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We investigate scaling assuming a generalized vector meson dominance picture. The 
vector mesons are described as relativistic quarkantiquark bound states by a Bethe-Sal- 
peter equation which yields the mass spectrum and the coupling to e+e- pairs. We dis- 
cuss the spin structure and find that scaling can occur only for a y,, type amplitude. We 
solve the BS equation using a generalized WKB approximation and find scaling, indepen- 
dent of the detailed shape of the interaction. This means that scaling in e+e- annihilation 
does not select a particular “confinement potential”. The scaling constant depends on the 
current renormalization constant and on the details of the relativistic spin structure. 

1. Introduction 

The data on e+e--annihilation into hadrons [l] indicate that the ratio R 5 

utot(e+e- + hadrons)/utot(e’e-+ /A+/A-) becomes again a constant, once the new 
resonance region between J/$ (3.1) and 4.5 GeV is passed (fig. 1). One is wont to 
think of the scaling constant R as the measure of the sum of the squared charges of 
the fundamental spin-f constituents [2]. The simplest way of exemplifying this is 
the parton model. Asymptotically free field theoretical models predict a logarithmic 
approach down to R = ZQf . The experimental value R x 5.5 is not explained by 
these models if there are four quark flavours only (R = 3 f). 

The excitation of a series of intermediate vector mesons, on the other hand, can 

lead to scaling if the masses and leptonic decay widths satisfy locally the condition 
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R= c 9?7 Mvrv-+,+,- 

v=po,,; c?AIlf$ * 
(1) 

GGJIJ, *type 

It is interesting that phenomenological investigations of the p, w, $ or the J/J, thres- 
hold region [4,5] tend to give a higher value for R than the counting of quark char- 

113 



114 M. Biihm, M. Krammer /Electron-positron scaling 

R t?w 

10 

: 

. 
t 

t 

I I I I I I , I , I, 

0 1 2 3 4 E,~lGeV) ’ ’ ’ DESY 

Fig. 1. R = ~&e+e- --* hadrons)/o$,fD ( + - e e --f ~+r-). Data points were taken from ref. [ 11. 

ges. E.g., from the J/S leptonic width and the J/$ - 11/’ mass difference follows AR 2 
2.0, which figure has to be seen in contrast to the number $. 

Dynamical quark-antiquark bound state models yield a spectrum of vector mesons 
and their leptonic decay widths. Special models of this type show scaling behaviour 
[6,7]. Thus the question arises whether or not scaling is a general feature of bound 
state models. For non-relativistic Schrodinger type models it has been shown that 
scaling occurs independent of the shape of a confinement potential regular at the ori- 
gin, provided the eigenvalue E is linearly related to the mass squared M2 of the bound 
state [8]. 

In this paper we shall investigate the problem of scaling in relativistic, field theore- 
tic bound state models, formulated with the help of the fermion-antifermion Bethe- 
Salpeter equation. The paper is organized as follows: Sects. 2 and 3 contain formu- 
las related to e+e- processes and to the general structure of the BS amplitudes of 
vector mesons plus their photon coupling. A short review of the dynamical model 
for the strong binding of heavy quarks is given in sect. 4. Scaling behaviour can be 
expected only if the leading component of the vector meson BS amplitude is of the 
rN type. For this class of models the radial equation is derived. Sect. 5 treats in de- 
tail the solution of this radial equation by a generalized WKB method. A relation be- 
tween the wave function at the origin and the mass spectrum is found which leads 
to scaling, independent of the spatial shape of the interaction. In sect. 6 we com- 
pare the scaling constant of these dynamical models with the scaling constant of the 
parton model. 
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2. Matrix elements, widths and cross sections 

The cross section for producing a pair of free, pointlike quarks qj with masses rni 
and charges Qi is given by [9] 

do 
-(e’e- 
d cos f3 

s =E&, rnz-0, 

and 

RE 
IZja(e+e- + qiGi) ---c Qt. 
o(e+e- +p+p-) s>> 4mf i 

The vector meson photon coupling is defined as 

(oJipco,( ; :,-) = (27$3/Q ~“$YP) . 

It determines the leptonic width 

and the total e+e- annihilation cross section 

16n2a2 
o(e+e- + V + all) = - 

M&Y 

s2 g2v (s - M;)a + A!f; rFt2 * 

For a narrow resonance we have 

s u(e’eC ,+ V + all) ds = 1 6a3a2g2v = 1 ln2 r v-+e+e- 

M4v 
3 

res Mv 

(3) 

(4) 

(6) 

(7) 

whereas for a broad one the leptonic width can be determined from the peak cross 
section 

12n r 
upeak(e+e- --f V + all) = - V+e+e- 

MZ, p;’ 
. (8) 
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3. Bound state models 

In field theoretic bound state models the quark structure of a meson with mass 
Mand spin-parity j” is described by Bethe-Salpeter amplitudes 

~(4, P) = (2#* sd4x eiqx tOIzY&) IL(-:x)IpM;) 7 (9) 

where G(x) denotes the renormalized quark field. From II, C, T and Lorentz inva- 
riance follows the most general structure for vector mesons 

xV(4X s3)= @Xl +@x* + [PI9 31 tX3 + @X4+ @x5 

+ qp id 41x6 + @%l x7 +EqqP&dV, Ep = e; (P) . (10) 

The invariant functions x depend on q2 and (qP)* only; V denotes the internal sym 
metry part of the amplitude. 

Expressing the electromagnetic current by the quark fields 

i;“(x) = Zi%h,QW) 9 Q = quark charge matrix , (11) 

we obtain for the photon vector meson couplings 

gve, = Tr zrpQGW4 sd4q xv(a P> , 

or in configuration space 

gveP = Tr Zy,Qx’(x = 0, P) . (12) 

Because of the Dirac trace, ~2, x4, x6, x7 cannot contribute. If we go to the rest 
system, P,, = (M, 0), e: = (0, G,,,j)Y,then we see that x3 and xs give no contribution 

either and we find 

gv = 4Z (QdGW4 sd4q ix&;, 4*) + f4*xd& CY*) 1, 

{Qv> = Tr (QV) . (13a) 

In configuration space this formula reads 

gv =4Z (Qv) {x1(x=0)- :(Axs)(x=o)). (13b) 

Clnly the R = 0 part of the amplitude contributes to the photon coupling. 
We would like to point out here that in any quark model the relation 

,.$ (Qv)* = 7 Qf (14) 

holds. A comparison of the ratio R in the parton model and in bound state models 
thus involves dynamical quantities only. 
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4. Dynamical Bethe-Salpeter equation 

The Bethe-Salpeter amplitudes, eq. (9), satisfy the bound state BS equation [lo] 

S,’ (;P + 4) ~(4, P) s,%P - 4) = i sd4$X(X; &, P)x($, P) , (19 

and are normalized according to 

(2~)~~ i TrJd4q Xr~(4,p)S,‘(:P+q)Xr(4,P)sF1(~P- 4)=h g Mz arr’ * 

r 06) 

In order to arrive at a tractable model we had to develop dynamical ideas [ 111 
(a) Heavy quarks, m4 >> 1 GeV. When investigating scaling in e+e- annihilation 

we, therefore, have the situation that s = Mi,, is large on a hadronic scale but 

still small compared to the quark production threshold 4m2 : 

1 GeV2 <<s = M,&_ << 4m2 . 

(b) Free propagators, S-‘(P,) = ^/P, - m . 
(c) Convolution type, energy independent kernels, 

WA; 4,4: PI = c &o; 4 - 4’1 % , 
i=S,V,T,A,P 

with the projectors 3’iri = I’/&ii (no summation), 

l-i = (13 rp, q&n YST/.LY 7s) . 

(d) Wick rotation in the q. plane, q. + iq4 (leading to O”“(4) symmetry of the 
bound state mass M= 0 equation). With these assumptions, eq. (15) takes in the 
CMS, P= (M, 0), the form 

@- im + @fy4)x(4,M) (4 - im - ~iMy4) =Jd4q’ ‘X(X, 4 - 4’)x(4,M) 

in momentum space or 

(-i%- im t &Fy4) x(x, M)(-i& im - ~iMy4)=3c(X,x) x(x, M), (17) 

in configuration space. 
As is well known, the M = 0 equation decomposes into three sectors: 

(S, V) (T, A) (P) 
1, Yjl opv, -YsY/.l Ys 

which will decompose further if one makes full use of the O”*‘(4) symmetry [lo]. 
The amplitudes with the Dirac structures (ri, o4i) and (ysy4, ys) are good candi- 

dates for the leading terms in the BS amplitudes of the quark spin triplet and quark 
spin singlet mesons, respectively. As in each case there should be one state only, we 
have to look for only one linear combination of yi and oqi, ysy4 and ys, resp., in 
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Table 1 

Yi V@A V@P 

“4i T @A T OP 

which the interaction is strongly attractive. Since the V and the T, the A and the P 

sector are not coupled in the strong binding (M = 0) limit, we must have V or T and 
A or P. This leads us to four possible models (table 1). 
If the leading component of the BS amplitudes for the quark spin triplet mesons is 
of the tensor type, the vector mesons do not couple to the electromagnetic current 
in leading order (gV - l/m,). Thus we cannot expect a scaling behaviour for 
utot(e’e-). We therefore concentrate our discussion on the models of the V-type 
(first row in table 1). 

Subsequently we indicate an elimination procedure which reduces eq. (17) to a 
simple radial equation [ 121. We start with the M = 0 equation which we write 

- yX(X) 2 - m*X(x) - m 6% X(X> I= C Ki(k X) piXCx> - (18) 
i 

We put x = x0 t x1, because there occur at most two Dirac amplitudes in one sector, 

and obtain 

(-jYX,Lm2 -Ko)Xo-m@ix1~=0, 

(-jYXg--m2 -K1)X1-m C~xxo~=O. (18') 

The interaction potential in configuration space should be smooth, allowing an expan 

sion around the origin 

Ki(R)=ai t PiR tyiR2 t . . . . (19) 

Since we want x0 to be the large component, K. has to be.strongly attractive in or- 
der to compensate the quark mass term (CX * -m 2), whereas K1 is not attractive. We 

assume that K, is repulsive with the strength or = tm2. Under these conditions we 
can get x1 algebraically: 

and we obtain for x0 the dynamical equation 

(Ox--m2 - Ko(R))x&)=O. (21) 

The BS equation for the general case, M # 0, can be discussed along similar lines, 
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Table 2 
_____ ~____..._ 

[triplets $nglets 

triplets 
x0 - 7i 

=3m2 - q 

m2+q 

=3m2-q 

m2+olp 

singlets 
x0 - 7574 = 

triplets 
x0 _ 7i 

singlets 
x0 - 75 

q>>-m2 

q>>-m2 OLA >> -m2 

by rewriting eq., (17) in the form 

[-TX f- m2 -m ~,x}-C~+aM2y4XY4+lzMm [y4,x]+$I4(Y4X&i% 

X Y4)l x(xAw = 0. (17’) 

With the ansatz X = x0 t Xr t &, where x1 is already given by eq. (20), one obtains 

1121 

x = x0 - &P x0 I+ 2(m2m+ abr) [E x01 + $3) 

and the dynamical equation 

(0, - m2 - Ko(R) t $&lP)xo(x) =o, g=3m”:t-a;; . 

(22) 

(23) 

In eq. (22) we made use of the requirement that, with respect to spin structure, 
there occurs only one strongly bound state solution X0. This allows the algebraic 
determination of Xbr because of (Ybr >> - m2. The expression for the parameter t 
has been obtained by making use of the fact that the amplitudes x0 - yi, ysy4 or 
yi, ys are eigenfunctions of y4 X y4 with the eigenvalue -1. Table 2 contains the 
parameters ,$ in the V CB A and the V CB P model. 
From eq. (23) we see that the mass spectrum M2 is not only determined by the 
shape of the “potential” K. but also by ,$, i.e. by the detailed spin structure of the 
interaction. 

5. Asymptotic solution of the BS radial equation (generalized WKB method) 

In the last section we have derived the dynamical equation 

(0, - m2 + &tf2 - Ko(R))xo(x) = 0 (23) 
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for the leading component x0(x) of the BS amplitude. For the orbital part of x@(x) 

we make the ansatz 

U,(R) 
xoorb(x) = Yrwi) R3/2, (24) 

where the ynl,(i) are the SO(4) spherical functions, and we obtain the radial equa 

tion 

d2 (n+:)wl)_ 
dR2- R2 

m2 + &CM2 - u,(R) = 0. C-5) 

Since we are interested in those solutions x0(x) which do not vanish at x = 0 (see eq 
(12)), we only have to consider the n = 0 case 

-&AR)) uo(R) = 0 , p2 = $ EM2 _ m2 . 

We need those solutions which correspond to high excitations, because we want to 
investigate the behaviour of dot(e+e- -+ hadrons) for large values of the energy 
squared s. This suggests the use of asymptotic methods, i.e. a suitably modified 
WKB approximation [ 131. 

The solution of the free equation: (d2/dR2 - 3/4R2 t 1~~) i(R) = 0 with the car. 
rect threshold behaviour is ii(R) = m* J,(pR), which leads to the ansatz 

uo(R) = H(R) m J,@(R)) . (27) 

Insertion into eq. (26) and use of the derivative relations for the Bessel functions 
gives the two equations 

(2% 

2H’S’t HS"= 0. (28b) 

Eq. (28b is solved by H = const/@. Eq. (a) is solved approximately by S(R) = 
qRJ+ p - Ko(p) dp, neglecting the right-hand side (in analogy to the standard 

WKB procedure). The amplitudes xrb(x) for n = 0 are therefore approximately 
given by 

Is”- dp_l 1’2 

X”5b(X) = &;3,2&2 _ Ko(R))1/4 
JI (~v’?=%%~)~ (29) 

o 

For 0 < l/M G R <R. (= classical turning point) we can replace the Bessel function 
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by its asymptotic expression which leads to 

sin(Jdpm dp - $71) 

k3/'(p2 - Ko(R))1'4 ' 
;4R CR,. 

(30) 

As in the ordinary WKB method we have the quantum condition 

Ro 

SJ v2 - &B@) dp = n(r + 7); p2=&42_p7& (31) 
0 

which yields the mass spectrum M,‘. 
The constant N is determined from the BS normalization, eq. (16). It reads, in 

leading order of the quark mass m and for the Wick rotated configuration space am- 
plitudes X0(x), 

m2TrDirac s d4x Fe,rf (x) XO,~(X) = X (32) 

With x(x) = y4X*(-x4, x)y4 = (-l)n-z74X*(~4,~)74 , because of y4X*y4 = -X* 
for the physical amplitudes (Table 1) and with the coupling constant A = lyo = -m2: 

we obtain 

4 ld4x X;yb (x) X$(x) = ssrr’ - (33) 

We evaluate this integral with the asymptotic solution given in eq. (30), thereby re- 
placing sin2 by 4 in the same approximation. This gives the normalized orbital part 
of the BS amplitude 

112 
R3i2(p2 - Ko(R))'/4 

0 

Because of Jr(x) x ix, the amplitude at the origin has the value 

(29’) 

p2 = $@f2 - m2 . (34) 
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By differentiating the quantum condition (3 1) with respect to M2 one obtains 

(35) 

Inserting this expression into eq. (34) and observing that for strong binding: p2 - 

Ko (0) e $[,M’, we obtain a relation between the amplitudes at x = 0 and the mass 
spectrum, into which the kernel K,(p) does not enter explicitly, 

Ix”of,b(x = o>p = -t--M,’ z . 
4(8n)2 

(36) 

With the help of eqs. (13b) and (5) we relate h&:(x = 0)12 to the leptonic decay 
width of the rth vector meson, obtaining 

4x(u2 
r 

dM$l& 
V,+e+e- = T22 (Qvj2 $ --JL- 

Mb 
(37) 

When we use this expression in eq. (1) we find that the ratio R is independent of the 
excitation level 

ctot(e+e- + hadrons) 

~de+e- -+M+P-) 
GR =FZ2 c (Qv)' 

V 
(38) 

Thus, for high excitations, we obtain scaling, and the scaling constant R is indepen- 
dent of the shape of the smooth, potential type interaction. 

Before giving a more detailed discussion of this result in the next section, we 
would like to add a few remarks about “potentials” which are singular at zero dis- 
tance. If the kernel Ko(R) of the dynamical equation (23) has a 1 /R singularity at 
the origin but is confining at large distances, then, by using the so-called Langer 
method for the asymptotic solutions of differential equations [ 131, we obtain again 
eq. (36). However, we want to point out that the eq. (23) was obtained by an alge- 
braic elimination of the “small” components of the BS amplitude. This elimination 
remains valid at least for the case that the projection of the interaction on these 
small components is nonsingular. Thus, with this restriction, scaling remains pre- 
served for an interaction containing a 1 /R singularity. 

6. Discussion 

We have shown that in relativistic bound state models with heavy quarks the 
total e+e- annihilation into hadrons has scaling behaviour once the amplitudes of 
the vector meson bound states have a yP Dirac structure like the electromagnetic 
quark current, and that the scaling constant is independent of the detailed shape of 
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the potential-type interaction. Thus scaling is a rather general property of bound 
state models *. Turning the argument around, from scaling in e+e- annihilation 
one cannot select a particular “confinement” potential. In view of scaling being 
one of the main features of models with free, or asymptotically free, quarks (par- 
tons), we want to compare the two pictures. For this we choose the scaling constant 
R which in the asymptotically free quark model is given by Rfree = &Qf , whereas 
in the bound state models we found R bound = $~Z2&(Qv)*. Because of the equali- 

ty of the sum over quarks and the sum over vector mesons, eq. (14), the comparison 
actually involves the reduced quantity Rbound/Rfree = i.$Z* only. We observe that in 

bound state models the scaling constant R bound depends, apart from the flavours and 

colours of the quarks, on several factors: 
(a) The current renormalization constant Z, Z d 1. 
(b) The dynamical factor $.$ which is determined by the detailed spin structure 

of the interaction kernel, reflecting the fact that in a bound state model one can ex- 
cite the off-shell degrees of freedom, in contrast to the parton model. In our dynamic 
ally favoured model [l 11, where the strong forces binding the heavy quarks get sa- 
turated in the mesonic vertices, .$ = 1, in a model with the Fierz symmetric pseudo- 
scalar-vector-scalar kernel, g = 3 [ 121. 

(c) An energy dependence of the interaction of the form K = K(R) + const . M* 
which we did not consider here, would also enter the scaling constant. 

(d) Thus far we have tacitly assumed the zero-width approximation for the vector 
mesons. In reality the total widths are finite, and actually they have to be rather lar- 
ge in order to yield the smooth cross section. A description where the total width of 
the resonances is proportional to their mass will not destroy scaling in our model, bul 
from unitarity arguments we expect that the scaling constant becomes smaller [14]. 

In conclusion, scaling behaviour in e+e- annihilation seems to be an almost un- 
avoidable property of bound state models. At present there is an indication for sca- 
ling above s = (5 GeV)* with Rexp = 5.5. This number is bigger than the values from 
the charm or Han-Nambu quark model. If, however, the experimental scaling func- 
tion will turn out to approach a parton model value, then this would require a subtle 
interplay between current renormalization, spin structure and finite width effects 
of the intermediate vector mesons in the bound state picture. 

One of us (M.B.) would like to express his gratitude to Professors H. Schopper 
and G. Weber for the hospitality during several visits at DESY. 

* Scaling occurs also in non-relativistic bound state models if the Schriidinger eigenva.lue is li- 

nearly related to the squared bound state mass M* [ 81. This is so if the potential is confining 
and not more singular than l/R. 
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