

The restriction of the present work to two dimensional CQFT'ies needs some 
justification: 

a) The kinematic complexity grows rapidly by going from two to four space- 
time dimensions. 

b) The results obtained hold presumably also in the case of four dimensions. 
In fact all the deeper mathematical tools are also available for this case. Moreover, 
the discrete expansions emerging from the euclidean method are equally valid 
for any spacetime dimension. 

c) The only not completely trivial, soluble models live in two dimensions. 
The paper is organized as follows. For the readers convenience and to fix 

notations some wellknown facts concerning the conformal group in two dimen- 
sions are collected in Section II. The definition of a CQFT is also included here. 
Section III deals with the problem of describing the minimal conformally invariant 
analyticity domain for two point vectors (pl(x)rp2(y)J0). Then, in Section IV, the 
tensorproduct of two holomorphic, irreducible, unitary representations of the 
universal covering SL(2, IR) of the group SL(2, IR) is decomposed into its ir- 
reducible parts. The result is applied (Section V) to the vectors ~01(x)q~2(y)10) 
yielding their vacuum expansion. In the last section the Thirring model is analysed; 
thereby the dimensions and spins of a complete set of local fields are determined. 

II. The Conformal Group in Two Spaeetime Dimensions 

2.1. Some Definitions 

To exhibit the action of the conformal group on a point (x °, x 1) of two dimensional 
Minkowskispace M it is convenient to introduce lightcone variables, namely: 

X+ = X °  + X 1 ; X_  - = X ° - - X  1 . 

The conformal group C is then defined to be 

SOo(2, 2)/Z2 ~ S1(2,1R)/Z2 x S1(2, tR)/Zz. 

(2.t) 

(2.2) 
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In fact the group S1(2,1R) x S1(2, IR) acts on (x+, x_)~M as follows: 

g=g+ x g _ ;  g+ = (~+ _ 

. /ry+x+ + z + .  

a(x+, x-) = [¢-57+,1+, 

z±]eSl(2, IR), 
r/_+/ 

a_x_+z_] 
~_x_ +rl_/ '  

(2.3) 

~,~ ~.,--(, 7~  cosS~n~ (;~, ; . )  ,2~0, 

Therefore, the study of the conformal group in two spacetime dimensions boils 
down to the investigation of the group S1(2, IR). 

The transformation law (2.3) is not well defined, since ix+ t /  may vanish. 
However, this problem can be solved by compactifying Minkowskispace, i.e. 
adding points at infinity (e.g. I-5, 6]). 

The group S1(2, IR) is a simple, threedimensional Liegroup. Its Liealgebra 
~1(2, IR) can be represented by all real, tracetess 2 x 2-matrices. I will use the 
following basis for ~1(2, IR): 

~_-(° 1 ~)~ o-(; _~)~ ,-(~ ;) ~4, 
For g = ( 7  ; )~  S1(2, IR) and x~IR, set 

g(x) "- (,rx + z)/(~x + ~) (2.5) 

(one should compactify IR). 
The generators D and P generate dilatations and translations of x, respectively: 

e~O (;~ ° )-a . . "  e--10 ;)--~ ~26, 
e -  ~ 

The generator H generates a maximal compact subgroup of S1(2, IR): 

et°H=( c°sv  s i n ~ t - k .  (2.7) 
\ -  sin V cos W 

Every element g of S1(2,1R) can be decomposed uniquely and in a differentiable 
manner into k-a.n (the Iwasawa decomposition). Therefore, as manifolds, one 
has the equality: 

(cos~ '~°~/(o " ) ~2~, SI(2,1R)~S 1 xlR+ xlR; g = \ -  sinv cosv/  cr -1 " 

Here, S 1 is the unit circle, IR+ = {aelRIrr>0}. 
Because of the factor S 1, these manifolds are not simply connected. Unrolling 

S 1 yields the universal covering S1(2, IR) of S1(2, IR): 

2 "" SI( , IR)=IR x IR+ x IR. (2.9) 

The canonical projection ~:S1(2,1R)~SI(2, IR) is given by 
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n is one to one on the open set 

0 = {0P, a, v)e S1(2, IR)I I~01 < n}. (2.11) 

The group multiplication law on "S1(2, IR) could be written down in terms of the 
coordinates (9, cr, z). I will however never use this complicated formula. It suffices 
to know that 

n[gl'g2]= 7c(gl)'rc(g2)[ for all gl, g2, g~Sl(2, IR--) (2.12) 
(0, 1,0) .9=g J 

For example, one has 

(,#, 1, 0)-(,;', 1, 0)=(t; +~;', 1,0). 

The center 3 of~Sl(2, IR) is generated by just one element, namely 

z - (n ,  1,0)', n(z)=( -10 _ ~) , (2.13) 

3 = {(n-n, 1, 0)ln6g}. 

2.2. The Irreducible, Analytic Representations of ~ ,  IRi ([8, 9]) 

A nontrivial, unitary representation of a Lie group G is called analytic, if some 
of its nonzero generators is represented by 1//--t times a positive selfadjoint 
operator (for a general treatment of such representations, see [7]). For G = SI(2,1R) 
all the irreducible analytic representations are known expficitly. They are induced 
representations on the homogeneous space G/K, where~K~is the one parameter 
subgroup of G generated by H (2.4). It turns out that G/K is isomorphic to the 
upper half plane H: 

G/I(-~H- { w ~ l l m w > O } .  (2.14) 

acts on/ - /as  follows: 

(o- ; )~ S1(2, IR) (2.15) ged; ~(g)= ~ 

w e 1"1=> g(w) -- (aw + z)/(~w + 11). 

Note that (2.15) is well defined since ~w+q+0  for all weII. 
The analytic representations of G are carried by the following two types of 

function spaces: 
For n>0  define H,(H*) to be the linear space of all holomorphic (anti- 

holomorphic) functions F on H with the additional properties: 
a) F has a C~-boundary value for hnw'--~0. 
b) For Imw>0  and Iwl~oe the following expansions are valid: 

F(w)~(1--iw)-"(ao+alw -1 +a2w-2 +. . . )  (F~H,) 
(2.16) 

F(w),,~(1 + iw*)-n(ao+alw -1 q-a2 w-2 q-...) (Fell*) 

(w* denotes the complex conjugate of w). 
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Of course, F e H ,  iff F*~H*.  From now on I will restrict the discussion to H, 
only. 

The action of G on H, is first specified for ge O, the open neighbourhood (2.11) 

of 1. Set rc(g)=(~ ;)  and define: 

( T,(g)F)(w) = ( - ~w + a)-"V(g - ~(w)) , (2.17) 

targ(- ~w + o-)1 < rc (g~O).  

If gl, gz and 91 "02 are contained in O, the multiplication law is satisfied: 

T,(g~). T,(gz) = T,(g 1 • g2)- (2.18) 

Due to the fact that G is simply connected, T,(.) may be extended uniquely to 
all of (~ such that (2.18) holds. Thus for g = g l  "g2 ...'gk, gj~O, one defines: 

T,(g) = T,(g 1)" T,(g2).. . . .  T,(gk) . 

For instance, one obtaines in this way: 

[T,((krc, 1, O))f](w)=e-ik~'"F(w) ( ke~)  . 

Hence T,(z)=e -i~" (see (2.13)). 
An invariant scalarproduct on H, is given by 

(F 1, F2) . -  ( n -  1)re- 1 ~ [dw]F~(w).(imw)~-2F2(w), 
// 

(F1, Fz~Hn; ]dwl- dx .dy  for w = x + i y ~ I I ) .  

(2.19) 

(2.20) 

This integral converges absolutely for n>  1 and can be analytically continued 
down to all n>0 by means of a suitable chosen orthogonal basis [8]. By completion 
of H, with respect to (.,.), one obtaines a Hilbert space ~vt°,. The operators T, 
extend by continuity to all of W, yielding a unitary, irreducible, analytic representa- 
tion of "S1(2, Ill). These representations will be referred to as the holomorphic 
irreducible representations of G, in contrast to the antiholomorphic representa- 
tions obtained by starting from H* instead of H, (in fact, as can be seen from (2.20), 
the representations on W, and W* are dual with respect to each other). 

Note that the holomorphic irreducible representations of "S1(2,1R) are all 
irreducible representations U(-) such that (1/i)U(H)<O, H defined by (2.4). 

Any function F e H ,  has the Fourier representation: 

F(w)= ~ dpeiPWF(p); F(p)=p"- l .g (p)  (2.21) 
0 

g(p) e~(~.+). 

(q~(IR +) = {gt p => o Ig z 0°}; 5e is the Schwartz space of rapidly decreasing C ~-functions 
on Ill). Conversely, any function F(w) which is representable in the form (2.21) 
belongs to H,. In terms of J~(p) the scalar product (2.20) becomes: 

(F1, f2), =22-"r(n) ~ dpp 1 -n/~*(p)'/~z(p). (2.22) 
0 
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From this, one easily observes, that 

G.(w, w') "= [22 -"F(n)] - 1 ~ dpp" - 1 eip(w " -,,,*) (2.23) 
o 

has the reproducing property: 

(G.(w,.), F).=F(w) for all F e ~ , , .  (2.24) 

The explicit form of G.(w, w') is: 

G,(w, w') = 2" - 2e - i ( r c / 2 ) n ( w *  - -  W t ) - n (2.25) 

(w, w '~ l I ;  Jarg(w* - w')f < z). 

2.3. Formulation o f  a General CQFT in Two Spacetime Dimensions 

There are two points to take care of: first, in two dimensional spacetime there is 
no natural concept of spin because there is no rotation group. Secondly, the 
implementation of the conformal group cannot be done in a canonical manner 
since a conformal transformation may carry points to infinity and moreover 
convert spacelike point pairs into timelike ones (see however [5]). 

Concerning spin, I will be as conservative as possible: carrying over the 
transformation laws of spinning multicomponent fields to two dimensions, one 
realizes that it is possible to chose a basis in index space, such that the Lorentz 
transformations act diagonally, viz. 

U(A)vo~(x) U(A)-  1 = e~.%p~(Ax) ; Is~[ = s = spin. (2.26) 

{ch  / 
Here, A{ = \ shz  ch){] is a boost. For instance, ifju(x) is a vectorfield, one defines: 

j + = j o + j , , j - = j o - j l  

and (2.26) reads: 

U(A)j+(x)U(A) -1 =e±Zj+_(Ax), i.e. s+ = 1, s_ = - t .  

Thus, given any field (p(x) such that 

U(A)q)(x) U(A) -  * = eS'Z~o(Ax) . (2.27) 

I will call s the spin of q) and restrict the allowed values ors by hand to be 0, _ 1/2, 

A general CQFT in two dimensional space is now defined as follows: First 
of all it should be a fieldtheory satisfying Wightman's axioms [10] excluding, of 
course, the requirement of asymptotic completeness. Then, it is assumed that the 
conformal group ~7-S-~2,1R)x'SI(2, IR) is unitarily represented by operators 
U(g), gs  C. If g is an element of the Poincar6 group, U(g) should coincide with the 
corresponding operator given by the underlying Wightman theory. 

The action of U(.) on the fields is complicated. I will not make the assumption, 
that there is a conformally invariant, dense domain of definition for the fields, 
but require that the infinitesimal generators of U(.) and the fields have a common 
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domain of definition D left invariant by them (and containing the vacuum 10)). 
This domain hence contains the dense, linear space Do of all vectors which are 
built by applying a polynomial of smeared fields to the vacuumstate. 

It is now postulated that the fields have the infinitesimal transformation law 
(valid on D) corresponding to the formal expression 

U ( g ) ~ o ( x )  U ( g )  - ~ = ( 4  + x + + r l + )  - "  + ( 4  - x _ + 17 - ) -  " -  q ~ ( g ( x ) )  (2.28) 

C7 + "C ++ ] 
g = g +  xg_ ; 7r(g_+)= ~ r/_+l, 

n+ and n_ are the conformal quantum numbers of (p. 
Formula (2.28) is then also globally valid on Do, if 4+ = ~ - = 0 ,  q+, t/_ >0. 

Specifically, for Lorentz boosts one has 

g =(0, e z/z, O) x (0, e -x/2, O) 

U ( g . ) q > ( x ) U ( g ) -  ~ = e z+(" + - " -  ) q ~ ( A x )  

implying, that the spin of (p is equal to 1/2(n+-n_).  

For dilatations g = (0, ]/~, 0) x (0, 1/-2, 0) the transformation law yields: 

U ( g k o ( x )  u ( g )  - ~ = , ~ "  ~ +" - ~ ¢ ( , l x )  = , ~ o ( , ~ x )  . 

The number d is called the dimension of (p. 
Thus 

d = ½ ( n +  + n _ )  

s=½(n+ - n _ ) .  (2.29) 

The two point function of any two local fields is determined up to a normalization 
constant by conformal invariance. It vanishes if the spins and dimensions of the 
two fields are not the same. 

The result is: 

(0t~0 l(X)~oz(y)10 ) = N ( x  + - y + - i O - " + ( x _  - y _  - i O -  " -  . (2.30) 

Positivity requires: n+ >0, n_ >0, i.e. d ~  1st. 
In case, say, n+ =0, the fields qh and q)2 do not depend on x+. 
In~wo dimensional QFT's the spectrum condition can be written in a factorized 

form. Let IP+ and IP_ be defined through 

e i~ +" = U((0,1,a) x (0, 1, 0)) ; e i e_, = U((0, 1, 0) x (0, 1, a)). 

Then, the spectrum condition is equivalent to the statement: 

IP+>0;  IP_>0.  (2.31) 

This implies, that the two unitary representations of'Sl(2, IR) associated with U(.) 
are both analytic representations [7]. 
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IlL The Analytic Continuation of (pl(X~02(y)~0> 
The analyticity of"vectors" ¢pl(x)cp2(y)]0) in the variables x and y is a consequence 
of the spectrum condition (2.31) and of the conformal transformation law (2.28). 
It has been shown generally [7] that if the spectrumcondition holds and ]~p) is a 
vector in the Hilbert space • of physical states, then U(9)]~) is, as a function of 
g~ C, a boundary value of a holomorphic function T(g)]~p), 9 running through a 
sixdimensional complex manifold S~. Moreover, this manifold carries also a 
semigroup structure and  T(9) actually denotes a holomorphic, contractive 
(H T(9)1] _-< 1) representation of Se. 

When the operators T(g), g~S~, are applied to the states ~01(x)cpE(y)]0 ) one 
gets a vectorvalued function of g for fixed x, y. However, because of (228) some 
of the variables specifying 9 are actually redundant, leaving just four independent 
complex parameters. These describe a conformally invariant two point analyticity 
domain for ql(x)q2(y)lO). 

So far the general idea of what is now going to be done in great detail. Since 
the problem factorizes completely into x+- and x_-variables, it is possible to 
"forget" about the presence of, say, x_. Therefore, I will henceforth (in this section) 
argue as if spacetime were one dimensional and the conformal group were just 
d ='S1(2, IR) (i.e. the first factor of C). 

3.1. Summary of Properties of the Holomorphic Semigroup S Belonging to 

Let me first describe a holomorphic semigroup S which has the group G = S1(2, IR) 
at its boundary. G itself is a real form of the complex group G c= S1(2, ~). As is 
wellknown, the Riemannian sphere S a is a homogeneous space for Q, namely 
for z ~ C C S 2, we have: 

g(z)=(ctz+fl)/(?z+6); g = ( ~  ~)~S1(2, 11~). (3.1) 

Under the action of G the manifold S z splits into three pieces, each of them being 
a homogeneous space of G. These pieces are: 

i) the upper halfplane/7, 
ii) the real axis including the point at infinity, 

iii) the lower halfplane/7*. 
Two complex semigroups are now defined as follows: 

SO= {g~ G~]g(/7) and its closure are contained in H}, (3.2) 

S=  S°uG.  (3.3) 

S o is an open submanifold of G~ and G belongs to its boundary. A holomorphic 
parametrization of S o is achieved by means of a Bruhat decomposition for Go: 
any element seS ° can be written uniquely in the form 

z a 0 1 
s = ( ;  1)(0 cr-1)(~ ~); ( z ' ~ ' ~ ) ~ C 3 ' a + 0 ' I m ~ < 0  (3.4) 

Im z- Im ~ < -- (Ira a) 2 . 
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Another useful parametrization can be obtained using an open, G-invariant 
cone V contained in the Liealgebra of G: 

V~ {X~ ~1(2, IR)LX = 29H 9- ~, 2>0, 9~G} (3.5) 

(H is defined by (2.4)). More explicitly, V consists precisely of those real matrices 

(~ _fi~) with fl > 0, ' < 0, ~2 +/3"' < 0" As manif°lds' the f°ll°wing equality h°lds: 

S°~G x V. 

The corresponding diffeomorphism is given by: 

s=g.e~X; s~S °, g~G, X ~ V .  

(3.6) 

(3.7) 

From (3.6) it is clear that S O is not simply connected since G is not. Taking the 
universal covering 

~o ~ d × v (3.8) 
of S o and lifting the semigroup structure yields a new holomorphic semigroup. 
By adding points of G in a continuous fashion [7] one obtains a semigroup 

S-~G x (V~{0}). (3.9) 

The above mentioned theorem, which is the key to the construction of the con- 
formal analyticity domain of (pl(x)q)z(y)[0), now reads: 

Theorem 3.1.[7]. Suppose U(.) is a unitary (continuous) representation of G in a 
HiIbert space ~ ,  such that (1/i)U(H)~O(U(H) is defined by eW(m= U(et'H)). Then 
there exists a representation T(.) of S satisfying: 

O) II T(s)ll <- 1; T(s O. T(s2)= T(s1-s2). 
(ii) r(s)= U(s) for se G. 

(iii) for any l~p)6:~f, the vectorvalued function r(s)]tp) of seS is continuous 
and holomorphic when restricted to ,~0. 

Briefly, T(.) is the (unique) analytic continuation of U(.). 

3.2. The Geometry of the Conformal Two Point Forward 7hbe 

The one point forward tube in one "spacetime" dimension is the upper half 
plane/7. Indeed, due to the spectrum condition (2.31) one can analytically continue 
~o(x)10) to a vectorvalued holomorphic function lw), weII, such that lim Iw)= 

ImwNO 

~0(x)[0), x = Rew [11] (here, the presence of x_ has not been noticed and x is 
identified with x+ for simplicity; compare the remark at the beginning of this 
section). 

Now T(s), s~S, acts on lw) as follows: 

T(s),w)=(yw+f)-"ls(w)); re(s)= (~ ~fl)eS. (3.10) 

rc denotes the canonical projection of S onto S. This projection reduces to (2.10) 
for elements se G, thus excluding a notational ambiguity. Observe that by definition 
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of S, s(w)e H. The phase of ?,w + c5 is determined by requiring it to tie in the interval 
( -  ~, zr) as s approaches unity and by imposing the validity of the multiplication 
law for T(.). The number n > 0  is the conformal quantum number n+ of cp see 
(2.28). 

The same argument does not apply to the two point vec tor  (~91(Xl)fD2(X2)t0 >. 
In fact, using the spectrum condition alone yields a vectorvalued, holomorphic 
function Iw~, w25, 0<Imw~ <Imw2, such that 

lim Iwl, w25--(Pl(x1)cP2(x2)I0), xl = R e  wt, X 2 = R e w  2 . 
0<Imwl < Irnw2"~,O 

The set {(wl, w2)eH x H I 0 < I m w  i <Imw2} is however not invariant under 
the action of G, and, afortiori ,  of S. 

A first guess of how a conformally invariant twopoint analyticity domain 
could look like is the following set: 

H ;~ i F / =  {(wl ,  w2)GH ×/71w 1 =1= W2} . (3.11) 

The center of d acts trivially on 17 ~ 17, i.e. z(wl, w2) =(z(wl), z(w2)) =(wl, w2) for 
all (wl, w2)~H Y< 17. 

Now, this would imply 

U(z)cp l(x)Cpz(y) J0) = phase factor x cp a(x)cp2(y ) 10) (3.12) 

a formula, which will not hold generally [8]. 
To avoid (3.12) one must have some two point manifold where z does not act 

trivially. To get an idea, what is needed, let (zl, Z2)@(i/2 ,/) a special point in the 
forward tube and ?,(t)= (t, 1, 0), 0 < t_< rc a curve in G. Then 

(7(t)) [=~ cost sinl) ; 7(0)=1, y(n)=z 
\ -  sin t cos 

7(t)(z2)=z2 for all t .  

As shown in the figure, y(t)(zl) walks around z 2 as t increases from 0 to re. 

Ira,at  

g~ 

Re~.y 
Fig. 1 

The requirement that y(Tz)(zl, ZE)=Z(Z1, Z2)=~(Z 1, Z2) implies therefore, that, 
while wl is running around Wa, another Riemannian sheet of the domain of 
holomorphy of fwl, w2) is reached. This suggests the consideration of the complex 
manifold 

H ~<'----H= universal covering of H ~ H .  (3.13) 
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Let p :H ~--- -H~/ /~  H the natural projection. Because G and S both can act on 
H ;~/ /and are simply connected, they act on/ / -~/ /asweU. This action "commutes" 
with p: 

p[s(co)] =s[p(co)] for all s~S, co~//;<~---H. (3.14) 

Points of U~-H 'can  be described by their projection on /7  ~<//and a sheet label: 

co = (w i, w2, n); (w 1, w2) e/ / ;< H, n ~ 2g. Two consecutive sheets o f / / ;< /7  are glued 
together along the surface: Rew~=Rew2, 0 < I m w 2 < I m w  ~. This can be done 
in such a way, that 

z(wl, w2, n) = (wl, w2, n + 1); z as in (2.13) (3.15) 

i.e. the center of G does no longer act trivially, but maps one sheet o f / / ;< /7  onto 
another. 

//>~'----H is not a homogeneous space of G. In fact there are infinitely many 
orbits described by the following Lemma. 

Lemma 3.2. For coe H ~---H define: 0(e)) = Im w 1 • Imw2/[w I - -  W212 where (w 1, w2) = 
p(co). The orbits of G in/7 ~--H are then precisely the subsets of/7 ~--H with a constant 
value of O. 

Proof. See Appendix A. 

On the other hand, the semigroup ~o acts on ~ as if it were a "homogeneous 
space": 

Lemma 3.3. Define 0 as above. The orbit of a point co~ H ~< /7 under the action of ~o 
consists precisely of all co' e f f~-H having O(d) > O(co). 

This lemma is also proved in Appendix A. 

The orbit O(co) of coe/7---~--/7 under the action of ~o is thus an open subset of 
~ a n d  moreover O(co) 7 II ;~ II as 0(co)'-~ 0. 

3.3. Carrying out the Continuation of qOl(X)q)2(y)10 ) 

Let q~ and q~2 two local fields in a CQFT having conformal quantum numbers 
n~ and n~ respectively. 

To formulate the main result of this section, the x_-variables are not ignored. 
For the proof of the theorem below they will not be noticed. 

First, one can analytically continue qh(x; ,  x~-)q~2(x~, x2)L0) to the relativistic 
forward tube. Thus, there are vectorvalued, holomorphic functions [w[, w~; 
wi-, w2), 0<Imw~- <Imw~,  0 <  Imw~ <Imw2,  such that 

lim ]w[, w~;w-{, w2 ) =  qh(x~, Xl)q~2(x2", x~ )J0) (3.16) 
0 <lmw~- < Imvox¢",, 0 
O < I m w f  <lmw~ "~ 0 

Rew( ~=xi e ;Rew~ =x~ 

in the distribution sense. 

Theorem 3.4. There are vectorvalued, holomorphic functions Ico +, o)_ ), co+_ ~II ~ H 
such that: 
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a) [co+, co_) analytically continues [w +, w f  ; w; ,  w~), i.e. Jbr co+ =(w~-,w~,O) 
and co_ = (w; ,  w~,0) we have: lco+, co-)  =tw~-, w~;wl-, wz ). 

~ ~ (e+_ fl+-+)" then: b) if s=s+ x s _ ~ S x S  andyc(s±)=\y+ `5 

T(s)lco+, co_) = (~/+ w~ +`5 +)-"e(y+ wi~ +`5 +)-"¢ 

x (y_w; +`5_)-"f (y_w;  +`5_)-"f ]s+(c0+), s_(co.)) .  (3.17) 

Here (w~, w~)=p(co±) and the phases of the multipliers ( 7+w/+6+)  -"i~ etc. are 
determined as in the case of the transformation law (3.10) of the one point vectors. 

Proof. Reducing the theorem to plus-variables only, one starts with a holomorphic 
function lw 1, w2), 0 < I m w ~ <  Imw2, and looks for vectors ]co), coe / /~  17, such 
that 

r(s)lco) = (7w i + ,5)- nl(yw 2 q- ̀ 5) - n2]S(CO)) (3.18) 

for all ssS, re(s)= ( ;  ~)~Sl(2, C). Moreover, if~o=(w~,wz, O), then lco)=,w~,w;). 

This suggests, that one should define Ico) through 

Ico) = (7wl + 6)"~(yw2 + 6)"2r(s)Iwl, wa) (3.19) 

whenever 0 < I m w  1 <Imw2 and s((w 1, w z, 0))= c0, seS. However, there are many 
triples s, w~, WE such that s((w~, w 2, 0) = co. This is described more precisely in the 
following Lemma: 

Lemma 3.5. For co, co o ~ 1I ~< 17 define: 

~(~ I coo)- {se ~°I s(coo) = co} (3.20) 

Then,/4colCOo) is a closed, connected, holomorphic submanifold of ~o 

Proof. See Appendix B. 

Next, have a closer look at the multipliers (yw+ `5)" which appear in (3.19). I claim, 
that the map 2 , : / / x S ° ~ C ,  2,(w,s)=(yw+`5)" (phases defined as in (3.10)) is 
holomorphic. Indeed, the map ~:11 x S°~ll?, O(w, s)-(yw+`5) vanishes nowhere 
by definition of S o and is hence a holomorphic map of 11 x S o into C \  {0}. Let g* 
the universal covering of 112\{0}, i.e. ~* is the Riemann-surface of the logarithm. 
By the monodromy principle [12], ~ can be uniquely lifted to a mapping 

:17 x ~o ~ .  such that arg [O(w, s)l ~ ( -  ~z, ~) as s approaches unity. Now, powers 
are defined as holomorphic functions on 112". Thus, for any n, ~' is a well defined 
holomorphic mapping o f / / x  S°~C.  Clearly 0"'~-~ = 1. It remains to show that 
0"= 2,. To this end, consider the transformation law (3.10). For fixed w and s near 
enough to 1, one can replace (yw + `5)-" by O(w, s)-" there. By uniqueness of analytic 
continuation the "new" equation holds for all seS and therefore 0(w,s) - " =  
2_,(w, s) for all w, s. 

The multipliers 2,(w, s)=(yw+`5)" satisfy the following algebraic identity: 

2,(w, sl "s2) = 2,(sz(w), sO'2,(w, s2) ; wEII, s 1, s2eS.  (3.21) 
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For this relation holds when sl and s2 are near 1 and extends by uniqueness of 
analytic continuation to all of S. 

For s~S ° and (wl, w2)eH x / / ,  0 < I m w l  <Imw2, we now define: 

Is, w l, w 2 ) -  2,,1(wl, s)2,2(w2, s)r(s)lwl, w2). (3.22) 

By the above this is a holomorphic vectorvalued function. From (3.17) we expect 
that it depends only on the combination co=s(wl, w2, O)eFt ?< 1I of the variables 
involved. In order to prove this statement we need another lemma. 

Lemma. For any element X of the Lieatgebra of d denote by U(X) the infinitesimal 
9enerator of U(exptX). Then Iwl, Wz) lies in the domain of definition of U(X) and 
there are differential operators 

Lx = Q(x, wl) + P(X, wl)O/~w~ + Q(x, w2) + P(x, w2)~/~w2. 

Q(X, w), P(X, w): polynomials of w, linearly dependent on X such that 

U(X)]w1, w2)= L xTwl, w2) . (3.23) 

Proof. [wl, w2) is the Fourier-Laplace transform of q~t(xOq~z(x2)lO ) and moreover 
there is a testfunction fw~w2(Xa, xz)~Se(lR2 x IR 2) such that 

Iwl, w25 = Jdxadx2fw,w2(Xt, x2)q~l(xl)q)2(x2)tO). 

Therefore [wl, w25 is an element of the domain of U(X). By infinitesimal conformat 
covariance (2.28) and elementary properties of Fourier-Laplace transforms we 
have 

U(X)Iw1, w2) = I dxl dx2f w,w2(X1x2)Lx~ol(xl)q~2(x2)[O) 

=LxIwl, w2) [] (Lemma). 

The uniqueness theorem for solving the problem 

(d/dt)lw, t)  = U(X)Iw, t) ; I~o, 0) = IW) 

now implies that 

T(expX)lwD w2) = 2_,~(wl, exp X))._,~(w 2, exp X) lexp Xw 1, exp Xwa) (3.24) 

for all X such that Im(expt XwO < I m  (expt Xw2)(V t, 0 < t < 1). Hence by (3.21) 
we have 

Is. exp X, w 1, W2 ) ~--- "~'nl(W 1' S" exp X)2, =(w 2, s- exp X) T(s) T(exp X) lw 1, 14"2) 

= Is, expXwl, expXw2).  (3.25) 

The holomorphy of Is, w,, w2) allows us to extend this relation to all complex X 
lying in some open neighborhood N,,~. .~ of zero. 

Let m e / I  ~<'----H and COo =(Wa, w2, 0)eH--~-H such that 0< Imw, <Imw2 and 
O(COo)<O(co) (such o) o always exists). By Lemma 3.3 there is some seS ° with 
co=s(coo). Since /4colCOo) is a connected closed submanifold of go (Lemma 3.5) 
(3.25) implies that Is, wl, w2) depends only on co but not on the particular tripet 
s, w,, w2 chosen. Hence we may unambiguously define 

leo)-Is, wl, w2). 
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Obviously [co) analytically continues [wa, wz> and the transformation law (3.17) 
follows from Equations (3.21) and (3.22). [] 

Though the semigroup formalism is a quite complicated tool it gives deeper 
insight into the question of where the whole analyticity comes from. It also yields 
a good guess what the conformal n-point forward tube should look like. A point 
of this set is formally given by: 

c o = ( w l  . . . . .  w , ) ;  3s~ . . . . .  s , , e~  ° 

such that 

w~ = s ~(0); w~ = (s~. s~ ) (0 ) ; . . . ;  w,  = (s~. s~ . . . .  - s , ) (0) .  

More precisely, this is a subset of the universal covering of 

{(w 1 ..... w , ) s H x . . . x H [ w i + w  j foratl i+j} 

corresponding to a complicated ordering. 

IV. Decomposition of the Tensorproduct of Two Holomorphic, Irreducible 
Representations of Sl (2, ~ )  into Irreducible Subspaces 

The problem of decomposing a tensorproduct of irreducible representations of 
S1(2, IR) has been discussed recently by Rtihl and Yunn [13]. For the case of two 
holomorphic representations the formulas and proofs involved simplify con- 
siderably and moreover, can be given a very elegant form. I will therefore not 
refer to the work mentioned above, but derive the harmonic expansion newly. 

In view of Theorem 3.4 it seems to be more promising to do harmonic analysis 
on the space/I  ~< H instead of H × H. However, as will be shown in Section V, 
the group theoretical machinery developped in the present section will be suf- 
ficient to expand the vectors Ico+, e)_) in conformal partial waves. 

Let me first define the tensor product of two irreducible, holomorphic re- 
presentations (T,~, 7f,~), (T,2, 7f,2), nl, n2 > 0, of G. The appropriate function space 
is denoted by H.~ ®H,2. Its elements are functions F(w 1, w2), Imwl,2 >0, satisfying: 

a) F is holomorphic and has a C°-extension to all of 

{(wl, wz)E~ x ~[ Imwl =>0, Imw2 >=0}. 

b) the same as in a) is true for 

w-[nlF(- 1/w 1, w2); w~"zF(wl, - 1/w2); w~"lw~ZF( - 1 /w l , -  l/w2). (4.1) 

Equation (4.1) implies various asymptotic expansions for F(w 1, w2) as tw~l~oQ 
and/or [wzl--' oe. 

d acts on H,~@H,~ as follows: 

IT,, ×,2(g)F] (wl, w2)= ( - ~w~ + ~r)-"~( - ~w 2 @ (7)-"2F(y- l(w0, g- l(w2))  , (4.2) 

(a ; ) e  S1(2, IR); larg(_ ~wl,z + a)l < ~. 
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This formula is valid for 9EO (see (2.11)). Since G is simply connected, T,1×,2 
extends uniquely to a representation of G. 

The completion of H,, ® H,2 with respect to the invariant scalarproduct 

(F1, Vz)nl × n2----(nl - -  1)(n2 - -  lfiz - 2  S idwt j. tdw2}F~(wi  ' w 2 ) ( i m w l ) n 1 - 2  
HxH 

• (Im w2) "2 - 2Fz(w1,  w2) (4, 3) 

yields a Hilbertspace ~ . ,  @ ~.2- The operators T.~×.2(9) extend to all of ~ . , Q ~ . 2  
forming a unitary, analytic representation of G. 

An analytic representation of a Liegroup can always be decomposed into 
irreducible analytic representations [7]. This suggests the consideration of the 
following Clebsch-Gordon-kernels: 

k K.,.~(w 1, w 2 [w) = ik(Wl -- w2)k(w1 --  W*) - n l - k ( w  2 __ W * ) - n 2 - k  (4.4) 

(Wl, W2, WEft / ;  k = 0 ,  1, 2 . . . .  ) .  

k For fixed w, Kkn,.2(WD WzlW)EHnl @ Hn2 and for fixed wl, w 2 K.l.~(wl, wztw)*E 
H.,+.2+2k. Therefore, the scalarproduct k k' , (K.1.2 ('," ]w), is well K. 1.2('," ]w )).1 × .2 
defined and we have the orthogonality relation: 

(Kkl. 2('," [w), Kk]. 2('," I W')) . . . .  2 = Ck6 k, V G*, +.2 + 2 k( w, W'), (4.5) 

Ck= 43 -.1 -.2 - k k !F(nOF(nz)F(n 1 + n 2 q- 2 k -  1)/F(n 1 + k)F(n2 + k) 

• F(nl +n2 + k -  1). 

Proof• k K.I.2 has the following Fourier representation: 
k K.1.2(wx, w2[w) = {F(n 1 + k)F(n 2 + k)} - le-i~/2("I +.2) 

• S dpldp2e im(wl -W*)eiP~°~-'~'*)(O/~pl - O/Op2)k[p] ~ + k lp.22 +k- 13. 
0 

Performing the substitution 

Pl =y(1 - x); P2 =y( i  +x);  0 < y  < o% - 1 < x < 1 

yields: 
Kk~.2(Wl, W2[w)=Mk ~ dy i dxeiY"-~)(~l-W*)e i'('+x'(w2-~'' (4.6) 

0 -1  

.y"~ +"2 + k-1(1_ x)"1-1(1 +x)"2-ip~,.:(x),  

M k -  2 k+ lk!e- i~/Z(nl  +"2)/F(n 1 + k)F(n  2 + k). (4.7) 

Pk,.2(X ) is a Jacobi polynomial: 

~1.2(~) = ( -  1)~/( 2~k !)(1 - x) ~ - "10  + x) ~ -"2(d~/dx~) 
• [(1 - x)  "~+~- ~(1 + x )  "~+~- ~3.  (4.8) 

Now formulas (2.22), (2.23) and the orthogonality relation 
1 
j dx(1 - x ) " ' - l ( l  + x  .2-1pk ) .1.2(x)U.,.2(x) = hkfk, t (4.9) 

"°'1 

hk= 2ni + n2 - tl-(n 1 + k)F(nz + k)/(nl + n2 + 2 k -  1)k !F(n I + n 2 + k -  1) 

for the Jacobi polynomials imply (4.5). [] 
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For any function F(wl ,  w2)~H, , I (~H, ,  2 define its k'th Fourier conaponent by 

Fk(W) = C ;  1(Kk,1,,2(.,. Iw), F),, ×,2. (4.10) 

It will be shown later that Fk(W)e H , ,  +,2 + 2k. 
Clearly, the kernel (4.4) is covariant, i.e. 

[T,,l+,,2+zk(g)F~](w)=[T,,l×,,2(g)FJ~w ) for all ge(~. (4.11) 

Moreover, since the Jacobi polynomials /~,~,~ are a complete orthogonal basis 
in the Hilbertspace of all measurable functions f ( x ) ,  xe [ -  1, 1] with finite norm 

1 
[Ifl[2= j" d x ( 1 - x ) " ' - l ( l + x ) n ~ - l l f ( x ) J a  

- 1  

it is easily proved (Appendix C) from (4.6), (4.10) that 

F(wl ,  w2) = ~ (nl ÷ n2 ÷ 2 k -  1)~r-1 ~ ]dwlK~,,2(wl, w2lw) (4.12) 
k=0 H 

. (Im w)"l +n~+Zk-2Fk(w ) . 

This sum converges pointwise and also in the Jg, l@Jf,~-norm: 

- CkllFk[I,l+,2+2 k CkaS in (4.5). (4.13) 
k=0 

Briefly, the decomposition 

~t'°n, +~n2= + ~'°n,+nz+ Zk (4.14) 
k=0 

holds. 
There is a very useful alternative way to express the orthogonality relation 

(4.5). This is done by means of a set of homogeneous polynomials 

k X • I (4.15) Q . . . .  ( 1, x2) = xt  - "~ x~ -"2(63/~x 1 - 0/~x2) k [x~ 1 + k- IX~ + k- 1].  

We have 

Qk ,,~(2xl, 2x2) = 2kQ~,,2(xa, x2 ) (4.16) 

Q,kl,2(1 - x, 1 + x) = 2 k. k! .  P~l,~(x) 

and 

Lemma. Le t  n I, n2elR,  k, k'=0,  1, 2 . . . .  and F(w> Wz) a junct ion hotomorphie on 
H x H  x. Then:  

a) Qk (63/&1, 6~/Ow2)Kkn]n2(Wl' Wz[W)lwt-w2=w'= Nk(~k,k'G*,+na+ Zk( w'' w)' 
(4.17) 

N k = ( k ! F ( n l  +n2  + 2 k -  1)/2 "1 +"~+2g-ZF(na +n2 + k -  1))e -i=("~ +,,2-k)/2. 

b) Define fk(W) = Q~,,,2(3fi:?w 1, O/&v2)F(wx, w2)l,~, =w==,~ • 

1 K.k~.~, G., 7".(9), T., ×.~(g) (g~ G) can be defined for arbitrary n l, hE0 h e i r  and holomorphic F(wl, w2) 
resp. F(w) 
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For ge CJ one has 

IT, ,  +,~+2k(g)fz](w)= Q~,~(~/gwl, 0//~v2){ [T,~ ×,~(9)F](w~, w2)}l~ =,,~ =w- (4.18) 

I f  F~H,~ @ H,~ we can calculate its Fourier components through: 

F k ( w ) = N ;  lc~kz.~.~t~O/O~v/ 1, U~wz)F(wl, w2)lw~=~2=~ , . (4.19) 

From this formula and (4.11) it is easily seen that Fk6H,~ +,~+2k as promised earlier. 

Proof. The Equations (4.17) and (4.18) are analytically dependent on nl~n2. It is 
therefore sufficient to prove them for nl, nz>0. In this case, the representation 
(4.6) k of K,~,~ is valid and Equation (4.17) then follows from (4.16) and the ortho- 
gonality of the Jacobipolynomials pk ?tin 2" 

To prove Equation (4.1.8) assume first that FeH,~@H,2.  Using the Fourier 
representation for F one easily establishes 

( K~,~( . , . lw), F),~ × ,~ = G N  ; 1Qk( c?/ c3w l, O/ Sw z)F(w 1, w z)Iw , = ,~ =~ . 

Covariance of the Clebsch-Gordon-kernels then implies (4.18). If F is arbitrary, 
one writes each side of Equation (4.18) in the form 

k 

Z aJ,,(~+'/i~w~ OWZz)V(wl, w2)l~ =w~=0-~(w)- 
j ,1  = 0  

Since it is possible to find a function L(wt, wz)~H,~@H,z having prescribed 
derivatives (0/+Z/Ow~ 0w~) L(wx, w2)lw~ = ~  =w,(0<j, l<  k) at a particular point w ' e H  
the equality of the coefficients a~,~ on both sides of (4.18) follows. []  

V. The Conformal Partial Wave Expansion of the Vectors q~l(x)(pz(y)[0) 

A straight forward application of the results obtained in the preceding section 
to the vectors Ico+, co_) (Theorem 34) is not possible, because these vectors are 
defined only for co± e//~</7 rather than co± E/7 x/7. However, the different sheets 
of H ~</7 can be reached from one special sheet by acting with central elements 
of G. Let z+ resp. z_ the generators (2.13) of the center of the first resp. second 
factor of C. Define: 

Z+ "= U(z+ x 1); Z_ = U(1 x z_).  (5.1) 

According to Theorem (3.4) we have: 

Z+[CO+, c o ) = e  i~("t +"~ )lz+(co+), co_) ,  (5.2) 

z+(w +, w~, n) = (w~-, w~-, n +  1)(o)+ =(w?,  w~-, n)). 

I will now make a simplifying assumption, namely that the spectrum of the 
unitary operators Z~ are purely discrete, i.e. 

Z± = ~ 2~E(2~) (strong convergence; I+ ON). 
k ~ l  ± 

Here, 2~ runs through all eigenvalues of Z± and E(2k ~) are the corresponding 
(ordinary) projection operators in the Hilbertspace W of physical states. 
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This assumption holds automatically if there is a set ~ of (composite) con- 
formally covariant fields such that the vectors ~b(x)t0), qSe~, span 2/~. Since this 
is the situation envisioned when doing operator product expansions this is a 
natural assumption. Another important point is that by using more complicated 
mathematical notions (i.e. the general spectral theorem and "vectorvalued 
measures") one could well do without Equation (5.3). Since Z± are unitary, we 
have 

-+ _ oi,,~. 0 < ~k < 2. (5.4) k --~" 

Our procedure will be to carry out a harmonic analysis on the center of C first, 
and then use the results of Section IV. 

The main result of this section is now formulated in the following theorem: 

Theorem 5.1. Let qh and q)2 be two local fields in a CQFT in two space time dimen- 
sions and n~ resp. n~ their conformal quantum numbers. Denote by Jco+, co_) the 
analytic continuation of q) l (Xl)~0E(X2)]0)  a s  explained in Theorem 3.4. Assume 
fi~rthermore, that the spectrums of  Z+ and Z_ are discrete, i.e. Equation (5.3) holds. 
Then there are vectorvalued, holomorphic functions Iw +, w_, k), w -+ e H, k= 3,4,5 .... 
such that 

a) U(g+ x 9_)]w+, w_, k) =(~+w+ +t/+) -"~ (~_w_ + ~_)-"~ ]g+(w+), 

a_(w_), k ) .  (5.5) 

Here' n~>Oand~z(g+-)=( 4-.+ tlZ:)" The phases of  the multipliers are the same as 

in (2.17). 
b) [co+, co_) can be expanded into an orthogonal sum as follows: 

lco+,co_>= ~ ( n ; - 1 ) ( n / - 1 ) ~  -2 ~ ldw+tldw_lC'~.~(co+lw+) 
k=3 H x l I  

• ~ .~ (co_ l w _ )  (5.6) 

• ( I m  w +)"~ - 2 ( I m  w_)n~ - 2 Iw +, w _ ,  k ) .  

The kernels ~,.~(co[w) are first defined for co=(wi, w2, 0) 

~.~(colw)--" Ei(w~ - wg] - ~  Ew~ - w*]-  ~ Ew~ - w*] -~' 

6i--½(n--nl +n2); 02 "--½(n--n2 +nl) ;  ¢~3 =½(nl +n2 - n )  

l arg [i(wl - w2)][ ( g (5.7) 

and otherwise through analytic continuation. In case, say + n k =0  lw+, w_, k) does 
not depend on w+. This can happen only if n + = n  + and the corresponding 
contribution to Equation (5.6) should be read as follows: (n + =n~-=n +) 

[i(w[ - w])] -" +(n k - 1)re- 1 ~ {dw _ I C'~,~ ,~(co_ lw-)(Im w_)"z - 2 [w +, w_, k). (5.8) 
H 

n + n + n [ = n z ' - n - ) ,  the In case n+k = n k  =0  (which can happen only if n~-= 2 = , 
contribution to (5.6) reduces to: 

K i ( w ~  + -"+ --w2 )] [i(w~ - w 2 )  ] -"-10) ; ffetE. (5.9) 
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Comments. a) Equation (5.5) says, that U(g), ge C, acts irreducibly in the subspace 
~ k  of ~ spanned by Iw +, w_, k). If k + l, the spaces ~k  and ~ t  are orthogonal. 

b) Equation (5.6) arises from the fact, that the subspace ~f~o,~o2 of Jr" spanned 
by the vectors ]co+, co_), is the unitary direct sum of the 24"k'S: 

k=3 

c) Remark a) can be expressed in formulas as follows: 

(w+, w_, k[w +, w'., l)=6k, lakG,,~(W +, w'+ )G,,¢(w_, w'_) . (5.10) 

The numbers ak>O carry a piece of the dynamical information contained in 
q)l(x)q~2(Y)10). The same is true for the set {(n[,n~-)lk=3,4 . . . .  } of conformal 
quantum numbers appearing ha the expansion (5.6). This set will be called the 
conformat spectrum of the operator product q~,(x)q~2(y ). 

The anomalous parts of the quantum numbers + - (nk,nk) are related to the 
eigenvalues of (Z+, Z_). In fact we have 

+ =#+(mod2) • n; =ktf(mod 2) nk 

for some j , l  depending on k. The vector [w+, w_, k) is then an element of 
E(2+)E(27)~. 

d) The conformal spectrum of ~p1(x)~pz(y) is restricted by locality, namely the 
"spins" a + sk=g(n k - n ; )  take on values only from {0, +_1, ± 2  .... } or {+_½,-t -3 .... } 
depending on the spins of q~l and ~0 z. 

e) From (5.10) it is easily seen that the integrals appearing in (5.6) are well- 
defined (for say + n k _< 1, they need a special treatment: see the remark after (2.20)). 
For fixed co+, co_ the sum (5.6) converges in the norm of the underlying Hilbert- 
space J r .  Looking at each term in this series as a tempered distribution (for 
Imw~,2"-~0), smearing with some test function feq~(lR '~) and summing up, yields 
~ dx ,dx2 f  (xl, x2)q)l(x,)q)2(x2)lO). 

f) The above theorem relies purely on "conformal kinematics". Without 
having some dynamical information about the model considered, there seems 
to be no way to prove the existence of local, conformally covariant fields ~bk, 
such that 

lim Iw+,w_,k>=¢k(X+,X_)]O); Rew_ = x ± .  
lmw ~',~ 0 

g) The conformal spectrum of qol(x)q~2(y ) and the numbers ai in (5.10) can be 
calculated from the four point function 

<0lfp ~- (Xl)( p ~- (X2)( p t(X3)~O2(X4)]05. 

How this can be done, will become clear during the proof of the theorem. 
h) When the expansion (5.6) is inserted into the fourpoint function, one obtains 

a series that looks exactly like the discrete expansion, which is extracted from the 
(euclidean) partialwave expansion of the fourpoint Schwinger function by means 
of an "inverse Sommerfeld-Watson transform" I-2]. That the amplitudes at (5.10) 

± 
and the quantum numbers nk are the same in both expansions, has been checked 
in the Thirringmodel [14]. 
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Proof of  5.1. Let E(2) one of the projectors appearing in the spectral decomposition 
of (Z+, Z_), i.e. 

E(2) = E(2~). E(27) = E(2i- ). E(2~- ) (5. t 1) 

for some k, I. Because Z+ and Z_ commute with all U(g), gs  (7, we have 

U(g)E(2)U(g) -1 = E(2), ge C.  (5.12) 

Now set (2 +, 21-)-(2 +, 2-)  = (e i~÷, e i~-)  and 

[co+, co_ ; ,~) -  g(,~)lco+, co_). (5.13) 

Since E(2) is a bounded operator lco+, co-; 2) is a holomorphic, vectorvalued 
function. Moreover, from (3.17) and (5.12): 

U(g+ x g-)fco+, co-; 2 ) = ( ~ + W l  +r/+) -"t  (~+w~ + q+)-"~ (5.14) 
n~ • (i_w[- + t /_) -  (4-w2 + t / - )  - ' i  tg+(co+), g-(co-); 2) 

(~+ "c±t; p(co±)=(wLw~). re(o+)= (~ rl±/ 

Especially for g+ =z+,  g_ = 1: 

g(z+ x 1)leo+, co_ ; 2) = e  ~ +'~ )]z+(~)+), co_ ;~ ) .  

On the other hand by definition of E(2): 

U(z+ x 1)Ico+, co_ ; 2) = 2 +  Ico+, co - ;2 )  = e  ~"+ lco+, o _  ; 2 ) .  

Hence: 

]z+(o+), co_ ;2> = e  ~("+ -"~ -"~ )lco+, co- ;2> ,  (5.15) 
]co+, Z_(e )_ ) ;  2 )  = e  i~{t~- - ni -hi- )[CO+, co_ ; ~ , ) .  

One can even get rid of the phases e ~=~" ~ -'~ -"~) by multiplying tco+, co - ;2 )  with 
an appropriate factor. Define e~(co), coeH ;</7, first for co=(w~, w2, 0): 

~(e)) = [i(wl - w2)] -~, ]arg [i(wl - w2)]l < 7c (5.16) 

and for general co by analytic continuation. Then" 

-2~iv~ co a~(z(co)) = e , ( ) .  (5.17) 

Now renormalize leo+, co_ ;2)  as follows: 

lco+, co-; ;~) ' -  ~ +(co+)~-(co-)lco +, co_ ; ,~) 

~ - + - ~ ( ~ - + - ~ - n ~ ) .  

Because 

[Z~(co+),co_; ~> =Ico+,Z_(CO_);2>'=]CO+,C0-;2>' 

it is possible to define 

IwLw~;w~,w~ ;;~>-Ico+,co-;;~>'; p(co~:)=(w~,w~) 
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for all pairs (w~ ,w f )~11;<H.  By construction, this new vectorvalued function 
is holomorphic and moreover: 

U(g+ × g _ ) l w ~ , w ~ ; w l , w 2  ;2)=(~+w'~  +rl+)-m~(~+w~ +tl+) -ml (5.18) 
- m i - - m ~  W + (¢_w~ + r / )  ((-w2 + t l - )  I g + ( ~ ) , g + ( w ~ ) ; g - ( w ~ ) , g - ( w 2 ) ; 2 )  

m~ "--½(kt± + n ~ _ n f ) ; m ~  2 " ~ +_ + : ~ ( ~  - n ;  + n ~ ) .  

Lemma. Iw~, w~- ; w~-, w~ ; 2> can be extended to a holornorphic vectorvatued 
function on (11 x 17) x (1I x 1I). 

Proof. Since qol(x)~o2(y)10 ) is a tempered, vectorvalued distribution and t1U(9)It = 
I(gE C) it follows that there exists some k+ e;g, k+ >0  such that 

II(wi ~ - w ~ ) r ( w ;  - w2)  ~- tw?, w~ g w~, w2 ; 2)tl 

remains bounded as (w~, -+ + + w 2 ), w F # w 2, varies through any compact subset of 
/ / x  I7. We can assume that k± are the gmallest numbers satisfying this requirement. 
Like in the case of an isolated singularity of a holomorphic function f ( z )  of one 
complex variable, it can be shown that (W]--w~)k+(w~--w2)k- lw1+,Wf;W~,  
W~ ; 2) can be extended to a holomorphic function on all of (/7 x 11) 2. 

Especially 

lira (W+--w~)k+(w1--w2)k-Iw;,W~;Wl, W2;~), w+fH 
w + ..+~,p+ 

w ~  - * w  + 

exists and defines a holomorphic, vectorvalued function I w + ; w ~ , w ~ ) .  From 
covariance (5.18) of Iw~-, w~-; w?, w;-; ~) we have: 

(W+; W 1, W 2 IW+'; WI', W2' ) = a u ..... Zk+(W +, w + ' ) f ( w ; ,  w ; ,  w; ' ,  w2' ) .  

Positivity now implies, that #+ - 2 k +  =0  or F ~ 0 ,  i.e. by minimality of k ±, we 
have: k ±=0 .  []  (Lemma) 

Now assume that/z -+ > 0  (for #+ = 0  and/or # -  = 0  one has to take care of the 
degenerate cases (5.8) and (5.9); since no serious difficulties are encountered here, 
I will not discuss these cases further). Recall the polynomials k Q,,,~ defined by 
(4.15). They are now of great use: set 

Iw+,w_;  k , l )  "-- - N  k-~ Q,,I m~ k ((?/&v~, ~?/&vf)Ni-~Q~ ,,i(~?/Ow;, ~/Ow2-) 
+ + 

• Iw~ w2 ; w ; w 2 ) t ~ 4  = ~  =~+ 

- m  + resp. . (5.19) Nk, N 1 as in (4.17) with nl, 2 -  1,2 n l , z = m i . e  

(the index 2 has been omitted). These are vectorvalued holomorphic functions 
for w : ~ I 1  and they transform as: 

u(g+ x g_)tw+, w_;  k, I5 = ( G w +  +~+)-~+ -~(~_w_ +~7-)-" - ~  

.Ig+(w +), g_(w_); k, 15. 

Therefore, for fixed k, l the vectors Iw+, w_ ; k, l) span a subspace .X~. z of.x4 ~ where 
the conformal group (~ acts irreducibly. Let IPk, z the projector on -~'~k,t- It is a 
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simple matter to show that 

lpk.~[w~(,w];w;,w2)=(#+ +2k_l)(#-+21_l)~z 2 j. tdw+lldw-I. (5.20) 
H x I l  

Km~k ~ (W[,W~Iw+)K~T~(W~,W 2- Iw_)(Imw+)U + +2k- 2(imw_)U- +22 2 

lw+,w_;k,l).  

Because the IPk, TS are mutually orthogonal projectors, the sum 

~ ,  IP k, l "-z- IV 
k,/=O 

is strongly convergent and IP is again a projector. Hence 

lP[w[ ,w; ;w; ,w; )= ~ IPk,~lw[,w~;w;,wi- ) (5.21) 
k,l=O 

is a vectorvalued holomorphic function as well. 
By construction: 

[w+, w_; -1 k + k, 1)=N k Qm~n~(8/~Vl, c?/~?w~)U[-~Q~y~((?/i:3w[, ~3/c3w~) 

w'f =w~ =w-. 

Analyticity and the following elementary lemma now imply that 

Iw +, w~- ; w~-, w2) =lPIw + , w+'w;,2, w])  . (5.22) 

Lemma 5.2. An}, polynomial Y(x 1, x2) of two variables is a finite linear combination 
of the polynomials 

(xl +Xz)JQk~(xl, x2); k,j=O, 1, 2 .... 

(ml, m2EIRfixed; m~ +m2+0 ,  - 1 ,  - 2  . . . .  ). 

Putting together formulae (5.22), (5.21), (5.20) yields the conformal partial wave 
expansion for Iw~, w~;wr,  w2;2).  Taking into account the definition of this 
vector, summing over 2 and rearranging some factors finally yields (5.6) and 
thereby proves the theorem. [] 

M. Liischer 

VI. Vacuum Expansions in the Thirring Model [31 

6.1. Definition of the Model 

Notations and standard results concerning the Thirring model (e.g. 1-15, 16]) 
will be taken over from Ref. [16]. To make the present discussion sufficiently self 
contained, the basic structure of the model is briefly exhibited. 

The theory is conveniently formulated in terms of two fields: a current jr and 
a spinor field ~p with two components ~1, ~P2. The current jl~ and its axial brother 
f ~ = e u f ( ~ =  - ~ u ,  e~o = + 1) are both conserved: 

a~j" = O.j ~ = O. (6.t) 
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This implies [] j" = 0, i.e. ff  is a free field. However the operator representation 
o f f  is not of the Fock type. In fact, the Hilbertspace of the model carries a reducible 
representation of the canonical commutation relations: 

[ju(x o, xl),  j~(yO, yl)] x0 =to = c. i -  leu~b'(xa - yl)  . (6,2) 

c > 0 is a normalization constant. Because of (6.1) the charges 

Q+ - ~dxlj+(x); j+(x) -4 jo(x )±j l (x )  (6.3) 

do not depend on x °. From (6.2) we have: [Q+, Q_] =0. 
The (simultaneous) spectrum of Q± is given by: 

(Q +, Q _) = (m l(a + a-) + m 2 ( a -  ~); ml (a - if) + mz(a + a)) (6.4) 

m a, m 2 --0, -}- 1, ___2 . . . . .  

The real numbers a and a parametrize the model (like coupling constants do). 
The representation of (6.2) is now specified as follows: 

First, the Hilbertspace .Jr splits into Charge sectors: 

.Yf= @ Yfq+,q_ (6.5) 
(q+,q-) 

Q+lz)=q+_lz)  for Iz)e•q+,q-.  

Each charge sector .Ztfq+q_ carries an irreducible representation of (6.2) or 
equivalently of: 

[j +(x +),j_(y_)] =0;  [j ±(x±),j+_ (y ±)] = 2ic3'(x+ - y ±) (6.6) 

(due to (6.1), j+_ depends only upon x± respectively). 
This representation is characterized by: 

"If I±(x+_) are two lR-number functions, such that 
a) I+_(x±) and x$2I+(x71)  are C% 
b) ~dx±I+_(x+)=q±, 

then the currents 

j~ (x+_) -  j + ( x ± ) - I  ±(x+ ) 

are of Focktype ''2. 

The spinor field q~= (~1] now "intertwines" the representations of the current 
W2/ 

in different charge sectors: 

[j+(x+), ~p(y +, y_)] = - ( a  + ays)~p(y+, y_)a(x+ - y + )  
(6.7) 

[j _ (x _), V0(y +, y _)] = - (a - a7 5)~#(y +, y _)6(x _ - y _) 

where75=(~ _~) .  Accordingly, the tp-field is charged: 

[Q±, *pl] = -(a_+a)vq ; [Q±, tp2] = - ( a T a ) t p 2 .  (6.8) 

z In the charge sector Jgo.o, the representation offf is itself of Focktype; the vacuum in .~o.o will 
be denoted by 10) 
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It has been shown that there exists up to normalization one and only one spinor 
field ~p satisfying (6.7) [16]. 

This defines the Thirring model. 
The spin sl(s2) of ~PJ0P2) turns out to be 

st = - s2 = a. ~/2~c. (6.9) 

In case the parameters a, d are restricted such that Sl = _ 1/2, __ 1 .. . .  the Thirring 
model becomes an ordinary Wightman quantum field theory [16]. I will assume 
throughout this section that sl = __ 1/2, ± 1 . . . . .  

6.2. The Implementation of the Conformal Group 

The Wightman distributions for ~0, ~p+ can be calculated explicitly. They are 
conformally covariant under infinitesimal transformations (2.28), when ~ is given 
a dimension (2.29) d, 

d = (a z + a2)/4nc. (6.10) 

According to a general theorem [5], there exists a unitary representation U(.) 
of the conformal group C acting on the field tp as described in § 2.3. 

The current ju transforms simply: 

U(g+ x g_)j+(x+)U(g+ x g_) -  1 =(~_+x_+ +tl+_)-zj+_(g+_(x+)). (6.11) 

rc(g±)=( a±4± q+_/z±]sSl(2'lR)' 

This implies that the charges Q± are conformally invariant. To make use of 
Theorem 5.1, it is necessary to calculate the operators Z± (5.1). Equation (6.11) 
is valid in each charge sector 24,~q+q_ separately. Since the current is represented 
irreducibly in Jfq+,q_, U(g+ x g_) is determined by Equation (6.11) up_to a phase. 
There is a unique choice of phases, such that the operators U(g), ge C, satisfy the 
multiplication law. The outcome is that: [17] 

Z± = e~e~t4~ ; c as in (6.2). (6.12) 

Briefly: due to the fact that there are non-Fock-representations of the current, 
the conformal group C is forced to unroll itself to become C. Thereby, the center 
of C will be represented as shown in (6.12). 

When formula (6.12) is applied to the twopoint function (2.30) of a covariant 
field ¢ having spin s, dimension d and charges q+, q_, an interesting relation 
emerges: 

d=_(q2+ +q{)/8rcc (rood 1) (6.13) 
s - (q2 _ q~)/87rc (mod 1) 

i.e. spin and dimension of ¢ are functions of its charges modulo integer numbers. 
From (6.4) it follows that s=0,  ±½, ±1  . . . . .  

6.3. Construction of a Complete Set of Local, Covariant Fields 

Now we are well prepared to apply Theorem 5.1. From (6.12) it follows that Z_+ 
has indeed a purly discrete spectrum. Let (Pl and (P2 two conformally covariant 
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fields with conformal quantum numbers ni,2-+ and charges q~.2. respectively. The 
vector q~l(x)q)z(y)10) is then already an eigenvector of Z+:  

Z ±  (p l(X1)q)2(x2)]O ) = e ifq:t +q~ ] 2/4e (p l(x a)q?2(x2)]0). (6.14) 

Thus, to construct its partial waves, the projection (5.13) is superfluous. Following 
the program given in the proof of Theorem 5.1, one has to multiply ~0 l(x1)(p2(x2)[0) 
with a factor [i(x[ - xd - ie)] -" ~ [i(x~ - x~ - ie)] - ~- where 

v ± 

0 < / t  -+ <2;/~+- = [q~ +qf]Z/4rcc (mod2).  (6.15) 

Thereby the singularity of (pl(xl)q)z(Xz)]O) as x l - - ,x  2 is killed. We may then 
apply the differential operators 

Q~T ,,~ ( O/ Ox~, O/ Ox ~ )Q~7,, ~ ( O/ Ox ~, ~/ Ox2 ) (6.16) 

and evaluate the new function at x~ =x2 = x  (rigorously" speaking, one should do 
everything in the conformal forward tube, coming back to Minkowskispace at 
the end of the calculation). By this procedure, one obtains vectorvalued distribu- 
tions [x; k, l) transforming irreducibly under the conformal group C. 

+ + If, e.g., (p~ and @2 are any of the fields ~ ,  ~ ,  ~P2, lJ)2 one easily shows from 
the explicit form of the Wightman distributions (Appendix D) that 

~k.l(X) -__ Q,~k ,,~ ( C3/ OX-~, ~?/ ~x~ )Q~T,, ~ ( O/ OXl, c~x~ ) 

• [i(x; -x+) ] -~+  [i(x-[ - x 2 )  ] -v  q?l(X1)(D2(X2)lx I =x2=x (6.17) 

exists as an operator valued distribution. Of course, 

Ix; k,/)  = qSk,,(x)10) (6.1.8) 

and qSk, z is a covariant, local field with conformal quantum numbers 

n~,l=# + +2k  

nk]z=#- +21 

and charges 

qk+-i=q~ + q ~ .  

Wightman distributions involving ~p and qSk, z fields have the same general structure 
as the Wightman distributions of ~ fields only (i.e. they are sums of products of 
powers of difference variables (x± - y ± )  [15]). We can therefore iterate the above 
procedure, e.g. by taking q0a=qJ 1 and (p2=~Ok,~. In this way one arrives at an 
infinite set ~ of new fields. Z has the following properties: 

I. The fields contained in Z satisfy the axioms ofa  CQFT. Especially, any two 
fields 491, (~2 @ff are relatively local: 

[~bl(x),qSz(y)]+=0 for ( x - y ) 2 < 0 .  (6.19) 

II. Each q~e~- carries charges q+, q_, i.e. 

[Q±, qi]=q±q5. 

Charges, spin and dimension of ~ are related through Equation (6.13). 
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III. The states 5dexf(x)4)(x)lO), f~,5 ¢, 0 ~  span the Hilbertspace ~ of 
physical states. 

IV. The partial wave expansion (vacuumexpansion) (5,6) of vectors 
~l(x)q)2(y)t0), ( p l , 2 ~  can be done in terms of vectors ~b(x)[0), ~bEf 7. More 
precisely, there are fields ~bke~, such that the vectors tw+, w_, k) described in 
Theorem 5.1 are determined by ~bk(X)10): 

lim lw+, w_, k) =NqSk(x+, x_)]0); Rew_+ =x_+, NOIT. 
l m w e ' ~ 0  

The question arises of whether this remarkable algebraic structure might hold 
more generally. The only serious point apart from some regularity problems 
seems to be locality (6.19). Locality implies some crossing relations between 
partial wave amplitudes [1, 2]. To answer the question above presumably forces 
one to analyse the crossing conditions, a task which is by no means simple. 

Acknowled#emems. I would like to thank Prof. G. Mack for suggesting the problem and for continuous 
criticism. I also thank Dr. H. Trute for discussions. 

Appendix A. Proof of Lemmas 3.2/3 

It is a trivial calculation to prove that O(g(o9))=O(o9) for all 9~G. For s~S ° we 
have: O(s(o9))>O(og). Indeed, this inequality is easily proved for s=expi.t .H, 
t>0.  Equations (3.5) and (3.7) then imply its validity for general seS °. 

Now assume that o9, co'el/~< H and that 0(o9)= O(d).  We have to show that 
there is some ,0~G such that ~(o9)=o9'. Set p (o)=(w 1, w2), p(og')=(w~, w~). Since 
the center of G acts transitively on the sheets of H f<'---H the problem can be solved 
when an element 9 of G=SI(2, IR) can be found, such that 9(w I, wz)=(w], w;). 
First there are translations/dilations (2.6) gl and 9'1 with: 

gx(wa, We):(/, z2); 9'l(wl, wl)=(i,  zl).  

Applying suitable transformations from k (2.7) one obtains: 

w ? ) :  (i, 21) ~ 2, 2 '>  1 (A1) 
(gl, o;)(wl, (i, x 0 J 

Therefore O(o9)=2/(2-1) 2, O ( d ) = 2 ' / ( 2 ' - 1 )  z and hence 2=2' .  Setting 9 =  
I - - 1  l - -  t t 9~ g2 *'92"91 we have: g(w,, wz)=(w,, w2) as required. 

To prove Lemma 3.3 we may dublicate the proof of Lemma 3.2 up to Equation 
(A1). From O(o ' )>  O(o9) it follows that 2 ' < L  But in this case we can find some 
t > 0  such that elm(i, 2i)=(i, Zi). Therefore s(w,, w2)=(w'l, w~) with s=g'l-* "9'2-*" 
curiO2" g 1E S °. 

Appendix B. Proof of Lemma 3.5 

L e t / ~ -  7z(/~(o91o90)) and p(o9) = (w~, w2), P(o90) = ( w°, w°) • Obviously 

= S ° l s ( w  °, w °) = (wl ,  } .  

Now, S2;<s2={(zl, Zz)eS2xS21zl*z2} is a homogeneous space of S1(2,~) 
(S z is the Riemannian sphere). Let L the little group of the point (w °, w°)eS 2 ~< S z 
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and s o a particular element of/i. Clearly then 

/1=S°c~so.L. 

Therefore, /1 is a closed, holomorphic submanifold of S °. This property of k1 
carries over to #(colcoo), i.e. #(colcoo) is a closed, holomorphic submanifold of go. 

If/1 were connected, #(colcoo) would be too. Indeed, given two elements s 1, s2 
of #(colcoo) there is a curve 7(t)C/1, 7(0)= ~z(sl), ?(1)= rc(sz). This curve can be lifted 
uniquely to a curve F(t) in ~o such that F(0)=s 1. By continuity F(t)C/4colcoo). 
Moreover, re(F(1)) = rc(s2) hence F(1) = 3-s2, 3 a central element of G. But r(1)(coo) = 
s2(coo)=co. Thus 3=1 and F(t) is therefore a curve connecting sl and s2. 

Thus it remains to show that / / i s  connected. As in Appendix A we may assume 
that 

(w °, w°)=(i tght ,  i ctght)=bdO, oo) ; t > 0 .  

ch t i sh t\ o 
b, denotes the matrix _ i sh t ch t ) e S .  The little group of t~w°l, w%2j is given by 

It is then a simple geometric task to verify that the set (s a fixed element from 
S°.b~) 

{a~¢ l s ' ( ;  crO-1) ~S°'bt} 

is connected. Therefore ~ is connected too. 

Appendix C. Proof of the Plancherel Formula (4.13) 

Let F(wl, w2)~Hnl@H,2. Define Fk(W) by (4.10). Using (4.6) and 

~3 

F(wl, w2)= ~ dpldpzeiPtWleip2W@(Pl, P2) 
0 

we have: 

Fk(W ) = (2 5 - , i  -,~ + k k !F(n 1)F(n2)/ CkF(n a + k)F(n2 + k))e i~"~ +"~)/2 

dy i dxe2  'Y k+ 1 -  y(1 
0 - 1  

= ~ dpeipwFk(p) 
0 

where 

Fk(P) = ( ei~/2~"' ~ "~>r(nl + n~ + k -  1)/2 3 -"1 -,~ - 2gF(n l  3- rt 2 3- 2 k -  1)) 
1 

pk+l.  ~ dxP~1,~(x)~(p( 1 _ x)/2, p(1 + x)/2). 
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Therefore: 

qlFkll.2~ +n2+ 2k=(F( l ' l l  -{-n 2 + 2k)(F(n 1 + n 2 + k -  1) )2 /2  4 - n t  -n2-  2k 

-(F(nl + n2 + 2 k -  1)) 2) 
o9 

• ~ dPP ~- . , - .~  
0 
1 

• I d x d x ' P ( p ( 1 -  x)/2, p(1 + x)/2)*e~.,.2(x)P~.,.2(x') 
-1  

• P(p(1 - x ' ) /2 ,  p(1 + x ' ) / 2 ) .  

IFk(P)l 2 is measureable and nonnegative. Applying the monotone convergence 
theorem ([12], 13.8.1) we may interchange summation and p-integration in 

k=O 
This yields: 

Ck[IFklq2,, , ,+2k= ~ dpp 3 - " ' - " ~  ~ 2F(n, )F(ne) /hk  
k=O 0 k = 0  

1 

• ~ dxdx 'F (p ( t  - x)/2,  p(1 + x)/2)*P~,,2(x)P~,,2(x')P(p(1 - x ')/2,  p(1 + x')/2) 
- 1  

(hk is defined in (4.9)). F(wl ,  w2) is an element of H , ~ @ H , 2 .  For almost all p > 0  
the function 

fp(X) = (1 - x) 1 -"*(1 + x) 1 -"@(p(1 - x)/2, p(1 + x)/2) 

is therefore square integrable with respect to the measure dx(1 - x )  "~-1.  (1 + x) "2-1 
on [ - 1 ,  1]. Hence, the completeness relation for the Jacobipolynomials applies: 

oO 

CkllFkll2 +n2+2k=ZF(nl)F(n2) ~ dpp3-, , , -n= 
k=O 0 

1 
• ~ d x ( 1 - x ) " * - l ( 1  4-x)n2-1lfp(x)12. 

- I  

Substituting Pl =p(1-x ) /2 ,  P2 =p(1 +x)/2 yields the Plancherel formula (4.13). 
Note that (4.13) implies 

(G, F)n I × n2 = ~ (Gk' Fk)nt +na +'2k (absolute convergence) 
k=O 

for all F, G E Jr, ,  @ )f',z" Especially when choosing G to be the reproducing kernel 
G, , (wl ,  w't).G,~(w2, w'2) formula (4.12) emerges. This series therefore converges 
pointlike. 

Appendix D. The General Form of the Wightman Distributions in the 
Thirringmodel [15] 

For any two points x, y of Minkowski space M and real numbers n+, n_ define: 

A . . . .  (x, y) _4 (x + - y + - iO - "  + (x _ - y _ -- ie) - "  . 

This is a tempered distribution on M x M. 
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If (Pl, (02 .. . . .  (p. are any of the fields ~Px, ~P+, ~P2, tp~" in the Thirringmodel we 
have 

(0[qol(xl)...q),(x,)]0) = N  1-[ A,,~ ,5~(x i, x~); N6117. (D1) 
i<j 

This is also a tempered distribution, since it is a boundary value ofa  holomorphic 
function defined in the forward tube. From locality it follows that for any permuta- 
tion rc of (1 .. . . .  n) 

(01 (P~(1)(x~(1))•.. (p~(.)(x~(.))10) = 4- N 1-I A , .V , .  12 (x~(1), x,~(j)) (D2) 
i<j 

where mY = n~ i)' ~ )  (n~ = n{). The  s ingular i ty  of cp I (x0Cpz(X2) as x 1---, x 2 is thus 
independen t  of where this p roduc t  is p laced in the n-point  dis tr ibut ion•  Especially,  
when t ak ing  a pe rmu ta t i on  rc with r c (n -  1 ) =  1, re(n)=2 we see tha t  the o p e r a t o r  
p roduc t  cannot  be more  s ingular  than  the vec tor  cp l(xOcp2(x2)lO) i.e. - v  +- - n ~  = 
0, 1, 2 . . . . .  Inser t ing  the def ini t ion (6.17) of qSk, z into Equa t ions  (D2) yields the 
W i g h t m a n  d is t r ibu t ions  of  fields qSk,~, tpl, ~p+, ~P2, ~0]. They are sums of d is t r ibu-  
t ions of  the type (D1). Each s u m m a n d  is again  local in the sense that  its pe rmu ted  
form (like (D2)) shows up also in the pe rmu ted  W i g h t m a n  dis t r ibut ion .  The  

• - - , 0 +  . - -  _ _  argument to prove the regularity of (Pl(Xl)CPz(X2).[i(X[--X'~--lg)] [/(X 1 
x2 - i e ) ] -~-  as xl---,x2 can thus also be applied to products of 4~k,z's, etc. 
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