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We calculate the contribution of the 7rTr, n0~o and 0e intermediate states to the iso- 
vector nucleon form factors FV(q 2) in the space- and time-like region using dispersion re- 
lations together with unitarity. In the space-like region good agreement with the existing 
data is found, i.e. we are able to explain the difference in the behaviour of F~ which de- 
creases like 1/q 2 and F~ which shows a dipole-like fall-off forq 2 < 0. This is due to the 
nOw contribution which is rather small for F~ but gives a large negative contribution in 
the spectral function for F~. Also the anomalous magnetic moment is found to be domi- 
nated by the 7rTr and nOw contributions. In the time-like region beyond the NN threshold 
our method is not sufficient. First, we neglected the NN intermediate state which certainly 
is important in this region. Second, the existing data of the various meson form factors in 
the time-like region and the necessary coupling constants are not known with sufficient 
accuracy. 

1. Introduction 

The calculation of  the nucleon form factors using dispersion relations has first 

been tried by Chew et al. [1] and Federbush et al. [2]. These two groups estimated 

the contribution of the 27r intermediate state and showed that the electromagnetic 

structure of  the nucleon is strongly influenced by the structure of  the pion, i.e. the 

pion form factor. In 1960 Frazer and Fulco [3] calculated the nN amplitudes in the 

t-channel which are related to the nucleon form factors via unitarity and were able 

to make a qualitative prediction for the existence of  the p-meson. In 1968 H6hler 
et al. [4] used the then more complete experimental information of  the nN scatter- 

ing and the pion form factor and calculated again the form factors G~-, G~  follow- 

ing the work of  Frazer and Fulco. In an earlier work [5] we repeated the calculation 

of  the 27r contribution and showed that it is not sufficient to explain the behaviour 
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of the isovector form factors F~l,2. This result was confirmed by H6hler and Pietari- 
nen [6] recently. In this work we extend our earlier work in two directions: As a 
first point we try to calculate the contribution of  higher-mass intermediate states 
and as a second step we evaluate the dispersion relation in the time-like region. This 
is particularly interesting because in the near future results on e+e --, nn, pp from 
the existing storage rings will become available [7].  

The calculation o f F  v instead of GVE, G~ ensures that the threshold constrains 
G~; (4M 2) = G~ (4M 2) are automatically fulfilled. As is well known, because of G- 
parity conservation, only intermediate states with an even number of  pions contri- 
bute to the isovector part of  the form factors. These states must have the quantum 
numbers of  the photon and besides the two-pion P-state we consider 4~ states with 
J = 1, P = - 1 ,  G = +1 in a quasi-two-body approximation. This is justified through 
the existence of  strong resonances in the two- and three-pion channel like p(I = J = 
1), co(/= 0 , J =  1) and e ( I = J  = 0). Therefore we consider the n°co and pe interme- 
diate states which should give a good approximation for the four-pion states. The 
inclusion of  the NN states 3S l and 3D 1 would lead to a highly complicated system 
of coupled integral equations which are not trivial to solve and whose solution lies 

beyond the scope of  this paper. 
Other intermediate states like hA1, hA2, KI(, K ' K ,  K ' K * ,  p+p- etc. might also 

contribute but all of  these have not been seen yet in e+e - annihilation experiments, 
whereas there seems to be evidence that nee and pe are present [29,31 ]. e+e - ~ KK 
is very small above threshold. So far, none of the higher intermediate states have 
been considered. Therefore we consider our calculation of the 7r°co and pe contribu- 
tion more as a first step towards a more systematic study of all these intermediate 
states. Furthermore from the experimental information about e+e - --> 47r it seems 
that pe and n°co are the dominant states [29]. 

The outline of  the paper is as follows. In sect. 2 we discuss the general formalism. 
We start with the dispersion relation for the nucleon form factors and investigate the 
t-channel helicity amplitudes for 7rn, n°co, pe -> NN, i.e. we give the connection to 
the invariant amplitudes and determine the analytic structure of the J = 1 helicity 
partial-wave amplitudes. This allows us to derive a dispersion relation for these am- 
plitudes which we solve with the help of the N/D method. Unitarity then gives the 
connection to the imaginary part of  the nucleon form factors. In sect. 3 we describe 
the details of  the numerical evaluation and the experimental input used in the calcula- 
tion. We also discuss our assumptions and models for the form factors F,,, F~r~oT, 

1,2 Fper. In sect. 4 we present and discuss our results and we make some concluding re- 
marks in sect. 5. 

2. General formalism 

The framework of  our calculations is similar to our earlier work [5] and to the 
work of  Frazer and Fulco [3]. Our starting point is the usual assumption that the 
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form factors fulfill a dispersion relation: 

F~i(t) =/ft.(0) + t = Im FTi(t') 
~r f t ' ( t ' -  t) 

4m~ 

- - d t ' .  (1) 

The imaginary part is connected with the strong interaction scattering processes 
through the unitarity relation which reads in the helicity formalism [8] : 

Im pXc,Xa = Iql ~ PXa'X~(kck a IT J= 1 i)ka)kb) " (2) 
ha,hb 

The connection of the helicity form factors r xa'xb with the invariant form factors 
is given in [9] : 

r l / 2 , 1 / 2 = - 2 M ( F ~ l + _ _ t  F~2) =-2M G~ , 
4M 2 

r '/~'- v~ = v ~ ( F ~  +P~) = V~GY~.  (3) 

We start our investigation of the t-channel helicity amplitudes (kcXa IT J= l i~ka~kb) 

with the decomposition of the matrix element .Mfi into invariant amplitudes A i 
which reads in the t-channel center of  mass system: 

Mfi = u(P2,  m')~Ai(s ,  t)Mio(P2, m).  (4) 
i 

The normalization is as usual. The notation and kinematics are given in ref. [14] 
which is an extended version of this paper. For 7rTr ~ NN the two invariants are well 
known while for the other channels there are six invariant amplitudes which we 
choose similar to the Dennery amplitudes [10] for electroproduction of pions. The 
t-channel helicity amplitudes can be expressed as functions of  the invariant ampli- 
tudes. This is easily done by evaluating eq. (4) in the t-channel c.m.s, for specific 
helicities of  the four particles. The results of  the three channels are given in ref. [ 14]. 

The next step is the assumption of a fixed-t dispersion relation for the invariant 
amplitudes A i: 

¢o 

L:L ] 's Ai(s, t) = ResAi  _+ 1 +~- 
S M 2 - u  

(M+mTr) 2 
(5) 

The crossing behaviour of  the A i is determined from the crossing of the covariants 
Mi. The residues of  the nucleon intermediate state are as given in table 1. 

In the unitarity relation for Im F~' we need only the J = 1 partial-wave helicity 
amplitudes. The projection is defined as usual. 

ds ImA, s 1 ,  s u 
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Table  1 

7rTr : 

R e s A  (-+) = 0 even: A (+), B ( - )  

Res  B (+-) = g2  odd:  A ( - ) ,  B (+) 

0 /r t.o ." 

v 
R e s A  1 -- -ggwNN 

R e s A  2 = 2 R e s A  5 = 2 v 2 ggt~NN even: A 1 , A 2 ,  A 4  
t -  m~r 

g T N N  
R e s A 3  = R e s A 4  = - g -  2M 

R e s A  6 = 0 

odd :  A 3 , A s , A  6 

pe : 

Res  A 1 : - g e N N  (g~NN - gTNN) 

R e s A  2 = 2 R e s A  5 - 

v 
2geNNg0NN 

t -  m 2 
even:  A I , A 2 , A  3,A 6 

gTNN 
R e s A 3  = R e s A 4 = g e N N  2M o d d : A 4 , A  5 

Res  A 6 = 0 

We then express the helicity amplitudes through the invariant amplitudes and in- 
sert the fixed-t dispersion relation. Using the Legendre functions of the second kind 
we get the well-known representation for the 7rzr ~ NN J = 1 t-channel helicity am- 
plitudes. The explicit formulas for nn -~ NN, 7rw ~ NN, pe ~ NN can be found in 
[141. 

The analytical structure of these amplitudes is easily derived from the properties 
of the Legendre functions Qj(t).  They have branch points at z = 1 and a cut on the 
real axis between these points. Using this we obtain the singularities in the t-plane 
resulting from the nucleon exchange in the s- and u-channel and from the possible 
higher-mass intermediate states in these channels. The resulting cut structure from 
the dynamical singularities is shown in fig. 1. 

We obtain no complex cut for the pe ~ NN amplitudes because we perform our 
calculations with equal p and e masses which seems to be justified experimentally 
(rap = 0.775, me = 0.7-1 GeV). After having determined the analytic structure of 
the amplitudes we are able to write a dispersion relation of the kind: 

t 2 t 
Im f~'l'"h4(t ) dr' t I 1 f 

R e f h l  ""h4 = ~ t' - t 
le f t -hand cut 
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1 

(m 1 +m2) 2 

~t 2 t 
Im j x] ...x4(t ) 

t t - -  t d t ' .  (6) 

~ g ~  1 
The t-channel helicity amplitudes f~,...x4 are directly related to the nucleon form 
factors GE,M through the unitarity relation. We use certain linear combinations of  
these amplitudes which we denote I ' !  a'b). They can be found in ref. [14] and are re- 
lated to the form factors F v in the following way: 

Im FV(t) = pt") ( t )F*( t ) r t  r") + ol"°~°)F * Pl "°~) r 'x  --/r~-y--.z 

0 0 "  e) O1 * e) + p~°)[r~oo) r?' + v<oo)rEe ] .  (7) 

The p(7,r), p0r°w), p(Oe) denote phase space factors; the P! ~r~r)'(Tr°t°)'0rO are the t- 
channel helicity amplitudes and the F°~°e), o1 P~oe) are the helicity form factors of the 
mesons. 

. . . . .  J 4m. ~ 
LEFT HAND I~ 10 ...... 20 = i  ................ 50 -~- 

CUT BORN TERM UNITARITY CUT 
CUT @ ~ - - N ~  

-20  

'° 7 '°-t'°W ''' 
BORN UNITARITY 
TERM CUT 
CUT 

T 
LHC 
s • ( M . % ) 2  

l ~o 
LHC 

(M.m=)  - s • ( M . % )  2 

(~) p~ ~N~ 

(mp*m E) 

i T 100 

BORN 
TERM 
CUT 

Fig. 1. t-plane analyticity structure of the helicity partial-wave amplitudes for 7rTr, lr°w, pe 
NN. 
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For the evaluation of  eqs. (6) and (7)we need the connection of  the helicity form 
factors with the invariant ones which are free of  kinematical singularities. We then 
have to construct models for FTr F F 12 , -w-r, pc-/and have to compare these models with 
the experimental information which exists as data for the invariant form factors. 

For the evaluation of (6) we need the imaginary part of  the amplitudes on the 
cut. For a part of the left-hand cut Im f~NXSX Xb is given if we insert experimental 

• 1 2  . . 

data of  the crossed channel scattering processes. The right-hand cut can be removed 
by an N / D  method using information about the phase of  the amplitude from unitar- 
ity. The best method to do this would be a multi-channel N / D  method as described 
in [11]. As a first approximation we consider only the channels ~rn, now, pe ~ N~! 
and the elastic processes nn ~ nn, n° co -~ n° ¢o, pe -~ pc. The inclusion of  other chan- 
nels would lead to a highly complicated system of coupled integral equations. 

The simplified N / D  method works as follows: As usual from unitarity we con- 
clude that the phase of the 7rn ~ NN amplitudes must be the same as the phase of  
the pion form factor for 4rn 2 ~< t ~< 16m 2. Writing 

p!.n ) _ N ( t )  

D(t)  ' 

we can construct Di( t  ) between 4m 2 . and 16m2~ from the phase: 

D(t)  - F . ( t )  exp - -~ t (t '  - t - iei dt' . (8) 
4m~ 

Neglecting inelastic channels we can write down a dispersion relation for J i  = I'! mr). 

Di(t)  which has only a left-hand cut: 

1 ca Im Ft(t '  ) ReD( t ' )  
Re Ji(t)  n J t' - t d t ' .  

The unitarity relation then reads for the nn-contribution: 

(9) 

eq 3 
I m F  v - IF. ( t )12j i ( t )  (10) 

2E 

This method is justified for the nn channel because the inelastic contributions to F~r 
are shown to be small experimentally. For the other channels we try two methods 
of  evaluation. The first one is identical to the method described above for the nn 
channel, i.e. we consider only the elastic n o w  -* n°¢o, pe ~ pe scattering and assume 
that these processes are dominated by resonances/9'(1250) in the n ° ~  case and 
p"(1600) in the pe channel. Though it is experimentally not clear whether these re- 
sonances exist, we tried another method of  evaluation which we call method 2. In 
this method we neglect in eq. (6) the right-hand cut, which has the physical meaning 
that we consider only the two-pion contribution to the 7r°co and pe scattering. Here 
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we assume that this two-pion background is the dominant contribution and that no 
resonance exists in the 7r°~ and pe channels. 

1,2 The models for the form factors F .~ .  r , F~e r are given in sect. 3 together with the 
details of the evaluation of the dispersion relation and the experimental input. 

3. Numerical evaluation 

The starting point is the dispersion relation which contains only the left-hand cut 
(eq. (9)). Because we know the Born term exactly for the whole t-range we rewrite 
the dispersion relation with the help of the decomposition 

Ji = JiBor n + J"i = (rib + ~i)D(t) , 

1 / "  Im Fi(t' ) Re D(t') 1 ? Im D(t') Re ViB(t') 
Ji = J/Born + 7r ~ t' - t dt' + ~ a t' t dt' 

LHC (ma + rob) 2 (11) 

Although we have neglected the inelastic contributions from unitarity on the right- 
hand cut the remaining integral can not be evaluated exactly because we do not 
know Im Ji on the whole left-hand cut. From experimental information on the 
crossed channel scattering processes we can calculate Im Ji and Re Ji on a part of 
the cut which will be given later. On this part we can also calculate the influence of 
the unknown distant cut and define a discrepancy function: 

Ai = ReJi(t ) _1  ~ Im Jz(t') dt' (12) 
 !Tsm  t ' - t  ' 

This discrepancy function has then to be extrapolated to the time-like region which 
is of interest to us. For the 7rTr channel this method is well known and very reliable 
[5,12,13]. The connection with the measured phase shifts and inelasticities is given 
in [14] and the part of the left-hand cut for which the s-channel data can be extra- 
polated via a Legendre polynomial expansion is also given by Frazer and Fulco [3] 
namely - 2 6 m  2 ~< t ~< 3.98 m 2. It has been shown recently [15] that the truncated 
expansion even converges for larger negative t-values up to -75m 2. 

For our calculation we use the phase shifts from CERN [16] which are available 
for energies up to s = 4.8 GeV 2. Beyond this value we parametrize the amplitudes 
A (-), B (-) with the help of a Regge fit by Barger and Phillips [17]. 

For the n ° 6o channel no phase shifts are available. Apart from the Born term we 
made the assumption that the invariant amplitudes A 1 " ' "  A 6 are dominated by the 
t-channel exchange of the p-trajectory in the whole kinematical s-region. The result 
of the usual reggeization procedure is 

- 
AI  -gwo .goNN F(- - - (~)~SO ] , A3 = A 6  = 0 ,  
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gTNN [ - u c z - 1  

A 4  =-groper 2 M  t ~ ( a ) a ~ S o  ) ' 

t - m  2 + m  2 s - u  
A2 - A 1 , A s - (13) 

t ( t  - m 2) 2 t ( t  - m 2) A l • 

As experimental  input we use the knowledge of  the following coupling constants 
which are determined from different experiments with various theoretical methods. 
The numbers given below are taken from [18] and are partly not very well deter- 

mined *, 

v2  
gtoNN 
- -  , g w N N  = 0.I g~oNN , 4rr = 11.0 T v 

- 23.2 GeV -2  , (ref. [ 1 9 ] ) ,  
47r 

v 2  

goNN _ 2.2 goTNN = 6.6 g~NN (ref. [ 1 3 ] ) .  (14) 
41r 

We remark that  also the nearby part between - 1  GeV 2 < t < 0 of  the left-hand cut 
is described by  the Regge contribution.  Here we used the simple assumption that 
the residues are not  t-dependent in this region. We have neglected also the complex 
cut and have tried to take this contribution into account by the discrepancy method.  

In the 0e channel the cut is caused by  two different sets of intermediate states. 
The physical states with s > ( M  + m p )  2 give rise to a cut from _oo to 0 while from 
the unphysical states we obtain a cut on the real axis from 0 to approximately  1.7 
GeV 2 . 

For  the first part  of  the cut we work again with a Regge ansatz for the invariant 
amplitu~les. The result for 0-exchange is: 

go T 1 [,,(1) ,12 + ~(2) ½(t - 2m2)] ~ ( a ) a  [s - u~ a - l  
A2 - 2M t - - m  2 t~,eoo"" 6coo ~ \  2-~-o ] , 

A3 = 2/16 = °'(2)6ep#'.6 O( 'v 

A1 = A 4  = A s  =0.  (15) 

For  the second part of  the cut we make use of  the existing data for 7rN ~ turN 

HiShler [37 ] recently calculated gLNN" The influence of his result gLNN/4~r 24 + 6 is dis- 
cussed in sect. 4. 
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[20] which are analyzed in terms of  quasi-two-body final states eN, pN, nA [21]. 
The coupling of  these states to the N* resonances are given in [21] and this enables 
us to extrapolate the data to the s-channel process eN ~ pN which is done with the 
help of  the crossing matrix [23].  

The experimental information for the D-function in the mr channel is given by 
the data for F~(t) which have been determined from different experiments [ 2 4 - 2 6 ] .  
The fit we used and which is plotted in fig. 2 was taken from Pisut and Roos [27] 
and agrees with the Gounaris-Sakurai p-dominance fit. For comparison we plotted a 
second fit to F~r with a p + p' dominance model constructed by Bramon [28]. As 
mentioned above inelastic contributions andpossible new vector mesons p'(1250), 
p"(1600) may cause deviations from the simple p-dominance model above 1 GeV 2 . 
We have not included these contributions in our N/D calculation because we are only 
interested in the elastic part of  the pion form factor from consistency arguments. 

The 7r°co form factor F~to 7 is not very well known. We represent the form factor 
by a 0 '(1250) vector meson dominance model which is justified by the data for 

e+e - -+ rr+zr-Tr°zr ° [29]: 

F~w~/(t) _gp'coTr m2' 

go' m2o ' - t -  imp'F o' 

(16) 

2 We use gtop'n/4rr = 7.87 GeV -2 , mp, = 1.25 GeV, I '  o, = 0.12 GeV, go' was determined 
by a fit to the data (fig. 3). The connection to the helicity form factors is given in 
[9]. 

Our second method of  evaluation was done with D(t) = 1 and a simple p-dominance 
model for F~ou which corresponds to the mr contribution of 7r°co-+ rr°oo scattering. 

I Fv~(t)l 

I 
0 . 5  

I F ~ ( t ) l  

g -DOMINANCE FIT - -  

g * g'(1250) - DOMINANCE FIT (28) . . . . . . .  

DATA : (24) - ( 2 6 )  

. . . .  

1.0 1.5 2.0 • 2.5 
t [GeV 2] 

Fig. 2. Pion form factor in the time-like region. 
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. . . . . . . .  QUARK IdOOEL 

............ [3SRERSION RELATION 

Fig. 3. Tota l  cross-section data  for e+e - --* n0to and comparison with different  models.  

We also show the results of  two other calculations of  F~r~  [19,30] in fig. 3 which 
however do not give better results for o(e+e - ~ n+zr-n°zr °)  either. 

The only measurements which are available for the pe channel are the data for 
e÷e - ~ zr+Tr-zr+rr - [31].  They show a peak at t = 1.62 GeV 2 which has also been 
observed in photoproduction 7P ~ Plr+n-n ÷Tr- and which can be interpreted as a 
new vector meson p"(1600).  We therefore try a vector meson dominance ansatz for 
Fe 12.  The invariant form factors are defined as in [9] and the connection to the in- 
variant factors Fe 12 has also been given there. 

The parameters are determined from experiment [31 ] : 

mp,, 
rap" = 1.56 GeV,  Fo,, = 0.35 GeV,  go" = go mo 

1 2 One of  the unknown coupling constantsf~po,, can be evaluated from the width 
Fp,,__>pE the other was parametrized by f~pp,, = xf~po,,. We tried also another ansatz 
for F~p~ which was recently published by Kramer et al. [32] but the results again 
showed the strong dependence on the unknown parameter x. Similar to the previous 
lr°eo case we calculated the nonresonant pe contribution with D(t) = 1. 

The results are discussed in the following section. 
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4. Results 

We start the discussion of  our calculation with the results for the nn channel. The 
amplitudes J1,  Jz are well determined on the known part of  the left-hand cut and 
the extrapolation to the time-like region is reliable up to 1 GeV 2. (See for compari- 
son [12-14 ,  35] .) We obtain the contribution to Im F v by multiplying these am- 
plitudes with the squared pion form factor. 

Taking only the nn channel into account we obtain with the help of  the disper- 
sion relation for the form factors (eq. (1)) the results for FV(t) in the space-like re- 

gion, where experimental results from electron scattering are available [33].  We 
found the result that for small it] < 9 GeV 2 the nn contribution to F l agrees well 
with the data which show a pole-like behaviour. This behaviour is obviously saturated 
by the p-pole alone. From an unsubtracted dispersion relation we obtain for the iso- 
vector part of  the nucleon charge F~I(0 ) = 0.512, compared to F~I(0 ) = 0.5 due to 
the normalization of  the proton and neutron charge. 

For the anomalous isovector magnetic moment we obtain from the nn channel 
/~2(0) = 2.53 instead of  the experimental value 1.853. This indicates that higher-mass 
intermediate states may play an important role as will be discussed on the following 
pages. 

In the nOw case the amplitudes are certainly not better determined than the nn 
contribution in this region since only a few experimental data are available and since 
the coupling constants and other parameters which we used in the calculations are 
not too accurately known. Therefore we can hope to determine only the order of 
magnitude and the sign of  the now contribution to Im F v. We found the following 
significant results: The resonant and the nonresonant contribution to Im F~l are both 
small in accordance with our conclusions from the nn channel. The results for Im t~2 
go along with the results for the nn channel too, i.e. we find a large negative dip with 
both methods, the N/D solution and the calculation without a resonance. The mag- 
nitude of  the dip is strongly dependent on various parameters, especially on gVNN 
and on F o, HiShler [34] recently calculated the co coupling constant to be z • g c o N N / 4 r r  

= 24 -+ 6 which is twice as large as the value 11.0 we used for our calculations. This 
would change the magnitude of the dip by about 50%. Also the unknown width of 
the p ' (1250)plays an important role for the magnitude of  the dip in *,he N/D calcula- 
tion. To give precise values for the now contribution to the spectral functions we 
need to know the above mentioned parameters more exactly and we need more in- 
formation on the now scattering phase, i.e. whether the phase is dominantly elastic 
or inelastic. 

In the pe case we start again with the calculation of  the t-channel helicity ampli- 
tudes. Our extrapolation distance from the left-hand cut to the region t > (mp + me) 2 
is not as large as in the now case but the determination of the spectral functions suf- 
fers from the fact that we can only determine one of  the two relevant coupling con- 
stants gelb2 o, (resp. g~b~ for method 2). This leads to a strong dependence on the para- 

1 2 meter x = gepp/gepp" We have tried to fix the parameter x in a way which gives area- 
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sonable result for the spectral functions. This leads to x = -0 .35 .  If we calculate the 
cross section e+e - ~ 2n+2n - with this value of the coupling constants we find rea- 

sonable agreement with the existing data [31 ]. 
Kramer et al. [32] recently investigated the vertex 3' ~ O 7r+Tr- with a dispersion 

relation method and showed that naive vector dominance extrapolations to time-like 
t are rather doubtful. Nevertheless it gives the right magnitude for the cross section 
e+e - 4 n+n-~r+n - so that we can expect that our calculation gives the right order 

of magnitude for the pe contributions to Im/~i .  Quantitatively we can say that these 
contributions are small compared to the nn channel and to the nw part of ~ in both 
cases. Neither the resonant nor the background contribution gives a clear effect in 
the spectral functions. Therefore we conclude that the behaviour of Im F/i(t ) for t 
beyond the NN threshold is only poorly determined. To decide whether we must 
improve our calculations we first have to estimate the magnitude of the NN contri- 
bution. In [14] we showed that from unitarity arguments the NN state cannot be 
neglected. HiShler [34] [36] found a considerable contribution to lm F v beyond 
the threshold by fitting the data in the space-like region up to SLAC energies with 
effective poles. This shows that we must include the NN state to obtain reliable re- 
sults for F v for time-like t. Of course other intermediate states like 7rA1,7rA 2, KK 
etc. might contribute but our expectation is that these contributions are comparable 
to the pe contribution. This means that they will have no significant effect in the 
space-like region. For this region up to - t  = 9 GeV z the mr and nee contributions 

are the dominant  ones and are sufficient to explain the behaviour of FV(t). 
Adding up the three channels mr, ~r°co, Oe we get the spectral functions Im F v 

shown in fig. 4. Our results for the isovector part of the charge and the anomalous 
magnetic moment  are given in table 2. 

From table 2 we can see that the normalisations of the form factors F'[,a(0 ) are 
well explained in terms of the rrrr, 7r°6o and pe intermediate states. Therefore con- 
tributions of higher-intermediate states must be small or the spectral functions must 

be oscillating. 
We can conclude that the now state gives a considerable contribution to Im 

Table 2 

F~(o) F~(o) 
N/D Method 2 N/D Method 2 

nn +0.5123 +2.53 

0 +0.0114 -0.023 -0.349 
pe +0.022 -0.027 +0.134 

~ +  0 +~e +0.546 +0.462 +2.304 

-0.559 
-0.024 

+1.985 
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Fig. 4. Spectral functions Im F v obtained with the two different methods. 

which explains the dipole-like behaviour of  F~2 in the space-like region. I f  we com- 
pare our results with the data for t < 0 we obtain the result that the inclusion of  
~o co and pe improves the results for F~2. For  F~l we get only small corrections to the 
dominating 7rTr state. The influence of  higher-mass states may become important  in 
the space-like region at very large negative t-values and of  course in the time-like re- 
gion. 
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5. Summary and conclusions 

We have tried to calculate the t-channel helicity amplitudes in the time-like region 
for the processes nn, 7rPw, pe ~ NN with dispersion relation techniques. Including 
experimental  data of the crossed channel processes and using the unitari ty relation 
we have obtained the spectral functions of  the nucleon form factors Im FV(t). Only 
the ~rn -> NN amplitudes are reliably determined.  For the other channels we have es- 
t imated the magnitude of  the amplitudes using models and approximations instead 
of  inserting data which do not exist yet. For  an improved calculation of  Im ~ in 
particular for large t we would need: 

(i) experimental information in the lr°w and pe channel, for example Fp' ,gVNN 
and " _ 1 2 . especially x - gepp/gepp, 

(ii) to include N/q and possible other intermediate states. It is easy to see that this 
leads to a complicated system of coupled integral equations whose solution would 
require a large amount  of  computer  time. 

As a result of  our simplified calculation we can say that we are able to explain 
the space-like behaviour ofF~/ in  the limited range of  Itl up to [tl = 9 GeV 2 but  are 
not able to make a reliable predict ion for the time-like region. We found that the 
structure o f /~ l  is dominant ly  determined by  the 27r contribution whereas b 2 is dom- 
inated by  2n and now. Other contributions do not play an important  role in the 
space-like region. For  example the pe state gives only corrections of  the order of 5%. 

I would like to thank Professor Dr. G. Kramer for many helpful discussions and 
suggestions. 
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