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Abstract. In a conformal invariant quantum field theory (in 4 space time 
dimensions) Wilson operator product expansions converge on the vacuum, 
because they are closely related to conformaI partial wave expansions. 

1. Introduction 

Let qSi(x), dpJ(y) two local quantum fields. According to Wilson [1], their product 
should admit an asymptotic expansion at short distances of the form 

6i(½ x)6J(- ½ x)o = Y~ O%~W(0)o. (1. l a) 
k 

Herein q~k are local fields, and c~Jk(x) are singular c-number functions. In a scale 
invariant theory they are homogeneous functions of x. The expansion is pre- 
sumably valid for all states Y2 in the field theoretic domain ~ which is created out of 
the vacuum by polynomials in smeared field operators. We shall however only 
consider the special case 

f2 = vacuum. (1. lb) 

Studies in perturbation theory [2] indicate that expansion (1.1) is then valid as an 
asymptotic expansion to arbitrary accuracy for matrix elements (~, c)i(x)~J(y)g2), 
in 9 .  This means that the error in a truncated expansion can be made smaller than 
any given power of x at sufficiently small distances IIxll by taking into account 
sufficiently many terms. (For more precise formulation cp. e.g. Appendix A of [3].) 

Asymptotic expansions need not converge. For instance the asymptotic 
expansion near y = 0 of the function f(y) = exp ( -  1/y) of one positive real variable y 
in powers ofy  vanishes identically and does therefore not converge to the function f. 

Among the fields q~k there are derivatives of other local fields. In general there 
appears a"~b etc. together with any nonderivative field qS. In a conformal invariant 
theory, non-derivative fields ~b can be recognized by their conformal transfor- 
mation law [4], viz. [~b(0), K ~] = 0, K" = generators of special conformal transfor- 
mations. 



156 G. Mack 

From the work of Ferrara et al. one knows [4] that conformal symmetry 
imposes strong restrictions on the coefficients C i~k in (1.1) : The terms involving non- 
derivative fields determine all the others. Using this, the terms involving derivatives 
of  one and the same nonderivative local field can be formally summed. Here we will 
prove more:  

Theorem 1. Consider conJormal invariant quantum field theory (in four space 
time dimensions) and suppose that vacuum expansions (1.1) are valid as asymp- 
totic expansions in homogeneous functions of  x to arbitrary accuracy for 
(~.1 ¢i(½x)~J (--½X)~'~), T in 9 .  Then ~icj~'~ admits a convergent expansion, 

dpi(x)¢~(y)g2 = ~ '  ~ dzdpk(z)~2~kii(z ; xy). (1.2) 
k 

~kij are generalized c-number functions. Summation is over nonderivative fields ~k 
only and integration is over Minkowski space. Convergence is strong convergence in 
Hilbert space after smearing with test functions f(xy).  

The result is valid for non-derivative fields q~i, qSj of  any dimensions dl, dj 
transforming according to arbitrary finite dimensional irreducible representations 
l i, lj of the Lorentz group M ~-SL(2C). Multispinor-indices have been suppressed. 

The functions Nkij are to a large extent determined by conformal symmetry. Let 
U ~ SU(2) the rotation subgroup of M and denote by M ,  U * the sets of all finite 
dimensional irreducible representations of  M resp. U. Write z i=  [li, d~] etc. We 
shall show that functions Nijk are linear combinations of  a finite number of  
kinematically determined kernels ~ts(Z)~k;XZiYZj ). Given )~i, 7~i, and )~k they are 
labelled by 

I e M , s ~ U  ~ such that so l  and Icl~®lj, sfil k. (1.3) 

® stands for the Kronecker product; and C means "is contained in". If no pair (s, l) 
satisfying (1.3) exists, then ~b k cannot appear 1 in the operator product expansion of  

#4  j. 
Example. c} ~, 4 J scalar. Then li = lj = id, the trivial 1-dimensional representation. So 
1 = id, s = id and 1 k must be a completely symmetric tensor representation ; ~jkij is 
then unique up to normalization. 

The proof  of the theorem has two ingredients : 
1. The Hilbert space of  physical states carries a unitary representation U of the 

conformal group G* = universal covering of SO(4, 2). It was shown by Liischer and 
the author that this is true even if one only assumes weak conformal invariance, 
i.e. invariance of Euclidean Green functions under SOe(5, 1) or its 2-fold spin 
covering [5]. 

2. All unitary irreducible representations of G* with positive energy are finite 
component field representations in the terminology of [6]. This result was proven 
by the author in [7]. 

Using these facts one can derive partial wave expansions on G*, i.e. decompose 
~dxdyf(xy)~i(x)c~J(y)f2 into states which transform irreducibly. Because of the 

1 For massless free fields 4~k(x) there are further restrictions beyond this, cp. end of Section 7 
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Plancherel theorem, partial wave expansions are strongly convergent. They are here 
at the same time asymptotic expansions. Comparing with (1.1a) one finds that they 
can be rewritten in the form (1.2). 

An independent proof of the theorem for theories in 2 space time dimensions 
was given by Ltischer [8]. He uses different methods employing a semigroup. 
Interesting further results on 2-dimensional models were obtained by Riiht and 
Yunn [9]. 

We conjectured in [10] that the assertion of  Theorem 1 would also hold true in 
realistic theories with mass and without conformal symmetry. 

Let us mention that one can also give a dynamical derivation of the vacuum 
expansions (1.1) themselves in conformal invariant quantum field theory (QFT). 
This is discussed elsewhere [11]. It is not, however, a derivation from QFT axioms 
and conformal symmetry alone : One also needs Lagrangean integral equations to 
identify composite fields, and meromorphy o f Euclidean con formal partial waves in 
dimension must be assumed to get a discrete expansion in the first place. 

Finally, the following corollaries of Theorem 1 may be of interest. 
Let P~, K u the generators of translations and special conformat transfor- 

mations, respectively, and 

H = ½ (p0 + K o) the "conformal Hamiltonian' .  

Assume that the hypothesis of Theorem 1 hold for arbitrary products of fields 
(b ~, q5 J. Let f test functions and 4~k(f)= 5 dxf(x)~k(x) smeared fields. 

Then we have 

Corollary 2. The Hilbert space d f  of physical states is spanned by states of the form 
dog(f )f2, dpk(f) smeared fields, f2 = vacuum. 

Corollary 3. The conformal Hamittonian H has a purely discrete spectrum with 
eigenvalues co =0 (vacuum) and 

co =dk+m, m=0,  1, 2 . . . . .  

dg dimensions of nonderivative fields in the theory. 

Corollary 2 is obtained by recalling that finite products qSi'(fl)... (oiN(J)v) of fields 
generate a dense set of states out o f the vacuum according to the principles o f QFT. 
Then one applies Theorem 1 repeatedly. 

Corollary 3 follows from Corollary 2 because states ~k(f)f2 for given k span an 
irreducible representation space of G*, with spectrum of H determined in Ref. [5] to 
be of the form co = d k + m, dk = dim ~b k. Because only a denumerable number of fields 
appears in the operator product expansions by hypothesis, the corollary follows. 

2. Harmonic Analysis 

We wish to decompose ~bg(x)~bJ(y)f2 into states which transform irreducibly under 
G*. It will suffice to consider scalar products (~, ~i(x)dy(y)f2) with states 7 / in the 
dense domain ~. 
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For  simplicity of  writing consider first a theory of  one hermitean scalar field 
4~(x), and cki= ~b j = qg. The Wightman functions are 

W(x 1 ...XN) = (fl, ¢(Xx)... O(XN)f2 ) . (2.1) 

Let 5~=~NSr' N the space of  finite sequences of Schwartz test functions f0, 
fl(Xl)...fN(xl...XN). The subspace 5°2 consists of a sequence with only one 
nonvanishing term fz(x~, x2). The field theoretic domain ~ consists of  vectors 

7~(f)=~Sdx~...dxkfk(xl...xk)dp(xl)...dp(xk)(2; f ~ 5  P . (2.2) 

According to the reconstruction theorem, the dense domain N in the Hilbert 
space ~ of physical states may be identified with a space of continuous linear 
functionals F : f ~ ( F , f )  on 5 p, i.e. sequences F=(F,) ,=o,  t .... of  generalized 
functions F ,  eS~. We shall write F(Xl . . . x , )  in place of F,(xa. . .x , )  and use 
functional :notation, 

{ F, f )  - ~ ~ dx 1... dx,F(xl.., x,)f ,(x, . . ,  x,), 
rl 

The identification is such that FE ~ if and only if F = W f  for an f in 5 P, with 

Wf (xl...x.) =- ~ ~ dy , ... dy k f(Yk... Y l) ~V(Yl ... YkXl ... x,). 
k 

The scalar product on ~ becomes 

(2.3a) 

( T ( f  ~), ~f(f 2))-= ( Wf~, ]2 ) .  (2.3b) 

Since the Hilbert space J(f carries a unitary representation U of G* it can be 
decomposed 

~f  = S d/4z) J/fz =.f dp(z) S dv(o)gg ~z~ • (2.4a) 

~, a measure on the set G**= {)~} of all unitary irreducible representations (UIR's) of 
G*. ~(¢z consists of  a direct sum or integral 2 of irreducible representation spaces 
WxQ which carry equivalent UIR's X. 

In particular, states W f  in ~ may be so decomposed 

W f  = ~ dp()OF x = ~ d#(x) ~ dv(o)F ze ; F z in ~f,z etc. (2.4b) 

Since an irreducible representation space of G* must be contained in 24g as a 
whole, the spectrum condition allows only UIR's with positive energy. All such have 
been classified in E7]. First there is of course the trivial 1-dimensional repre- 
sentation. The others can be labelled by Z=[ / ,3 ] ,  l s M ~ a  finite dimensional 
irreducible representation of  M~SL(2C)  ("Lorentz spin") and 3>6rain(l) real 
("dimension"), cp. Proposition 6 below. The UIR g may be realized in a space ~-z of 

2 In actual fact the measure v is discrete, cp. Corollary 3 and its proof 
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(generalized) functions on Minkowski space with values in the finite dimensional 
representation space U of the Lorentz group M. Functions (p in ~ x  satisfy a 
spectrum condition, i.e. their Fourier transform is supported in sptr. (x) _-c ~'+, the 
closed forward cone. The action of Tz(o) of 9~G* on functions ~0 in ~'~z will be 
reviewed later on. Consider "intertwining maps" 

~x:~z~+ovfx such that U(g)~X=~ZTz(g ) for g in G*. (2.5a) 

They are linear combinations of isometric intertwining maps 

,~x = j' dv(o)a(Q)~xo with ~ [a(0)[Zdv(Q) < oo. (2.5b) 

~zo are maps from ~ to ~z~  which preserve the norm and commute with the 
action of the group. 

Every vector F x~ in ~;/FzQ may be written in the form F zQ = ~x~q~x~ where ~x~ is 
an intertwining map as were just introduced, and ~o x°E o~. ~zQ is unique and q~ZO is 
uniquely determined by F x~. 

It suffices to consider states ku(f) such that (7~(f),f2)=0. The trivial 
1-dimensional representation of G* will then not appear in the decomposition, 
because the vacuum £2 is the only Lorentz invariant state. 

The decomposition (2Ab) becomes 

W f  = ~ d#(x) ~ dv(Q)~):°cp x~ with q)Xe~ fix" (2.4c) 

Since ~ is a function space, ~xecpxe = [  dx~iXe(x) q)ZO (x), and ~x~(x) takes values in 
j fze  C ~ .  We restrict Wf to a continuous linear functional Wf(xlx2) on 5°2. Let us 
introduce kernels N~(x)~;xlx2)= (Nxo(x), ~b(x0qS(Xz)f2). Decomposition (2.4c) gives 
then 

(tp(f), dp(x~)qb(x2)O)- W f  (x~x2) = ~ d#(z) ~ dr(o) ~ dxq~Ze(x)*~O(xx ; x~ x2). (2.6') 

The kernels are singular functions with values in V ~. Often, physicists write indices: 
q~-xe~e (sum over multispin or indices ~). 

One may associate kernels ~(x)~;x~x2) with arbitrary intertwining maps 
Nx :~z~_~yfx in the same way as for ~z~. They are related by (2.5b) viz. 

N(xz ; x~ x2) = ~ dv(~)a(o)Ne(x)~ ; x~ x2) , (2.5c) 

where a(~) is an arbitrary v-square-integrable function of 0. Correspondingly, we 
shall use N as a generic name for arbitrary linear combinations (2.5c) o f kernels ~ .  

Since functions ~o in . ~  satisfy a spectrum condition, kernels N(x)~;...) are 
nonunique as functions of x. In particular, the Fourier transform 

~~(p)~ ; XIX2) = ~ dxeipXYJ(xx; x~x2) (2.7) 

is only relevant for pssptr.()0_-_ V+. 
We shall count kernels ~(xx ;...) only as distinct if q~'(P)*~'(PX; x~x~) differ for 

some (p in ~z- 
The intertwining property (2.5) imposes strong covariance condition on kernels 

N. Further restrictions come from the spectrum condition for states ~b(x0(2. We 
write Y2 >Yt if Y2-Y~ ~ V+. Spectrum condition and covariance imply 
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Proposition 4. Let ~o~(p) the Fourier transform of an arbitrary element of  ~ .  Then 
q~(p)*~(pz;xlx2) is boundary value of  a holomorphic function of z j=x j+ iy j  
(j = 1,2) in the tube Y2 > Y l > O. Kernels ~ (pz ; x ix2)are linear combinations of a finite 
number of kinematically determined functions ~t~(pz;x2x2) (at most one for scalar 
qS=qSi=~b ~) which can be labelled as in (1.3). Moreover, they can be analytically 
continued in p to entire analytic functions of  p, viz. j dxdyf(xy)~~(pz;xy) is 
holomorphic in p for all test functions f with compact support. 

Proof  of  Proposition 4 will be given in the following sections; explicit 
expressions for ~~ will be given in Section 8. 

Let us return to expansion (2.6'). We retain the assumption that ~b(xl), ~b(x2) are 
scalar fields so that only one linearly independent kernel exists (cf. Proposition 4). 
Thus all kernels are proportional and the integration over ~ may be performed with 
the result 

(~P(f), qS(x,)qS(x2)~)= Wf(x ,x2)= ~ dl~(Z) j dxcpX(x)*~(xz; x,x2) (2.6) 

with cpX(x)ocj dv(~)~oX~(x)~ ~z" 
It remains to be shown that 
i) the measure/~(~C) is discrete so that 

(T(f) ,  ~b(xl)~b(Xz)Q ) = ~ j" dXCpXk(X)*N(XZk ; XlX2) ; (2.8) 
k 

ii) 

cpXk(x)* = (TJ(f), ~k(X)t2), 

where q~k is a nonderivative field appearing in the Wilson expansion (1.1) with 
dimension d k and Lorentz spin I k if Zk = [lk, dk]" Later on we write 93 k for N(. Zk, ...). 

We shall use the hypothesis that Wilson expansion (1.1) is valid as an asymptotic 
expansion at x=0 .  We will derive from (2.6) an asymptotic expansion at x = 0  in 
homogeneous functions ofx.  As asymptotic expansions in homogeneous functions 
are unique, (2.8) can then be deduced by comparison. 

By Proposition 4, kernels ~~(pz;xlx2)  are entire functions of p, They may 
therefore be expanded in an everywhere convergent power series 

~ ( p z ; ½ x - ½ x ) =  ~ C~'(x)p~...pp~ ; fi=(fll...flr). (2.9) 
r = O  

For reasons of  dilatational invariance one has for real 2 > 0, 

C~r(2x)=2-2a+a+'C~(x) for Z= [l,6],d=dim~b (2.10) 

(or, more generally 2d =- d~ + dj, di, J = dim q~'J). 
We will insert power series expansion (2.9) in (2.6). 

(~P(f), ¢(½x)¢(-½x)~)= ~" d#(z) ~ dp ~ C~(x)pal... pa, cp~z (p) *. (2.1 1) 
r 

Suppose that in (2.6) f is a sequence of test functions whose Fourier transforms 
have compact support. Vectors ~( f )  with such f are still dense in the Hilbert space 
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ovg of physical states. Because of momentum conservation, the Fourier transforms 
(0~X(p) of ~oX(x) will then also have compact support, and so ~oX(x) are infinitely 
differentiable at x =0  (even entire in x). Because of homogeneity (2.10), expansion 
(2.11) implies the following asymptotic expansion 

(T ( f ) ,~ (½x)~ ( -½x)O)=~  .(d/~(Z) ~ d x~( ) -z * pC B x p~.. .p~/p (p) 
r 

= ~ 5 d#(z)ffc}r( x ) Vp,... G.q~Z(0) * , (2.11') 
r 

where it is understood that summation and integrations ~ 5 d#()~) are rearranged in 
order of increasing a + r. ()~ = [1, fi]). 

Expansion (2.11') can reproduce Wilson expansion (1.1) only if (2.8) holds true. It 
follows fl'om (2.6) and (2.8) that expansion (1.2) is true on a dense set of vectors T( f )  
as described before (2.11'). Being a partial wave expansion it is then generally true 
and strongly convergent as stated in our theorem. 

At the same time we see from (2.9), (2.11') how the coefficients in the Wilson 
expansion (1.1) are obtained by power series expansion from the kernels 
~'(p)~; x~ x2). 

We have written our formulae for a scalar field q~ = ¢ i=  q~2. They remain true 
generally when interpreted correctly; i.e. appropriate indices should be supplied 
and attention must be paid to the existence of several linearly independent kernels 
~t'(x)~;xlx2). In particular, Equation (2.8i) should be read as 

( T(f), ~i(xl )~J(x2)Q ) = ~ j dx E (PZkI~(X)*N'~(X){k ; XlX2) 
k t , s  

while (2.8ii) becomes 

J 

with complex coefficients a~ and ~ j  running over fields q~J with spin/k and 
dimension d k only. If no degeneracies in spin and dimension occur then the sum is 
redundant. 

The analysis of the kernels ~ will be done in full generality in the following 
sections. 

It only remains to prove Proposition 4. The sequel of  this paper will be devoted to 
this problem. At the same time, we will obtain explicit expressions for the kernels 
~~(pz;xlx2) , cp. Section 8. 

One could try to determine the kernels ~ "  by imposing infinitesimal conformal 
invariance. In fact this program was already carried out be Ferrara et al. [-4] for the 
scalar case even before global eonformal invariance was understood, and 
Proposition 4 is implicit in their work for this case. For general spin the infinitesimal 
method becomes too complicated, We shall therefore resort to global methods 
which are more powerful. [-In applications one wants to apply Theorem 1 
repeatedly (as e.g. in Corollary 2) and fields of arbitrary Lorentz spin may then 
appear.] 
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3. The Conformal Group G* 

The group G* is an infinite sheeted covering of SO~(4, 2). Its geometry was ex- 
amined in [7]. The following picture emerges. 

G* contains the quantum mechanical (q.m.) Lorentz group M ~ SL(2C) and 
therefore also its two-element-center F 1 whose representation distinguishes be- 
tween bosons and fermions. F 1 is also contained in the center of  G* but does not 
exhaust it. The group G*/F 1 may be pictured as a group of transformations of  
superworld M. That  is, G* can act on M, but the action o f f  1 is trivial. Points ~ of  M 
may be parametrized 

tl=(Z,e), --GO<'g<~O0; l~=(~le2e3,~ 5) a unit 4-vector 

viz. (el) 2 + (e2)2 + (e3)2 + (es)2 = 1 . (3.1) 

The action of  G* on M is specified by the action of various subgroups. 
A subgroup K* of G* acts on M by rotations ofe and translations b~ ofz  to a + z. 

K* ~- IR x SU(2) x SU(2), also K* contains the center F = F 1Fz--- ~2 ;K ~ of G*. /"2 is 
generated by an element 7 ~ which acts on M as 

"F(%e)=(z + rc,-e) viz. °f = ~ e x p i n H = ~ b , ~  . (3.2) 

H is the generator of  z-translation, and N rotation (sic) of  e into - e. Its square N2 
= e. K*/F is the maximal compact subgroup of G*/F. 

A fundamental domain F in M with respect to the discrete subgroup F 2 is a 
submanifold such that 

F~TF=O for e+?~eI 2 , Q) y F = M .  
"y~F2 

A fundamental domain F = M~ 4 may be chosen as 

M ~ = { ( z , e ) ~ M ; - n < z _ < n ,  ~5>=_cosz} . 

Its interior may be 
reparametrization 

sinz ~ 
x ° = ' x i -  (i = 1, 2, 3) 

COS'C -4r-~ 5 ' COS'C -t-~ 5 " 

(3.3a) 

identified with Minkowski space M 4 = { x  ~} through the 

(3.3b) 

Translations n ' i n  N ,  Lorentz transformation m in M and dilatations a in A act 
in the costumary way on points of  M e  c Mc'* parametrized by x u (see below). Their 
action on translates ~M 4 of M 4 is then also determined because n~ma7 =Tn'ma, 7 
being in the center of  G*. It extends by continuity to all of  M = uTM 4 (union over 
r2). 

The action of G* on M is completely specified by the action of its subgroups 
K, N ,  M, and A, for every g in G* may be written in the form 

g=kman-,  keK* etc. (3.4) 

[This decomposition is nonunique. Let U=K*c~M~SU(2)  the rotation 
subgroup of  M. Then kman'= k'm'a' n" if and only if k ' =  ku, m'= u-  l m with u in U, 
and a = a', n -=  n-'.] 
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Let N = NN~N - ~, it is called subgroup of special conformal transformations. 
The point t/o = (0, e~), e ' =  (0, 1) is left invariant by MAN,  and M is a homogeneous 
space M ~-G*/MAN. M A N  is isomorphic to a Poincar6 group since 

Nrn~-l=-m~~M, ~ a N - l = a  -1 for m a e M A .  (3.4') 

The fundamental domain M~ may also be made into a homogeneous space 
M~ ~-M/F 2 ~-G*/P with P =  FzMAN. The action of  subgroups t72, N, M, A, N on 
co sets x = n~Pe M 4 is the usual one: The center F = FzF i acts trivially, and 3 

M: Lorentz transformations m: xU--~A(m)U~x ~-~ (rex)". 

A: dilatations a: xU~-,lalx ~, [a [>0 .  
N~: translations n~: x~'~xF'+y ~, y" real. 

N:  spec. conf. transf, n o r :  x~-~a(x,Y)- l (xU-Y ~'x2) 
y" real, a(x, y) = 1 - 2x. y + x 2 y  2 . 

OX # 
: x ~  ~ - ,  0 = time reflection. (3.5) 

I f  n;~N ~ then N n ; ~ - i = n y ~ N .  

Elements meM~-SL(2tE) may be identified with unimodular two by two 
matrices; A(m) is then given by the fundamental formula of spinor calculus. Let 

3 

x=x°~ l+  y" x% -k then A(m) is determined by m through 
1 

mxm*=x' with x'~'=A(m~x ~' . (3.6) 

Translations act transitively on M 4 and M ~ is almost all of  M4~-G*/P. 
Therefore the set N~P fills up all but a lower dimensional submanifold of  G*, 
Elements in N~P will be called regular. Every regular element 9 of  G* may be written 
in a unique way as 

g=n~man with n~EN, ?~F2, rn~M, a~A and n ~ N .  (3.7) 

Haar  measure of  G* factorizes as d 9 = dn~dmdadn in this parametrization. In the 
following it is understood that restriction to regular elements of  G* is made 
whenever this is necessary in order that the formulae make sense. 

Let x' and p(x ,g )~P=F2MAN determined by x,9 through the unique 
decomposition 

g- 1 n~ = n~, p(x, g) - 1. Then x' = g - i x (3.8) 

viz. x' is determined by the action (3.5) of  G* on cosets xe  G*/P. From (3.8) one 
deduces the cocycle condition 

p(x, gig2) = p(x, gl)P(g; 1 x, g2)- (3.9) 

Special cases: For  n'Trna~N~F2MA one has 

3 Our metric is g,~=diag. (+ --); x.y=g,,,xUy ~, x2=x.x etc. 
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p(x,n'Tma)=Tma independent of x . (3.10) 

The next lemma gives an explicit expression for p(x, g). 

Lemma 5. Let p(x, g) as defined in (3.8), and ~ e  G* the reciprocal radius transfor- 
mation defined after (3.2). Then p(x, ~) is MA-covariant in the sense that 

bp(x,N)=p(bx, N)b- for b ~ m A ,  b - = N b N - a e M A .  

it  is explicitly given by 

p(x,~)=Tmxaxn z with y=y-N, N=s ignx ,  
]a~l=lx21, m~=iN- lxlx2] -1/2, z"= - x~/x 2. (3.11) 

Herein x = x°~ + ~ xkc?, and signx = + 1 for xE V± and 0 otherwise. 
The quantity p(x, g) for general regular g~ G* is expressible in terms of p(x, ~). 

Write g=n~Tman, n '~N;  7EF 2 etc. Then 

p(x,g-1)=p(x,n-1)(~/ma) - :  and p(x,n-1)=p(x,N)p(Nnx, N) .  

The quantity p(x,N) was computed in [7, Eqs. (6.20) and (6.21)]. The other 
assertions o f Lemma 5 follow from the cocycle condition (3.9) and (3.10), noting that 
NnxN=n~, bnT,=n;xb for be MA. In particular, it follows from the last relation 
that b2~fn~=~n'~b, and so by Definition (3.8), b-n~p(x,~)  - t  --n-~b~b'p(x, .~)-1 
= n~b~p(bx, ~ ) -  lb. This shows MA-covariance of p(x, ~). [] 

Having completed the outline of the group G*'s geometry, we now turn to its 
unitary irreducible representations with positive energy. 

Let Z =[l,6], 6 real and l~M ~ a finite dimensional irreducible representation of 
M by matrices D~(m) in a vector space U. We equip U with a scalar product, written 
u'v, of vectors u, v in V z which is such that 

Dl(m')-l=Dl(m) * for m ' = ~ m ~ - l = O m O  -1, m e M .  

We define a finite dimensional representation of P = F 2 M A N  in V z by 

DZ(~man)=la[-~ei~N~Dt(m) with c=c5-2,  for ?=7  4¢ . (3.12) 

As usual, a~A is dilatation by lal, cp. (3.5), etc. 
Let gx the space o finfinitely differentiable functions on G* with values in V ~ and 

having covariance property 

f(gP)=lal2DX(P)* f(g) for p=Tman~F2MAN . (3.13) 

d~z becomes a representation space for G* by imposing the transformation law 

(Tx (g)f) (g') = f (g -  ~ g') . (3.14) 

Because of covariance property (3.13) and decomposition (3.7) of group elements, 
functions f in gx are uniquely specified by their restriction f ( x ) - f ( n x )  to N'. 
Transformation law (3.14) becomes in this language 

(Tx(g) f)(x) = [al2 DZ~(x, g))* f (g- ix) (3.15) 

with la[ from p(x, g) = 7man. We are dealing with an induced representation on G*/P. 
(P is called a parabolic subgroup, it is not the minimal one.) 
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A scalar product on gx is constructed with the help of an intertwining map (or 
operator) 

(3.16) 

where ~z is a space of generalized functions on G* with values in U having 
covariance property 

~o(gp)=[a]ZDX(p)-l~o(g) for geO*,  p = T m a n e F 2 M A N .  (3.17) 

~'~x is made into a representation space for G* by the transformation law 

(T~(g)~o) (g') = ~o(g- lg,). (3.18) 

Generalized lhnctions go in Yz are determined by their restriction ~o(x)- ~o(n2) to N'. 
The transformation law becomes 

(Tx(g) q))(x) = ]aleDX(p05 g)-  ~)q~(g- ~)~) (3.19) 

with notation as in (3.15). The intertwining map AZ+ is required to commute with the 
action of the group 

AX+ T~(g) f = T~c(g)AZ+ f for f in g~. 

It is given explicitly by  

~o(x) = (A z+ f )  (x) = n + (Z) ~ dn"f (  n ' ~ n  ~') 

= [ dx'A~+ ( x -  x')f(X ') 

with 
A Z+ ( x) = n+ (Z)( - x2 + iex°) - ~ - j~ - J: Dl( ix ) • (3.20) 

Here (J~,Ja) is the highest weight of the representation l e M  ~ of M, and D ~ is the 
extension to GL(2C) of/ through Dl(~m) = e2j, + 2J~Dl(m), ~ e C. Equations (3.20) were 
derived in [7]. 

The Fourier transform of the intertwining kernel (=  conformal invariant 2- 
point function) (3.20) is 

z ' D t [ ~3 A+(p) = n+ (X) , -  O(p)(p2) -2+ ¢~+Jl ÷J2 (3.20') 
\ op/ 

with a new normalization factor n'+(Z). A~(p) vanishes for momenta p outside the 
closed forward cone. The massless scalar 2-point function is obtained as a limit, Jl 
=J2 =0, 3 ~  1, viz. F(c + 1)-lO(p)(pZ)c~O(p)~(p2) as c - - , -  1. 

In Ref. [7] a complete classification of all UIR's of G* with positive energy was 
given. The result will be quoted as our 

P r o p o s i t i o n  6.  7-he UIR's of  G* with positive energy can be labelled by Z = [l, ~], I a 
finite dimensional irreducible representation of M ~ SL(211~) and 6 ~min(l) real. I f  
(Jl,J2) is the highest weight of l (viz. 2jl , 2j2 nonnegative integers) then ~mln(l)=Jl +J2 
+2  if j i4:0,  j2+O, and ~mi~(1)=jl +j2+ l otherwise, except for the trivial 1- 
dimensional representation which has 6 = j l  =J2 =0. 7he nontriviaI UIR's Z can be 
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realized in the representation spaces gz equipped with scalar product 

( f  l, f 2)=6 dxldx2f , (xO*" A~(xa - x2) f 2(x2) 

with intertwining kernel (3.20). 
Representations with j l  = 0 or j2 = 0 and (5 = 3mi~_ are zero mass representations, the 

others have continuous mass spectrum, sptr.00= V+. 

Remark. An equivalent UIR. X is realized in the space ~ =AZ+g z. If q~ =A~_ fl ,  
f l  e gx then the scalar product (qo 1, cP2)= ~ dxft(x)*" q~2(x) • Generalized functions 9 
in ~ satisfy a spectrum condition since the intertwining kernel AZ+(p) does, cp. 
(3.20'). 

In the following, we shall often not distinguish in notation between the test 
function space gz and the Hilbert space constructed from it. If we use functional 
notation for the elements of this Hilbert space, it is always understood that an 
arbitrary representative out of the equivalence class of functions modulo zero norm 
vectors is to be chosen. 

4. Implications of the Spectrum Condition 

Let us use the intertwining map A{_ to introduce 

V(xz ; x l  x2) = ~ dx' AZ+ ( x -  x')*,~(x' x ; x l  x2) . (4.1) 

Because UIR's of G* acting in ~ and #z are equivalent and intertwined by AZ+, the 
conformal partial wave expansion (2.6') may be written in the equivalent form 

(~( f ) ,  4)(xl)(a(x2)f2 ) = W f(XlX2) = ~ d[2()~) ~ My(e) ~ dx~Ze(x) * V°(xz ; XlX2) (4.2) 

with ~zQeg z. 
As in Section 2 we write N, V for arbitrary linear combinations of kernels N °, V e 

[cp. Eq. (2.5c)] so that V(xz ;x l x2 )  is the kernel of an arbitrary intertwining map 

V z : g x ~ j g x .  

The kernels N are determined by V through (4.1) to within the arbitrariness 
discussed in Section 2. We shall first determine V and then recover ~ from the result. 

Let us first state implications of the spectrum condition for V. 

Lemma 7. The kernels V(x)~ ; x l  xz) are limits o f  generalized functions V(xz ; z l z z) of  x 
which are hotomorphic in the complex parameters z 1 = x l  + iy I, z 2 = x  2 + iy 2 in the 
tube Y2 >Yl >0. The limit is taken by letting yl,y2---*0 through the tube. 

Proof. It is well known that qS(xl)4(x2)f2 is boundary value of states ~ ( z l z 2 ) e ~  
which are holomorphic in z ~ = x ~ + i y i ,  z 2 = x z + i y  2 in the tube. (This result is 
reviewed in [5].) Let E z~ the projection operator on the subspace ocg X~ in 
decomposition (2.4a) of ~ .  By construction of expansion (4.2) we have 

(EZ°~(f), 7J(zlz2))=j dx~Ze(x)*V~(xz;zlz2) 

in which ~ dx~XQ(x)*Ve(x)~; zlz2) is a holomorphic function of zl, z 2 in the tube and 
has ~ dxUe(x) * Ve(x)~;xlx2) as a limit. If  ~0 egx is an arbitrary vector, then, because 
gx carries an irreducible unitary representation, vectors of the form ~ dgf(g)T(9)~ o 
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with f an infinitely differentiabte function with compact support on G* form a 
dense set of vectors in the UIR-Hilbert space gz- Therefore ~Z(x) may be considered 
as an arbitrary element of d~. But d~z contains all Schwartz test functions with values 
in Vt; therefore V(xZ;zlz2) is a generalized function of x and has the indicated 
holomorphy property. [] 

It follows from Lemma 7 that it will suffice to determine V(xX;xlx2) for 
relatively spacelike points xa, x 2 on Minkowski space. 

Lemma 7 cannot be carried over without further ado to ~(x)~;x~x2) because 
these kernels are nonunique as functions of x. However, it does imply the first 
assertion of Proposition 4 because every element of ~ is of the form (p = A z+ ~ with 

5. Relatively Spaeelike Pairs of Points 

Our further analysis is based on the fact that the conformal group G* acts 
transitively on pairs of relatively spacelike points on superworld M. This will now 
be explained. 

The manifold M admits a G*-invariant causal ordering [5]. Two points t/1 
=(~1, ca) and t/2 = (z2, ez) are relatively spacetike if and only if 

!~2- ~11< Arccosel "e2- (5.1) 
Arccosx is the principal value of arccos x which lies between 0...re. 

Lemma 8. a) G* acts transitively on relatively spacelike pairs of points on M. 
b) ql, t/2 in M are relatively spacelike if and only if there exists k~ K*C G* such 

that ktli, ktle are relatively spacelike points on Minkowski space M 4 C M (cp. Eqs. 
(3.3)). 

c) The little 9roup '~ in G* of a pair of relatively spacelike points on M is isomorphic 
to MA. The manifold of relatively spacelike pairs of points on M may therefore be 
identified with the homogeneous space G*/MA. 

Proof. Let t/o the origin of M 4 CM and t/~ =Nr/o. We call r/~ the unique point at 
spatial infinity of Minkowski space. Explicitly t/~ = (0, e~), e~= (0, - 1). 

The little group of t/o is M A N  and the little group of t/~ therefore M A N  ~ 
= N M A N ~ -  1. 

a) Let (qa, t/2) relatively spacelike. Since G* acts transitively on M there is g such 
that qz =gt/~. By G*-invariance of causal ordering, t/'a = g - l q l  is then relatively 
spacelike to t/~. By (5.1) and (3.3a) this means that t/] must belong to Minkowski 
space M 4. The little group M A N  ~ ofrLo acts transitively on M ~. There is therefore p 
in M A N  ~ such that t/] =Pq0. Since p leaves tl~ invariant we have then (q~,r/2) 
= (gptl o, gptt~). Since every pair of relatively spacelike points may be written in this 
way, with gp~ G*, we have proven transitivity. 

b) The if part follows from G*-invariance of the causal ordering. Conversely, 
choose ~/3 in M 4 and relatively spacelike to t/o. By transitivity a) there is g in G* such 
that (t h, ~/1)= (gtlo, gr/3). Decompose g =kman ~ as in (3.4). Then (t/4, t/5)=(man~o, 
roanS?3 ) are relatively spacelike points in M 4 since the Poincar6 group carries M 4 

into itself, and (~t, qz)=(kt/4, k~5). 

4 Little group = subgroup of stability 
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c) The little group of the pair (tlo, tLo ) is MANc~MAN~= MA. The assertion of 
c) follows from this and a). [] 

6. Global Transformation Law 

According to the discussion in Section 2, physical states in the dense domain ~ may 
be thought of as continuous linear functionals F = W f  on the test function space 6 P. 
They can be restricted to the subspace 6~which consists of Schwartz test functions 
h(xlx2) with support containing only relatively spacelike pairs of points on Min- 
kowski space. These pairs may at the same time be thought of as relatively space- 
like pairs of points in the fundamental domain M~ in superworld M. 

The space 502 ~ is not globally G*-invariant. We shall imbed it in a space J "  of 
test functions on M × M with compact support containing only relatively spacelike 
pairs of points. The space J ~  is G*-invariant, i.e. it admits an action 

T ( g ) : J ~ J ~  (g in G*) 

of the group G*. Afterwards we will extend functionals F = W f  from 5~z~tO J ~ b y  a 
process of analytic continuation (cp. Sec. 8 of [5]). In doing so a physical state ~(h) 
is associated to every h in J 2  The global G*-transformation law of these special 
states can be stated explicitly, so that we may thereafter deal with an explicitly 
known action of G* in a concrete function space in place of an abstract unitary 
representation of G* in an abstract Hilbert space of physical states. 

Let us deal with general spin right away. Let )~ = [l~, d~] and Zs = [Is, ds] specified 
by Lorentz transformation law and dimension of the fields ~b ~ and ~b ~ whose 
operator product (1.1a) we want to expand. We denote by V~,F s the finite 
dimensional vector spaces in which act the representations I i and I s of M. It is 
understood that they are equipped with a scalar product which is such that 
Dt(OmO)- 1 = Dr(m),. 

The space Y2consists of test functions h(xl x2) with values in the tensor product 
V ~ ® V s and 

7'(h)= ~ dxldXzh~(x,x2)O~(xl)4~(Xz)Q for heSS[. (6.1) 

Indices c~, fi label an orthonormal basis in V ~ resp. VS; summation over repeated 
indices e, fi is understood. 

Let P ° = M A N  so that superworld M = G * / P  °. Let us restrict the repre- 
sentations D z (3.12) of P = P ° F  2 to pO. Consider the finite dimensional repre- 
sentation rc of P ° x  pO in V~®V j by matrices 

n(pl, P2)= [DZ~(Pl - 1), ®DZS(p; 1)*]~p(pl)-" 1/2f~/,(p2)- 1/2 

where ~p(man) =}al 4, Pl, pzE pO (6.2) 

The space J ~  consists of all infinitely differentiable cross sections on the 

homogeneous vector bundle E = ( M  x M ) x  (V i®V s) with compact support con- 

taining in its interior only relatively spacelike pairs of points on M (notation of 
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[13]). In other words, ~ "  consists of infinitely differentiable functions on G* x G* 
with values in V ~ ® V ~ having covariance property 

h(glPl, gzP2)= n(Pl ; P2)- ~h(gl, g2) 

The action T(g) of G* is 

(T(g)h)(gl, g2) = h(g- ~ gl, g -  lg2). 

for pi E po, gie G* 

( i= 1, 2).  (6.3) 

(6.4) 

Evidently such functions h are completely specified if they are known for one 
representative (91,92) out of every coset (th, t/2)~M x M = ( G * x  G*)/(P ° x P°). 
Therefore, if a representative of every coset is fixed in some way, cross sections h 
may also be considered as vector-valued functions on M x M. The support of h is 
the closure of the (open) set of all pairs (r/l,t/2)eM x M such that h(gl ,gz)+O for 
(gl, g2)e(t/1,t/2) • J ' i s  made up of cross sections h with support properties as stated 
above. 

Consider the subspace of J -  which consists of cross sections which vanish 
outside Minkowski space M 4 x M 4 C M x M. It may be identified with the space 5~2 " 
as follows : Every gi~ G* with giP ° s M 4 £ M may be written as g~ = n2,pi with Pi E p0, 
n2= translation by x. Therefore by (6.3) 

h(gl, g2)= n(Pl, P2)- l h(n;~, n'~2) 

g~ ~ ~(Pl, P2)- th(xl, x2) 

for g~ = n-~pia n'~,P°e M 4 . (6.5) 

and h(x> x2) in in cJ- 2 and determines h(g> g2) everywhere on G* x G* so long as h is 
in the subspace. 

Let he ~2 and T(h) defined by (6.1). It follows from the results of [5] that the 
Hitbert space of  physical states carries a unitary representation U of  G* whose 
action on states T(h) is such that 

U(g) ~(h) = ~ (T(O) h) (6.6) 

provided g ~ G* and he 5P2 - are such that also T(g)h~ 5~,  i.e. g does not carry any 
point in the support of h outside Minkowski space. It follows from Lemma 8b and 
compact support ofh that every in h in J ' m a y  be written as a finite sum of the form 

h = ~ ,  T(gi)h i with hi~J2"and gi~G *. (6.7) 
i 

We may then define 

T(h) = ~. U(g~)~(h,) (6.8) 

with T(hl) defined by (6.1). We must show that this is consistent, i.e. independent of  
the choice ofg i and h~ in (6.7). Suppose that h = S T(g'i)h ~ is another decomposition of 
h with h i in 5P2 " and g~s G*. By making finer splittings and reordering we may achieve 
that both sums have equally many terms, and 

T(g'~)h'~=T(g~)h~ for all i .  (6.9) 

But 

V(T(g',) h'i) = U(g'i) T(h'~) = U(g',) V(T(g' i- ~ g~)hi) 

= U(g,i) U(g, i-1 gi) ~(h~) = U(gi) ~(hi) = ~(r(gi)hl).  
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We used in turn Definition (6.8), hypothesis (6.9), Equation (6.6), the group law, and 
Definition (6.8) again. By summing over i we have 

7t (h) = S~ ~ ( T(gi)h~) = S~ T ( T(g;)h'~) 

which proves consistency. 
We have shown that Definition (6.8) is meaningful. It is then automatically 

consistent with (6.1) and, moreover, transformation law (6.6) holds generally true 
for arbitrary h in J ' a n d  g in G*. Equation (6.6) is the promised explicit form of the 
global transformation law. 

It follows that the functionals W f  on 5Pffextend to continuous linear functionals 
on J "  by virtue of the definition 

(I$%h)=(7~(f),TJ(h)) for f ~ Y ,  h ~ ¢ ' ,  

and 

(U(g)'P(f), ~(h)) = (U(g) ~I/);,, h) = ( Wf, T(g- 1)h) . (6.10) 

The conformal partial wave expansion of these expressions is obtained by 
decomposing the states ~(h) as described in Section 2. We write it in terms of 
elements of gz as in Section 4. 

( ~ f ,  h ) =  S d#(z) S dr(o) ~ dx~Ze(x) * VZ~(x ;h)_= ~ d#(z) ~ d,'(o)VZeE~Z~, h] 

with ~x~o~ Ez ' for h ~ J ' .  (6.11a) 

If  h is in 5~2"C J - i t  is determined by a function ]~(xlx2) of relatively spacelike pairs 
(xl,x2) of points on Minkowski space through (6.5), and so 

Vz-°[~, h~ = ~ dx f l x  2 ~ dx~(x)* Ve(x)~ ; xl x2)h(xl x2) 

for h ~ S ~ ' C J  ". (6.11b) 

Here and everywhere we use vector notation : h(xl, x2) takes values in V ~ ® V j, the 
kernel Ve(xz; xlx2) is a linear map from lfi ® V ~ to V z, ~(x) takes values in V z, and we 
write v*v~ for the scalar product of  two vectors vl,v 2 in V ~. 

We write V x for an arbitrary linear combination of V xo as usual. The 
intertwining property (G*-invafiance) of  V z reads because of (6.10) 

VZ[Tz(g)~, T(g)h] = VZ[~, h] .  (6.12) 

This must hold for arbitrary ~z in gz, because of irreducibility of the UIR-space gz, 
cp. the proof of Lemma 7. Thus VZ[ ., .] are G*-invariant sesquilinear forms on 
d°z. x J ' .  They determine the kernels V(x)~;xlx2) for relatively spacelike Minkowski 
space arguments x~, x 2 through (6.11 b). 

7. G*-Invariant Sesquilinear Forms on ~ × J "  

We wish to determine the most  general sesquilinear form VX[ ., .] on S x x J ' w h i c h  
is G*-invariant in the sense of(6.12) and such that the kernel V(xz ; xlx2) determined 
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by it admits analytic continuation as required by Lemma 7. This problem can be 
solved by a standard method of the theory of induced representations, viz. Bruhat 
theory of  intertwining maps [14]. 

First we give an alternative description of the space ~ ' .  It will exhibit the 
representation acting in J "  as an induced representation on G*/MA. Let us define a 
representation L of M A  by operators L(ma) acting in the vector space I#® V i, 

L(ma)- 1 = DZ~(ma), ®DZJ(m~ - 1),, m'= J2mo~- 1 (7.1) 

Lemma 9. There is a bijective intertwinin 9 map Q from J "  to the space of all infinitely 

differentiable cross sections on the homogeneous vector bundle (G*/MA) x (Vi® V j) 
L 

with base G*/MA and fibre l~ ® V ~. 

Explicitly, Q J "  consists of infinitely differentiable functions h 1 on G* with 
values in V ~ ® V j having covariance property 

hl(gma)=L(ma)-lhl(g) for m a ~ M A .  (7.2) 

It is made into a representation space for G* by imposing the transformation law 

(T(g)hl)(9,) = hi(g- lg,) (h I ~ Q J ' ) .  (7.3) 

The map (2 is explicitly given by 

(Qh)(g)=h(g,g~) for hE~ ¢-. (7.4) 

Evidently it commutes with the action of the group, T(g)Q=QT(g ) by (6.4). 
Covariance property (7.2) of Qh follows from (6.3) since ~ m a N -  i = m-a- 1 by (3.4'). 

was defined after (3.2). To prove the lemma it only remains to be shown that Qh 
determines h. This follows from the fact (Lemma 8) that G* acts transitively on 
relatively spacetike pairs of points on superwofld M. As g ranges over G*, the pair 
(gt/o, gNr/0)=(g~o, gt/~o ) ranges over all relatively spacelike pairs of points on 
superworld M, cp. the proof  of Lemma 8. Therefore the set of  pairs (g, g,~.) contains 
a representative out of every coset (th,t/2)6M x M = ( G * x  G*)/(P ° x P°). This 
suffices to determine h by the discussion following (6.4). []  

Because of Lemma 9 we may consider VZ[.,.~ as a G*-invariant sesquilinear 
form on gx x Q0,¢'. This will be helpful. 

Elements h ~ Q J "  admit an integral representation 

h(0)= S dmaL(ma)h'(gma) for h ~ Q J -  (7.5) 
M A  

with h' an infinitely differentiable vector valued function with compact support on 
G*; dma is (right- and left) invariant Haar measure on MA. This integral 
representation makes covariance property (7.2) manifest. 

According to (3.13), f s  gz may also be considered as functions on G* with values 
in V ~ and admitting an integral representation 

f (g) = ~ dp~e(p )- ~ DX(p- 1), f,(gp). (7.6) 
P 
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Here f '  is an infinitely differentiable function on G* with values in V ~ and compact 
support, and dp is left-invariant Haar measure on P =F2MAN.  Integration over P 
includes a summation over F 2. The measure dp is not right-invariant; instead d(ppl ) 
=(5,,(pl)d p with modulus function [15] 

ap(p)=lal 4 for p=?manaFzMAN.  (7.7) 

Integral representation (7.6) fulfills the covariance condition (3.13) for arbitrary f ' .  
For the sesquilinear form VZ[., .] we may then make the general Ansatz 

VX[foQ-~h]= ~ dgdg'f'(g)*t(g,g')h'(g') for h c Q J ,  f e ~  x (7.8) 
G*xG* 

and h', f '  related to h, f by (7.5), (7.6), with a kernel t(g, g') which maps l/i@ VJ~-- l ft. 
The kernel t(g, g') is a generalized function on G* x G*, but we will use functional 
notation as physicists always do. 

Expression (7.8) must depend on h' only through h. If h"(g)=L(b)h'(gb) with 
b~MA then h" and h' determine the same h. Therefore we must require 

t(g,g'b)L(b)-t=t(g,g ') for b ~ M A .  (7.9a) 

Similarly, f"(g)=~51,(p)-~DX(p-1)*f'(gp) and if(g) determine the same f. Since 
VZ[f, h] should depend on f '  only through f we get the consistency condition 

(Sp(p)-~DX(p)t(gp, g')= t(g, g') for peP .  (7.9b) 

From transformation law (7.3) and integral representation (7.5) we have 

(T(g)h)(g')=h(g-19')= ~ dbL(b)h'(g-lg'b) for h ~ Q J ' .  
M A  

Similarly from (3.14) and (7.6) 

( Tz(g) f)(g') = f (g- l g' ) = ~ dpb~,(p)- i DZ(p- ~ )* f ' (g-  l g,p) for f ~  gx" 
P 

Therefore, G*-invariance (6.12) reads 

VX[ Tz(gt)f, r(g,)h] = S dgdg' f'(g~ l g)*t(g, g')h'(g i- lg) = VZ[f, hi.  

This requires 

t ' t ' (g~g, g lg)= (g,g) for all gl~G*. (7.9c) 

It remains to determine the general solution of  Equations (7.9a)-(7.9c). 
The general solution of (7.9c) is 

t(g, g') =t ~(g'- l g) (7.10) 

with a (generalized) function t ~ on G* whose values are maps" Vi®VS-~V ~. 
Covariance conditions (7.9a) and (7.9b) read then 

t ~ (b- 1 gp) = ~5~,(p)~DZ(p )- it ~ (g)L(b) for b ~ MA, p E P. (7. t 1) 
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Let us abbreviate MA = H and let P = F2MAN as before. We define a left action of 
H x P on G* by 

(b,p)og=bgp - t  for peP, b ~ H = M A .  

Evidently this satisfies the group law (pa,bt)o(pz, bz)og=(plpz, blb2)og. The 
manifold G* decomposes therefore into orbits under H x P, and H x P acts 
transitively on each orbit. Let us determine the orbits. 

Consider the action o f H  x P on cosets in M~ = G*/P and their elements. P acts 
transitively within each coset; therefore the problem reduces to determining the 
orbits in M 4 under H. Let us parametrize the finite points of  M~ by Minkowskian 
coordinates x=(x")  as in (3.3b). There are then three open orbits consisting 
respectively of positive timelike x, negative timelike x, and spacelike x. In addition 
there are several lower dimensional orbits. (They consist of  the point x = 0 ,  pos. 
lightlike x, negative lightlike x, the unique point at spatial infinity of M 4, and the 
remaining points at infinity, respectively.) 

Correspondingly, the open orbits on G* consist of 

G*={g=n-~p with p~P, x pos. timelike} 

G*={g=n-~p with p~P, x neg. timelike} 

G*={g=n-~p with p~P, x spacelike} 

and in addition there are several lower dimensional orbits. 
Suppose that te(g) is known on one of  the open orbits, say G*. It is clear that 

V(xZ;XlXz) will then be determined on an open set of arguments. Analyticity 
properties (Lemma 7) can then be used to determine it everywhere. 

Let us choose a standard x~"=(1,000). Correspondingly we select n-~ as a 
standard point in G*. Let us determine the little group of n'~ in H x P. The rotation 
group U C M consists of ue M such that ux A = x ~. Suppose bn~p-  1 = n~. Consider 
this equation mod(P). It follows that bx ~-- x2 This requires be U. On the other hand 
bn~.p-1 = n ~ b p - 1 .  Therefore we must have p = b. In conclusion 

bn~Ap-l=n~^ for bel l ,  peP  i f a n d o n l y i f  (b,p)=(u,u),ueU. (7.12) 

Thus the little group of n~^ in H x P is isomorphic to the rotation group U. 
Let ge G*. Then it can be written in the form 

g=bn'~.p-l=n-~bp -~ with beH, p ~ P , x = b x  ~ for geG*.  (7.13) 

Covariance condition (7.11) says that 

t e (bn-p  -1)=6p(p)-~Dz(p)t~L(b) -~ with t~=te(n-~0. (7.14) 

For  consistency, t ~ must be U-invariant 

t~=DX(u)t~L(u)-l=_Dl(u)t"[Dt'(u)®DlJ(u)] -1 for u s U .  (7.15) 

In other words, t * is a U-invariant map V~® V i ~ V k  Next we will classify all such 
maps. 

Finite dimensional irreducible representations of M -~ SL(2C) -~ Spin(3, 1) are 
constructed by analytic continuation (Weyls unitary trick) from UIR's of Spin(4), 
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the twofold covering of  SO(4). The Clebsch-Gordanology of both groups is 
therefore the same, and they contain U as a common subgroup. 

Let us decompose V~® V j into irreducibles under M, V~® V J = ~ U ' ,  with 
Clebsch Gordon maps 5 

C(lil j ; I') : Vi ® v J ~  V v . (7.16) 

Let us decompose representations l and l' of M into irreducible representations 
sE U ~ of U, 

U =  ~, V z~ etc. (7.17) 
s ~ U "  
sC l 

We identify U ~ = V v ~ - W  ~. Consider the projection operators 7r(Is) and their 
adjoints, viz. U-invariant imbeddings rc*(ls), 

~(ls) : V 1 ~+ W ~ ; z~*(/'s): WS~ + V t' . (7.18) 

The most general U-invariant map from V/® v J ~ , v  1 is a linear combination 

t ~ _ 2 C t , s  ~l 's ,  t ~l's * , = ~ (l s)zc(Is)C(lil fi l) (7.19) 
t's 

sum over I' ~ M ,  s s U ~ such that l' C I~ ® 1.# s ( l, s C I' with complex coefficients cv~. M ~ 
is the set of  all finite dimensional irreducible representations of  M. 

With this we have found the most general tbrm of t(9,9') for 9"-19~G *. The 
result is given by Equations (7.10), (7.14) with (7.13), and (7.19). The sesquilinear 
form VX[f, hi on gx x J~ i s  then determined by (7.8) for f ,  h having suitable support  
properties. It remains to recover the corresponding kernels V(xz;x~x2)  and 
continue them analytically. 

Let he 5P2~C J ~  Then on the one hand h is determined by a function h(xlx2) of 
Minkowski space arguments x l , x  2 by (6.5) and, on the other hand, it is also 
determined by Qh(9) according to Lemma 9. Let us find the connection. 

First we observe that 

n ~ p 2 = n ~ p 1 ~  for P1=n~y, p2=p(y ,~ , ) ,Y=X2- -  Xx (7.20) 

in the notation of  (3.8), and Pl, P2 are in po for spacelike y by Lemma 5. It  follows 
from covariance (6.3) 

/~(XxX2)- h(n ~l ' n ~2) = n(p t , P 2)h(n ~ iP l , n~2p2) 

= ~z(pl, P2)h(n~lPD n~lP~') = rc(p 1, p2)Qh(n~ln~y) 

and Qh(9 ) vanishes unless 9 = n ~ n e y m o d ( M A )  for some x 1 and spacelike y. In 
particular it vanishes if 9 = n~nma7 with 7 + e, y e F~ etc. 

s Remember that we write V ~ for V ~, the vector space which carries the irreducible representation l~ 
of M 
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If  we write g = n-nTma, then Haa r  measure dg = dn'dndmda and dn'~ = dx, dney 

= d N y = ( - y Z ) - * d y .  If  Qh(g)= ~ dbL(b)h'(gb) then 
M A  

~ dg't(g,g')h'(g')= ~ ~ dn-dndb t(9, n'nyb)L(b)h'(n'nTb) 
Y 

= ~ dn-dn t(g,n'n)Qh(n'n), 
N - x N  

because of  the above mentioned support  property.  Thus finally 

dg't(g, g')h'(g') = ~ .[ ( -  y2)- 4dydxt(g ' n'~n~)re(p> P2)- lh(xxX2) 

with x 1 =x ,  x 2 = x  + y ,p  ~ =n~y, p2=p(y ,N) .  
Similarly, l e t f e  gx and write f(n'~) - f (x) .  Splitting g = n-p with pe  P, the measure 

factorizes, dg = dn-dp, as we have just  said. Some integrations in (7.8) can therefore 
be carried out  with the help of (7.6) and covariance condi t ion (7.9b). As a result 

VZ[f, hi = ~ ~ ~ ( - y2)- 4dydxdz f ( z ) . t (n - ,  nT, n~y)rc(pl ' P2)- lh( x, x -}- y) 

= ~ ~ ~ (x2 - x l ) -  Sdxf lx2dzf(z)*t~(n~(,2-  x,)n'~ - ~)n(Pl, P2) 1]~(xlx2) 

for f e E z ,  h~SP2". Thus by comparison with (6.11b) 

V(x3Z ; Xa X2) = ( - x21)- 4re (n ~ ~ n ' ~ ) n ( P  l, P2)- 1 (7.21) 

with Pl = n e ~ ,  P2 =P(X21, N) ; xlj = x~-  xj. 
It only remains to insert the previously derived expression for t*. 
Evidently, V( . . . )  is translationally invariant,  i.e. depends only on coordinate  

differences. We may  therefore put  x~ = 0. 
According to definition (3.8) 

n~)n-~ = n-~,p(z, n~y)- 1 = bn-c p -  1 (7.22) 

with ' - 1 * t z = n~v z = N( .~ ' z -  .~y) and p = p(z, n~y)b provided bx = z ,  b ~ MA.  

A suitable b in M A  exists if y, z are such that  z' is positive timelike. We have 
z '2=  ( ~ z - N y ) - 2  = (z -y )2 /z2y2 .  Since y is spacelike by hypothesis,  we may put  
yO = 0 wi thout  loss of generality. We see that  z' will be positive timelike if 

z pos. timelike, z - y  spacelike or vice versa;  y spacelike. (7.23) 

We restrict our  at tention to this case. It corresponds with the previous assumption 
that  the argument  of  t ~ is in the orbit G*. 

According to Definitions (7.1), (6.2) 
L(b) = re(b, b-) with 

b-= ~b2~-  t = m a -  1 for b = ma~ M A ,  m '=  OmO- 1 (7.24) 

Expression (7.14) for t*(-)  yields then 

V(z z ; 0y) = (y2)- 451,(p ) - ~DZ(p)t ~(p~ b, p2 b') - 1 (7.25) 

with same b, p, p,,  P2 as before in (7.21), (7.22). This is valid for z, y as described in 
(7.23). 
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Expression (7.22) for p can be simplified. We use L e m m a  5 repeatedly. 
p : p(z, n~y)b = p(z, ~)p(~tz', ~)b = p(z, ~)b~p(b-- 1 ~z' ,  ~ )  = p(z, ~)b~p( - x ~, ~). 

But p( - x", N) = 7 ~- 1 m o d  (N) ; 7 ~ = generator  o f F 2. Writ ing p(z, Yt) = 7mzazn as 
in L e m m a  5 we obtain  

p = 7  ~r- lm~azb-(modN ) -7~r- tmzm-Ga- l (modN)  

with r = sign z; la] 2 = Z, 2 = (Z -- y)2 / z2y2  ; l az[ = tz 21. Similarly 

pl=ney;p2=myay(modN) with [ a x [ = - y  2. (7.26) 

We will now introduce an M-covar ian t  version of  t * in order  to switch DZ(p) 
th rough t ~ in (7.25). According to spinor calculus, irreducible representat ions 1 of  N 
m a y  be labelled by their highest weight (]l,J2); Jl, J2 half-integer. Comple te ly  
symmetr ic  tensor representat ions of  rank j are labelled (½j, ½j) in this way. 

Lemma  10. Given three finite dimensional irreducible representations l, l~, lj of  M, 
define 

Z = max. rank of any completely symmetric tensor representation of M contained 
in the tensor product t®t i®t  j. 

Consider linear maps t(x) : Vh® V~J~ -, V l such that 
1) fix) is a homogeneous polynomial of x of degree Z. 
2) fix) are M-covariant in the sense that 

Dt(m)t(x)[Dl~(m)®DlS(m)]- i =t(mx) for m s M .  

All such are obtained from U-invariant maps t ~ as were class~ed in (7.19) by setting 

t(x) = [x2[~DZ(m)V[ Dl~(m) ® DZffm)]-I (,) 

for positive timelike x = Ix2[~mx ~. 
Conversely let t(x) defined by ( , ) Jbr positive timelike x. 7hen it can be analytically 

continued to all x and satisfies 1) and 2). 

We shall relegate the p r o o f  of  this l emma  to Appendix A. 
Since representat ions D x o f  M A N  are trivial on N we have 

DX(p)=DX(m~Gb3 for zEV+, with A(m~)'~jG]=2z~'z~'-g~z 2 

by L e m m a  5. Moreove r  (m~a~b~x3" = (z'2) - ~A(m~)~vla~I(Oz% whence 

(z - -y)2z2  Z z - - y  
m~Gb 'x ' -  y2 { ~  ( i - ~  } ' 

N o w  we are ready to use L e m m a  10 to switch DZ(p) th rough t ~ in (7.25). At the same 
t ime we insert the definitions of  6~,(p) and n( . , . ) .  They give 6e(p)=[a~a-~[ 4, 
n(plb, p2b 3-- 1 = DZ,(ma), ® DZffmyaym-a - i ) , .  [ay[2. Altogether 

V ( z z  ; 0y) = IYl- 2 +c - c i -  c j -  ~y(lzl iz _ y l ) -  \l Z - YI/ 

(z ~-y) 
.t ~2 (z~y)2  [Dl~(m~)® Dlffm~m~m-lm;-1)] (7.27) 
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with lyl = lyZl ~/2 etc. We use Lemma 5 again to evaluate the argument of  D z~. One 
has m¢=ll  and so m=mm¢=m,, ,¢m~=m~.m~=m'~e~_eym2 Thus m~m~rn-lm~ -1 

- 

Irreducible representations 1 of M~-SL(2~) are extended to GL(2tI?) in a 
standard way. Suppose l has highest weight (]a,J2), then one defines 

Ill=jr +J2; DZ(~m)=~21~lDl(m) for meSL(21E), ~e(E. (7.28) 

With this notation, Equation (7.27) becomes 

V(zx;Oy)=lyl_2+~_~,.,~7Z(iz[lz_yl)_2_~+z_21z,i_21U ( l z l  t ~j-~ 
\ lz-  yl/ 

z z z - y  ) [Dh( z )®Dl j ( z_y ) ]  (7.29) • t 2 

This is valid for z positive timelike, y and z -  y spacelike. An expression for arbitrary 
arguments is obtained by using the spectrum condition, viz. Lemma 7. We note that 
expression (7.29) is real analytic in its domain of  validity. This guarantees 
uniqueness of analytic continuation to the whole domain of holomorphy given in 
Lemma 7. As a result we have the following Proposition 11. Of  course kernels 
V(x)~ ; xlx2) depend also on spin and dimension Xi = [ll, dl], Zj = [lj, dj]-] of the fields 
49i(xl), ~bJ(x2) whose product we want to expand. We shall therefore indicate this 
dependence by writing V(xz  ; x,)~ix2zj) = V(x)~ ; xlx2).  

Proposition 11. Let  V(x3)~ ; xl)~lxzz2)a 3-point function which satisfies the spectrum 
condition (Lemma 7) and which is conformal invariant in the sense explained earlier, 
with transformation law specified by Z1 = [tl, 2 + cl], )~z = [12, 2 + c2], )~ = [I, 2 + c]. 
[ In  this, cl,c2, c are real, 11,12, l finitedimensional irreducible representations of  
M ~ SL (2112) acting in vector spaces V h, U 2, U.]  Then 

v2 ~-~12[ .,-2 ]-63I( X 2 ]--6]32 
g(x3)~;Xl~(1X2~2)=(--~lZ] l,-- ~311 ~,-- 32 t 

( x3t x3z -t 
"t \(__X321) (__X22) / [ol'(x31)®O12(x32)] (7.30) 

with g ) 1 2 = ½ ( 2 - c + c 1 + c 2 + S ) ;  6 3 1 + 6 3 2 = 2  + c - S  + 21111+ 21121; 6 3 a - 6 3 2 = c l  
- c 2, and t(x) are linear maps : V 11 ® V t2 ~-+ U which satisfy the hypothesis o f  Lemma 
10. Ill etc. and S are defined in (7.28) and Lemma IO ; if l 1 ®12®l does not contain a 
completely symmetric tensor-representation of  M, then a conformal invariant 3-point 
function does not exist. An ie-prescription is understood, 

( -  x2)  ~ = [ - (x i - x j) 2 + i~(x ° - x°)] ~ (7.31) 

3 
x =x°~l + ~ xka k, ~r k Pauli matrices. 

1 

Expression (7.30) is a well defined distribution for arbitrary c, c~, c 2. 

Corollary 12. Let  V(X)~k;X~ZlXZ 2) a conformal invariant 3-point function which 
satisfies the spectrum conditions fo r  a 3-point Wightman function. Then it can be 
analytically continued to the permuted extended tube and satisfies all the Wightman 
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axioms for a 3-point 14@htman function (f2, Ok(x)*Oi(xl)(aJ(x2)O) of three possibly' 
distinct local fields (with Lorentz spin and dimension Zk = Ilk, dk] etc.). 

When two of  the fields are identical, the Wightman 3-point function has further 
symmetry properties. These are not automatically ensured by (7.30). 

Remark. The kernels V(xz ; xl)~lx2)~ 2) are not Clebsch Gordan kernels for the tensor 
product )~1 ®Zz of UIR's of  G*. Indeed, states (])l(xl)q~2(Xz)~~ transform in general 
according to a unitary representation of G* which is not a Kronecker product, cp. 
epilogue of Ref. [5]. In particular it restricts to a nontrivial representation of the 
center of G*, while for a Kronecker product of  irreducible representations every 
element of the center would have to be represented by a multiple of  the identity. 

We add some remarks on zero mass representations. Most of the UIR's )~ of G* 
with positive energy have continuous mass spectrum, but there are also zero mass 
representations (cp. [7] and Proposition 6). A priori they could appear in the 
conformal partial wave expansion (4.2) and then also in the light cone expansion 

(1.2). We shall now argue that this only happens in exceptional cases 6. 

Let us first discuss the meaning of this. Suppose ~(x) is a local field and D~b(x)f2 
= 0. Then also 7~q~(x)= 0 because a local field can never anihilate the vacuum. 
Therefore ~b(x) is a free zero mass field. Appearance of zero mass representations in 
the conformal partial wave expansion would therefore mean that there appear 
massless free fields in the operator product expansion. This can happen. [Example: 
The expansion of  the product of a massl'ess free field qS(x) with its stress energy 
tensor must contain ~b(x) again.] But it happens only in special cases. The reason lies 
in the nonexistence of a suitable 3-point function. Considered as functions of x, 
3-point functions V(x)c;xIzlx2x2) must be in the representation space ~ .  As such 
they must satisfy a spectrum condition. For continuous mass representations it says 
that the Fourier transform V~(pz; xl)~tx2)~2 ) has support concentrated in the closed 
forward light cone, p~ V+. Because of  the/e-prescription, expression (7.30) satisfies 
this condition. 

If Z is a zero mass representation, however, elements of •z satisfy certain 
differential equations, in particular their Fourier transform is concentrated at p2 
= 0. Expression (7.30) does not meet this condition in general. Consider for instance 
the scalar case ll = l 2 = id, c = - 1 : The Fourier transform V ° ~is given by Equation 
(8.4) below for this case [Caution : the limit c--, - 1 must be taken with care in order 
not to lose contributions concentrated at p2 =0,  cp. after (3.20')]. We see that V °~ 
cannot vanish identically for p in the interior of the forward light cone unless the 
argument of one of the F-functions in front is a nonpositive integer, i.e. c~ - c 2 is an 
odd integer. More careful inspection reveals that V°~(p, - 1 ; x ~ q x 2 c 2 )  is concen- 
trated at p2 =0  if and only if c~ - c 2 = _+ 1. 

8. Recovery of Kernels .~~(pz;xlx2) 

We introduce the Fourier transform of  3-point functions with respect to the first 
argument 

V~(pz; x 1Z 1 xzz2) = ~ dx e ipx V(x z ; x 1 Z 1 x2z2) • (8.1) 

6 This observation originates in a remark made by CastelI some years ago [17] 
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The kernels N~ are obtained from them by Equation (4.1), viz. 

V~(P)~ ; x1x1x2x2)  = AX+ (P)~~(PZ ; Xlt(1X25~2) , (8.2) 

where A {_ (p) is the Fourier transform of the 2-point function (intertwining kernel) 
(3.20). As we discussed earlier (in Sec. 2), kernels N are nonunique and determined 
only to the extent that (8.2) determines them. 

We consider the scalar case first. We introduce a special notation for this case 

VO(xc ; Xl Cl X'2C 2) = V(x)~ ; x1)~ l X2)~ 2 ) 

• d~°(xc ; x l c i x2c2 )  =~(x )~ ;  X1)~lX2)~2 ) etc. 

with 

~ = [ i d , 2 + c , ] ,  )~2 = [ i d , 2 + c ; ] ,  )~= [ id,2+ c ] ,  

where id stands for the trivial 1-dimensional representation of M. 
From Proposition 11 we obtain [same Notation (7.31)] 

(8.3) 

vO~(pC;XlClX2C2) 

~ ~ 3  oipx3(k_~12/~2 ]½(e-cl-ez-2)(t__~31/~2 "~½(-C-Cl+C2 -2)(__ 32/Y2 ]½(-c"bcl-c2-2) 

= l ' ( C _ . } _ 2 ) F ( C - t - c 1 2 C 2 q - 2 ) - l F ( C - - c 1 2 c 2 + 2 ) - l ( _ _ x 2 2 ) - } ( c - c ~ - c z - 2 )  

1 
• 5 cluu½<C+c'-c2)( 1 - u) ~ - ~ *  +~2) 

0 

• ~ dxeiP~[ - ( z ( u ) -  x) 2 - u(1 - u)x22 - ie(z(u) ° - x°)] -~- 2 

with z ( u ) = u x  1 + ( t - u ) x  z. The second equation was obtained by inserting the 
standard integral representation 

1 
A - ~ B - . = r ( ~ + ~ ) r ( v )  ~r(~) -~ ~ a .  u ~ - I ( 1 - u ) U - I [ u A + ( 1 - u ) B ]  - ~ - "  . 

0 

The Fourier transform of the generalized function [ - x  2 + a  2 + i e x  ° ] - a  is well 
known for aZ>0, and so we obtain, for x~2<0 

V°~(pc ; x l c , X zC2) 

- -  C 2 + 2 - 1 2 ( - x 2 2 ) -  " ( q  + ~ + 2) 

• O(p) oi du \ l - u /  

. (¼ p2)c/2 a¢([ _ u(1 - u)x  22p 2] 1/2). (8.4) 

J~ is the Bessel function; 0(p)= 1 for pE V+ and 0 otherwise. The u-integral is 
regularized by analytic continuation in c [16]. Validity of (8.4) for arbitrary x~, x2 
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follows by uniqueness of analytic continuation. Dividing by AZ(p) we obtain finally 

~O~(pc;xIc1x2C2) 

2 (_x22) ~(c1+c2+2) 

[ 12 \½(el-c2) . 
• o i du [T-~u) e'Vt"xl+(1-"'x21 

. (4pZ)-c/2jc([_u( 1 _ u ) x i 2  p 2  2 ] 1/2 ) 

for pe ~+, with/e-prescription (7.31) (8.5) 

with a constant n+ (c) which is determined by the normalization o f the scalar 2-point 
function, cp. Equation (3.20'). 

We see by inspection that ~o~ has the holomorphy properties in p which were 
stated in Proposition 4. It is equal to ( - x 2 2  + iex°2Y times an entire holomorphic 
function in xl, x2 and p, and so it is a generalized function in 9 '  (notation of [-16]) of 
x1 and x 2 which is holomorphic in the parameter p. 

Let us now turn to the general case. The first two assertions of Proposition 4 are 
clear from Equation (8.2), Lemma 7 and Proposition 11, viz. the classification of 
3-point functions V. It remains to demonstrate holomorphy in p. This can be 
simplified very much by remembering once more the arguments of  Section 7. 

Let h(xlx2)  an arbitrary Schwartz test function with values in the dual of 
U i ® V t2 and 

N~(X) = ~ d x l d x 2 N ( x Z ; x 1 Z l x 2 z 2 ) h ( x l x 2 ) .  (8.6) 

The kernels N have the following properties which define them [Eq. (8.2) is a 
consequence, cp. Sec. 4]. 

1. As functions o fx  1 and x 2 kernels ~ ( x z ;  xlz~x2)~2) transform in the same way 
as V(xZ;xl)~x2)~2 ). [I.e. they are both restrictions of cross sections on the same 
homogeneous vector bundle over M x M, at least for x22 <0, cp. Sec. 6.] 

2. As functions of x, kernels N(xz;  Xl)~lx2)~2) transform like elements o f g  z. The 
smeared kernels ~ (x) are in the Hilbert space gx, viz. 

( ~ ,  ~)~)= ~ dp~~(p )  *. A~_ (p)~~(p) < oo. (8.7) 

3. Kernels N(xz;  x¢~x2)~2) are conformal invariant. 

The statement of the transformation laws 1. and 2. gives meaning to 3. 
Let f a function in the representation space Nx ~, )~~= [ l ,  2-c] , c  real, and define 

f ' ( x )  = f ( -  x). Then f '  transforms like an element of gz, Z = [l, 2 + c]. This is seen by 
comparing Equations (3.15) and (3.19) and noting that the phase factor e ¢~'c in 
definition (3.12) can be reverted by a space time reflection H O. (It takes z ~ - z ,  e 
- e  in the notation of  Section 3), while 

Dr(m) * - D l~ (m)- 1 = (_ )2  Itl Dt~ (HOmOH)- 1 . 

It follows that N(xz; x~)~ix2z2) transforms in the same way as a function of x 
as V ( - x ) ~ ~ ; - x ~ z ~ - x 2 ) ~ 2  ). They are both conformal invariant and they also 
have the same transformation law as functions of x~, x 2. This is so because 
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V(-xz~; - x l z l - X 2 Z z )  transforms in the same way as a function of xl,  x2 as 
V(XZ; X I~IX2Z2) [ for  (x 1 - - x 2 )  2 " (0 ] ,  since only the restriction of representation D x 
to p0 = M A N  enters now [cp. Eqs. (6.2) and (6.3)] for which the phase factor e ~Nc 
in (3.12) is absent. 

In conclusion, N(x X ; x ~ i x z x 2 )  has the same conformal covariance properties 
as  V(--XZ~;--Xl~(1--X2~(2 ). 

Moreover, we see from Proposition 11 that 

Y(xz ; xl~( tx2z2)  = t (x22x31 --  X21 x32) V°( X¢', x1 ell x2c12) 

c'=c+Z+2[11]+2]121 ; C'k=Ck+X+[lll+llal (k= 1,2) (8.8) 

with t(x) a matrix valued polynomial which satisfies the hypothesis of Lemma 10. 
This motivates the Ansatz 

~(X)(  ; XI~IX2Z2 ) 2 2 0 . . . . .  =t(X31X32-- X32X31)~] (XC ,Xl Cl X2C2) 

- c ' =  - c  + S + 2tt~1+ 21121; (8.8a) 

C'k=Ck+S+Illi+It21 ( k = l , 2 ) ; ) ~ = [ / , 2 + c ]  etc. 

with t(x) a matrix valued polynomial which satisfies the hypothesis of Lemma 10 
(with I; I l, 12 substituted for l, li, l~). Correspondingly 

~(PZ ; X1)~ I X2)~2) = t( X21X32 - -  X22X31)~O~(pct ; x1c1X2C12) (8.8b) 

0 
where now X32 ~ - i ~ p  - - X 2 ;  X31 ~ --i~p --X 1. 

It is clear that this defines an entire function ofp because the same is true o fN  °~, 
and application of a differential operator of finite order cannot destroy holomor- 
phy. 

Therefore, Proposition 4 will be proven if we can show that Ansatz (8.8a) is 
general and satisfies the conformal covariance requirements 1 - 3 supra and (8.7). It 
suffices to do so for relatively spacelike xl, x 2 because ~~(pz;x1ZIXzZ2) shares the 
analyticity properties (Lemma 7) in xl and x 2 for pesptr .L 

Concerning generality, we only have to count. Given Z, Z1, ;(2, there are 
according to Equation (8.2) as many linearly independent kernels ~~(PZ; x~z,x2)~2) 
as 3-point functions V(xz;x1Z1x2z2). In view of Proposition 11 it only remains to 
verify that the number of linearly independent polynomials t(x) satisfying the 
hypothesis of Lemma 10 remains unchanged when l ~ is substituted for t. These 
polynomials t(x) are in one to one correspondence with U-invariant maps t2 The 
vector spaces V~~and V z are the same, and representations l ~ and l agree on U. 
Therefore every U-invariant map t ~ : V h ® V I r t U  is at the same time a U-invafiant 
map from U'  ® U ~ to VZ'and vice versa. Therefore there are afortiori equally many 
linearly independent ones. 

Next we discuss finiteness condition (8.7). It follows from (7.30) that 
V'(px;xlZ~XzZ2) is a tempered distribution, and therefore, by (8.2) and (8.8b), 
,..,~~(pz;x1Z1XzZ2) is polynomially bounded in p for pc ~'+. The Fourier transform 
h~(pap2) ofany Schwartz test function h(xzx2) falls off faster than any power of total 
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m o m e n t u m  Pl +P2- Because of  m o m e n t u m  conservat ion (translation invariance), 
also N~(p)  falls then off  faster than any power  of  p for p e  F'+. Since it is also oo 
differentiable (even holomorphic)  in p, it agrees with a test function on the suppor t  
of  AZ+(p), and therefore ~ d p ~ ( p ) * ,  dX+(p)~(p) < oo. This proves (8.7). 

We turn to conformal  covariance of  Ansatz (8.8a). We need only consider the 
case of  relatively spacelike xi  and x z. 

According to the discussion o f  Section 7, conformal  invar iant  3-point  functions 
are determined by matr ix-va lued  functions t~*(g) on the g roup  G* which satisfy a 
covariance condition, viz. (7.11). G* decomposes  intro three open orbits * * G+, G_ and 
G* plus some lower dimensional  submanifolds.  On  each of  the orbits t e (g) is fixed 
once it is known at one point. Conformal  invariance alone does not  relate the values 
o f t * (g) on different orbits however.  We showed tha t  t e (g) for g ~ G* determines the 
3-point function for a rguments  xl,  Xz, x such that  x - x l  is positive t imelike and 
x -  x 2 spacelike, or  vice versa ( x l -  x2 is spacelike by hypothesis). G* is obta ined  
f rom G* by space-t ime reflection, and G* is the open interior of  what  is left. Let  us 
introduce step functions to ma tch  

~1 if x -  x 1 ~ V_+, x - x 2 spacelike, or vice versa, 
0+ (x X1X 2) 

- ~0 otherwise. 

0 ~ (x; x 1 x2) = ~ 1 i f sign (x - x 1) = sign (x - Xz), 

t 0 otherwise. 

s ignx is defined to be + 1 if x s  17±, and 0 if x is spacelike. No te  that  x -  xa ~ V+, x 
- x  2 E V  is impossible if  x I - x  2 is spacelike, therefore 0+ + 0_ + 0 ~ - 1  for all x. 

It  follows f rom the orbit  structure that  

[alO+(x;xtx2)+a20_(x;xlx2)-~a30~(x;xlx2)]V(--x)[~;--  x1Zl--x2Z2) (8.9) 

has the same conformal  covariance propert ies  as V ( - x z  ~, --X1)[1--X2~2) for 
arbi t rary  constants  a~, a 2, a 3 (for x~ - x 2  spacelike). Moreover ,  in the scalar case t~ 
= l  2 =I=id,  expression (8.9) is the most  general conformal  invar iant  3-point 
function because then t~(g) at  any point  9~ G* is simply a number .  It  follows tha t  
the kernel N(x)6 X1)~IX2X2) is o f  the form (8.9) in the scalar case. But then the Ansatz 
(8.8a) ensures that  the same is true in general, because of  identity (8.8) for V, and so 
the Ansatz  (8.8a) is indeed conformal  invariant.  

There  is one technical subtlety involved here. Our  discussion so far has been for 
singular functions of  x 1, x 2, and x, that  is functions which are defined everywhere 
exept on some lower dimensional  submanifolds.  W h a t  we need is distributions, 
though. So the question arises whether  there exists a conformal  invar iant  
regularization. The regularizat ion is unique (within the limits discussed in Sect. 2) if 
it exists, because ~~(pz;xlzlx2z2) is bounda ry  value of  an analytic function of  Xl 
and x 2 for pc  spt r .L  Fo r  some range of  c, it is an integrable function of  x~ and x 2. 
Elsewhere it can be defined by analytic cont inuat ion in c. Explicit expressions (8.8b) 
and (8.5) show tha t  this is possible 7, at  least after a change o f  normal iza t ion  has 
been effected th rough  mult ipl icat ion by n+(c'). 

v This is consistent with the remark at the end of Section 7 since ~(PZ ; xt)~lx2z2) may vanish at p2 = 0 
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In  conclusion, we have kij found the kernels ~~(pZk;X~Z~X2Z~)= N (p;x~x2) which 
enter into the conformal  partial wave expansion o f  Section 2. They are given 
explicitly by Equat ions (8.8b), (8.5), and Lemma 10, and they have the properties 
listed in Proposi t ion 4. 

Acknowledgement. The author is indebted to M. Ltischer, B. Schroer, and I. Todorov for discussions. 

Appendix A. Proof of Lemma 10 

The first part  is easy. Given t(x), define t ~ by t ~= t(x~). Then t ~ is U-invariant by 
covariance Condi t ion  ii), and formula (7.27) follows f rom (ii) and homogeneity.  As 
for the converse, we note first that  definition (7.27) o f  t(x) for positive timelike x 
makes sense, i.e. t(x) depends on m only through mx~=x/txZil/2 because t ~ is 
invariant under  the little group U o f x  ~. It remains to show that  t(x) is a polynomial.  

Let E = L(V l, V l` ® V ~j) the vector space o f  all linear maps from V t to V l' ® V zj. It 
carries a representation of  M given by D(m)v=Dl(m)v[D~(m)®DlS(m)] -1. This 
representation is isomorphic .to the tensor p roduc t  I®I~®lj. Because o f  Fermi- 
superselection rule, it is a 1-valued representat ion of  M/F1--SOe(3,1). It may  
therefore be decomposed  into irreducibles which are all tensor representations o f  
M. Thus E = @ E k, sum over irreducible representations of  M contained in l ® l~ ® l j, 
with multiplicities, t ~ is a U-invariant  vector in E, it decomposes as t" = ~ c J  with 
complex coefficients Ck, and v k a normalized U-invariant  vector in E k. 
Such a vector exists only i fE  k carries a completely symmetric tensor representat ion;  
let its rank also be denoted by k. The components  o f  the vectors 2Ok(reX ~) =D(m)v k 

2 k/2 2 are called spherical functions for M. It is well known that  ~k(X) = IX I ~k(X/]/-~) 
are polynomials.  So t~=~'CklX21~(X-k)~k(X ). According to Weyl 's  unitary trick, 
representations of M/F~ ~_ SOe(3,1) are obtained from representations of  SO(4) by 
analytic continuation.  SO(4) has nontrivial  center, SO(4)/2~ 2 ~ 80(3)  x SO(3). N o w  
t®t~®l i either comes from a one-valued or f rom a two-valued representation o f  
SO(3) x SO(3). In the first (second) case it contains only completely symmetric  
tensor representations of even (odd) rank k. In any case S -  k is always even and 
>0 ,  because X is the maximal  value of k by definition. This shows that t(x) is a 
polynomial .  
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