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We study symmetry breaking via quark mass differences in a relativistic quark model 
where mesons are built from heavy (m B 3 GeV) spin -$ quarks and antiquarks. The meson 
(squared-)mass differences are linearly related to the number of strange, charmed, etc. 
quarks in the mesons. We show that the previously assumed SU, symmetry of the mesonic 
couplings holds, i.e., quark mass differences only show up in the masses of the external 
particles, not in the three meson vertex itself. 

1. INTRODUCTION 

A central problem of elementary particle physics is to understand the breaking of 
strong interaction symmetries. In the quark model [l] of hadrons the simplest way to 
break symmetry is to ascribe different masses to the (n, p), h, c-quarks. This introduces 
splittings within the SCJ, multiplets in the nonrelativistic quark model [I]. Quark 
mass differences also successfully account for symmetry breaking effects in the static 
properties of elementary particles like magnetic moments [2]. 

In this paper we discuss the consequences of quark mass differences combined with 
a symmetric quark-antiquark (yq) interaction in a relativistic dynamical quark model 
for measons with heavy Fermi quarks [3-61. In Section 2 we briefly review the main 
features of this model, derive the dynamical equation, the spectrum, and the wave- 
functions of the mesons. We compare our spectrum with the experimental masses of 
the ordinary mesons [7] and their excitations, and from the J/$ [8] mass we derive 
limits on the masses of the expected charmed vector mesons D* and F* [2, 91. 

Since the quark mass differences (d, : = plzi ~ ITI: i = quark flavor, d C > d, > 0, 
d, = d n = 0) appear in the wavefunctions only in third order terms in I /nz we have 
no symmetry breaking in simple current matrix elements like the vector meson photon 
coupling except phase space factors due to the masses of the external particles. In this 
model. however, the hadronic couplings depend on the small components (order 
1~~) of the wavefunctions as a consequence of the spin saturation of the superstrong 
q2j binding forces [S, 61. In Section 3 we therefore investigate whether the symmetry 
of the mesonic couplings and, of course, the spin saturation of the qq forces survive in 
the presence of quark mass differences. In Section 4 we summarize the results. 

424 
Copyright IT) 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSK 00034916 



QUARK MASS BREAKING 425 

2. THE MODEL, SPECTRUM, AND WAVEFUNCTIONS 

In the framework of a relativistic quark field theory [IO] the mesons are described 
by Bethe Salpeter (BS) amplitudes 

xii(y, P) = (27-r)“;” f  L/.V eiq,“(O 1 T(t,b,(s/2) u’;j(-(,~/2))) ~ Meson: (1) 

where lcri , 16, are the quark and antiquark fields, T the time ordering operator, P the 
meson momentum. and t/ the relative momentum of the quarks. The BS amplitudes 
obey the bound state BS equation 

.y i-g -I- $7) )(;,(y, P>3y g - ‘I) = i j dq’ Gf-(q, Cl’, P. A) &($‘, P) (2) 

-- 
with the inverse propagators SF’ of the quark i, S;l of the antiquark,j and the inter- 
action operator kernel X with the coupling A. Biihm, Joos, and Krammer [3, 61 
(hereafter referred to as BJK) now made the following assumptions. 

(i) Quarks are very heavy (nr > 3 GeV), this leads to a practical confinement 
[Ill; 

(ii) Superstrong +j binding forces have to compensate the large quark mass. 
(These superstrong forces have to be saturated in hadronic vertices): 

and for simplicity: 

(iii) The quark propagators can be approximated by the free quark propagators 

S,-‘(p) : -~ p -. wi . S;l( p) : =z 3 -t 111, : 

(iv) Thle interaction kernel shall be of convolution type without derivative 
couplings. 

Now the BS equation reads 

($ I- d ,,,i) Xii((/, P) g- ~~ d ;- m;) 7: ix-(y. P, A) c x,,(q, P) 

while the normalization [5, 121 of the BS amplitude is 

(2’) 
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For mathematical reasons one performs the Wick [ 131 rotation, an analytical con- 
tinuation in the relative energy plane 

(4) 

after which we have Euclidean metric, here indicated by the index.E. In this Euclidean 
form the interaction operator X is the Fourier transform of a four-dim “potential” 
V(R). BJK [3] have shown that this potential has to have the form of a smooth well in 
order to yield linear Regge trajectories for the mesons. This potential might be appro- 
ximated by a harmonic oscillator V(R) = N -1. PR2, ---‘Y = ~TI%, valid at least for the 
low excitations [4]. The required quark spin singlet-triplet structure of the BS ampli- 
tudes restricts the spin dependence of the interaction operator X. It is uniquely fixed 
to 

X(q, P, h) * x(q. P) : ~-= -yys(K(q. P, X) * x(q, P,) ys , 
(5) 

by the second requirement, that the superstrong @ forces are saturated in mesonic 
vertices [5, 61. 

We can now write down the BS Eq. (2) with the quark flavor symmetric interaction 
(5) but different quark masses. After transforming into the meson rest frame P = 
(M, 0) we have (now in Euclidean space) 

When we expand x according to its Dirac structure 

we see that the spin part of the interaction leaves the vector (V) and 
axialvector (A) components unchanged while it gives a sign to the scalar (S), 
tensor (T), and pseudoscalar (P) components of x. Small perturbations of the ideal 
spin structure --y5 ... y5 can now be taken into account by modifying the potential 
parameters according to the Dirac components of x: IX, p ---+ u?, B” [5. 6, 141. Equa- 
tion (6) then explicitly reads 
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(4 ‘,: g)Y :- 4r4 -( ]Y:-’ 
i 
itl?ijvf+djj2yJ, M Y’ f  

(y4 7 y&Y:= y&lyy, [ ] Y ix [lliij ;yJ + iLdij4, Y] 

( )Y := iT (4Yy, - y,Y4) 

8: I-= -@ -+ n7,t17jj n7,i := i?,(lllj + I??,) dij I= J(112, - tl?j). 

(8) 

The quark mass is not compensated for the components S, T, P. These are therefore 
small and WI: can solve the lines for these components by a Taylor expansion up to 
the order me3 [14] 

s=&++- ? .l 21?Zi/llj 
(42 - /3”0 - s; -+ “j j (( ]V + ( )s T), 

4 

-1 T=-- 
2m$?l j ( 1+ --L (4 x fj - p’o - sl’, + y y4 x y4jj 

2mii?lj 

x ({ JA - [ IV-t- ( w-t m 
(9) 

-1 f- i&?zimi t-i IA + c >P 0 

By reinserting Eqs. (9) into the lines of the large components V, A of Eq. (8) we get the 
dynamical equation for V and A up to the order me3 [14]. To calculate the spectrum 
and the V, A! wavefunctions it suffices to consider this equation up to the first order in 
m-l, which gives 

Solutions o-f Eq. (10) are the quark mass independent wavefunctions F’ = ZPY, , 
A = ++,yU with the eigenfunctions of the four-dimensional harmonic oscillator 
vu, a” 
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while the eigenvalue condition gives the spectrum 

r = radial quantum number, 

lV=2v+n. I1 3 1 > 0, n = 0, quantum number, 

I = three-dimensional orbital angular momentum. 

Here all terms of order 111-l or smaller are neglected. The wavefunctions IP~~ . LZUY~Y,~ 
represent the spin singlet (‘a4y,y4) and triplet (‘u+I, , k f 4) structure of the nonreiati- 
vistic quark model and additionally there are as many pure relativistic states 
(&y,yl,, u4y,,). For details see Ref. [4]. The BS equation naturally yields a quadratic 
mass formula and we have linear Regge trajectories as a consequence of the harmonic 
interaction. 

The spectrum Eq. (11) depends on 

(i) the spin. The slopes of the Regge trajectories might differ slightly for quark 
spin singlet mesons (A component) and quark spin triplet mesons ( V component), but 
they are quark,flaaor independent; 

(ii) the quark mass differences. The inner multiplet (squared-)mass differences 
depend on/y on the quark flavors, but neither on the excitation level nor the spin. 
They are 4mdh (4m4,) for each strange (charmed) quark. 

Result (ii) is identical to a previous one [I51 obtained with a scalar model in the 
same framework. Thus we also get the same “ideally” mixed mesons (pp + /1ii)/2l/~, 
hi, CL’, etc. Applying our spectrum Eq. (11) we are therefore forced to omit nonideally 
mixed mesons like 7, 7’. We find the equal spacing rules 

Md2 - M;, = M;, - M,,’ = ~/HA,, , 

M& ~ M;, = M;, - M,” = 4t?zA,, (12) 

M&, ~ A4;, = M;, - Mh’ = 4ni(A, - A,). 

These equal spacings should be independent of the excitation level as well as of the 
spin e.g. Me2 - MT2 = M& - M,’ == M&14ao - M$ . This can partly be tested up to 
the second orbital excitation. Table I shows the experimentally known mass differ- 
ences. 

We find reasonable agreement with our result (ii) only within each excitation level, 
and in contrast to our model the squared-mass differences seem to increase with excita- 
tion. This contradicts our result (i), the Regge trajectories are not parallel for different 
quark flavors, instead their inverse slope increases with the number of h-quarks in- 
volved. 

An indication that the inverse slope also increases with the number of c-quarks 
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TABLE I 

Squared-Mass Differences from Refs. [7, 161 

Experimental mass differences 

4md [GeV2] 

0.496' - 0.138' =0.226 

0.498' - 0.135' x0.230 

0.89' - 0.77' zo.210 

1.02" - 0.89' ~0.238 

&;a20 - M.i 2 1.42' - 1.31" =0.31 

I 

M;, - M,& 1.52' - 1.42' ~0.28 

ML’ - ,,,f; 
3 1.77' - 1.64' -0.43 

2 
2 

MK&~ - MC, 1.8'- 1.686' !=xo.40 

(L Our model predicts equal numbers in the right-hand column. 

involved is given by the level spacing of the new mesons [8, 171 (all quark spin triplet). 
Here we have 13P wave levels at 3.4 and 3.5 GeV while the 13S wave level is AI(J/#) = 
3.1 GeV. This gives an inverse slope of the j = I + 1 trajectory of 1.95,2.64 GeV2 or 
even more depending on which state is assumed to be the J = 2 state, that at 3.4 or 
3.5 GeV or even a so long undetected higher 3P wave state [ 181. On the other hand the 
inverse slope of the old j = I + 1 quark spin triplet mesons is A4ji, - MO2 = 1.12 GeVa. 

These different inverse slopes of old and new mesons weaken our inner multiplet 
equal spacing rules (12). We have to add a negative term -8((p,)1/4 - (p2)1/4)2 (11) 
which is of no effect on the p - K* - $ system but gives corrections of the order of 
100-200 MeV to the D*, F* masses 

n4;* = (M;;, + hi',")/2 - 8((/3,!,,"" - (fl,)"")' = (2.26 GeV)” - &(I00 MeV), 

(13) 

IV:* = (A& + Mb")/2 - S((fl,J"' - (/3d)"')2 = (2.3 GeV)’ - P(lO0 MeV). 

For a further discussion of the excitation dependence of the meson mass differences of 
Table I we would like to refer the reader to Refs. [14], [19]. 
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3. SATURATION AND THE PROOF OF SYMMETRIC COUPLINGS 

In the heavy quark model of BJK the three meson vertex can be calculated from the 
one leg amputated BS amplitudes S;‘(q + (P/2) xij(4, P) [5, 61, 

3 

= Tr[SU,](2-ir)-g’2 (14) 

xs;‘(q-~jxzs(q+~,P2j x&1(4- pz,P3jX31(q-~rP3j]. 

For this calculation we need the full BS amplitude xii which can be obtained in terms 
of the large components V, A by inserting the expressions (9) into Eq. (7) [14]. After 
transforming back to Minkowski space we get for the full BS amplitude (x(O) denotes 
any linear combination of V and A) up to the order m-3 

Quark mass differences appear twice in the mesonic vertex M 

(i) In the quark propagators, 

S;‘(p) = p - mi ==: S-l(p) - 2, S;l(p) =: F(p) + %. 
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(ii) In the BS amplitude xii, Eq. (15). Here they are only present (in relevant 
order) in the first line xl:’ and they may be isolated, 

where mA is of the order ~9 as we can see from the mass formula Eq. (ll), e.g. 
41~74, = MK2 - Mn2. 

We now proceed calculating the vertex A4 in the same way as BJK [6] did in the 
SU, symmetric case. In particular we calculate the trace over the Dirac components 
of the BS amplitudes separately for the three different types of combinations 

TF: all BS amplitudes only in terms x(l), 

TP): one BS amplitude in term xf2), the others x(l), 

Trc3): one BS amplitude in term x13’, the others x(l). 

Tr(i) might in principle be of the order III 3, Tr(2.3) of the order m”, all other contribu- 
tions to the vertex are of the order FYZ-~ or smaller. Note that in Tr’2,3) even the mass 
breaking terms are negligible, since they at most contribute to the order 111-l. There- 
fore in Tr(2,3) we expect no change compared to the SU, symmetric case and the most 
interesting part of the vertex M is Tr(i’ 

(16) 

Tn the following we write g;l(p): = S;‘(p) . S;‘(p) =p2 - rnt and omit the 
arguments of x, 9-l, S-l 

(17) 
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Because of the odd number of Dirac matrices we have 

Tr[$“,)&“,‘xt!)] = 0 

and 

Tr(JJ = 
1 

8m,m,m, Tr [x(“,‘xg) (4 - ,a’ 2 ” ) xI1 
(0’ . c 

31% 

Here 
+ x:;'x;",'x:' (4 + 3, . c,,, + xi",' (4 - 4, x~'x~'C,,,]. (18) 

where pi , pj , pIc are the momenta of L8fi1, L@;‘, g;‘, respectively. With the explicit 
expressions for the Cijk we have 

TP = - d (P,P, - q(P, - P3)) Tr [x~~‘&“,’ (4 - ” 2 “1 xi:)) 

t ; tpZp, + 4(3p, t- p2 - p3)) Tr [x~y’x~“,‘x;~’ (4 -t 911 (19) 

+ f (p2P3 - q(3pl - P2 + P3)) Tr [Xii’ (d - 9) ,!&‘Xg’] + e(/?l?). 

This is the same expression as the corresponding term of the SU, symmetric treatment, 
Eq. (40) of Ref. [6]. We can already state here, that 

(i) the quark mass breaking does not affect saturation, since Eq. (19) still is 
independent of the quark mass; 

(ii) the vertex M and therefore the mesonic couplings will be S(/, symmetric 
(except phase space factors). As we already mentioned there is no further SU, break- 
ing term which contributes to the vertex in the order nrO. 

To complete our calculation we will write down Tr(“’ and Tr’3) which are identical 
with those of the SU, symmetric calculation of BJK [6]. 

Tr@) : Tr[S1-1X:22’S,-1X~‘3’~1X~) + S;lx12 2 xz3 3 x3I (1'S-1 cap1 (1' -t ~,-lx~','~,lx~'~,-lx~~~]~ 

’ TP’ = - 4 Tr P, [ . q (Fig + qj  x:“,’ + x$-l (9 - qj j xg’xg’ 

+ Xg’P, (4 + +j(s”(” - 2) XL;’ + xgs-l ( p2 ; p3 - yj) XE’ (20) 

.+ x;g’xgp3 . (q - 2)(F (q - x2+, xg’ + xg’s-l (qi - y),] 

L qw-1). 
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We easily find Tr”’ = -TP1. Th ere ore f the mesonic couplings are given by TPI 
only 

Tr’“) == Tr[S,lx:~‘S~lxl’,)S~lx~~J $ ..$ 

Tr’3J = 1~13 Tr[x:~)x~(‘)x$‘~) + x;;‘x;;‘x$y’ -t x;!$ot$y;;q + Ii (ml). (21) 

Since xrs) - I+, Trc3’ is of the order ~7” and we find for the mesonic vertex in leading 
order the quark mass independent expression 

M = Tr[SU,](2~)Pg”2 i J 
’ u’q Trc3). (22) 

4. SUMMARY 

Our starting point was the relativistic dynamical quark model for mesons by BJK 
[6]. In this model very heavy (m > 3 GeV) Fermi quarks and their antiquarks form 
bound states obeying the Bethe-Salpeter equation. The model, SU, symmetric so far, 
shows spin saturation of the three meson vertex, i.e., the spin structure of the q.?j 
interaction l!eads to the quark mass independence of mesonic couplings. We then 
introduced a conventional quark mass breaking, nrD,% < m, < m, , etc. 

Concerning the spectrum we found that the meson squared-mass differences are 
strictly proportional to the number of X or c quarks in the mesons. This result is 
identical to a previous one from the same but scalar model [I 5, 201. Experiment seems 
to verify this result within each @-excitation level only, while it further indicates an 
increase of these squared-mass differences with the main quantum number. A further 
indication for this flavor dependence of the Regge slope is the level spacing of the new 
mesons. This implies a modification on the equal spacing rules which is neglegible 
for p ~ K* ~ 4 but lowers the masses of D* and F*. From the p, #I, J/# masses we 
are only able to give an upper limit on the masses of D* and F", MD* < 2.26 GeV, 
Mr. < 2.3 GeV, while the correct values may lie 100-200 MeV below. 

Concerning the mesonic couplings of the model we found that the spin saturation 
mechanism described above survives symmetry breaking and that even symmetry 
breaking terms have no effect on the matrix element in leading order. We could there- 
fore verify the assumption of symmetric mesonic couplings in spite of quark mass 
breaking, on which the calculation of meson decay rates in Ref. [6] was based. 
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