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Within Luther's approach to the quantization of the massive Thirring model we con- 
struct infinitely many commuting local, conserved charges for the lattice theory. The 
values of these charges on soliton, antisoliton and breather states are calculated exactly. 
Scattering processes for these particles are discussed and it is shown that there is no par- 
ticle production in the lattice nor in the renormalized continuum massive Thirring model. 

1. Introduct ion 

Since Coleman [2] proved the equivalence of  the quantized sine-Gordon equation 
and the charge-zero sector of  the massive Thirring model many workers in the field 
have speculated that  this model should have some outstanding features. Among 
them is the complete integrability of  the classical version of  the model (with anti- 
commuting fields) and the existence of  infinitely many conserved currents for both 
the quantized and the classical theory. Such currents have now been obtained for 
the classical case independently by Berg et al. [3] and by Flume et al. [4].  Further- 
more, Michailov [5] claimed recently that the c-number massive Thirring model can 
be solved by an inverse scattering method.  An infinite set of conserved quantities 
then arises as a byproduct  of  this method.  

In this paper we are going to construct a set of infinitely many conserved, local 
charges for the quantized massive Yhirring model put on a (space-) lattice. By a local 
charge I mean a quant i ty  Q that can be writ ten in the form 

Q = f dxp( t ,x )  + const. , (1) 

where the charge density p(t, x) is a local, translationally covariant (composite) field 
operator.  In our case p will turn out to be a polynomial  of the Thirring field ~b and 
its derivatives. 

The lattice theory has recently been elaborated by Luther [1]. By using known 
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results for the Baxter model he succeeded in calculating the spectrum of low-lying 
states in the quantized, renormalized massive Thirring model exactly. 

In sect. 2 Luther's work is briefly reviewed. With the help of Baxter's transfer 
matrix we then (sect. 3) construct an infinite set of local charges for the XYZ-spin- 
chain, a model that is closely related to the lattice Thirring model [ 1 ].  The exact 
values of these charges on the one-particle states are given in the subsequent section 
and these results are then used (sect. 6) to discuss various scattering processes. The 
paper ends with some concluding remarks and an appendix, where it is proven that 
the charges constructed in the text are local. 

2. From the massive Thirring model to the eight-vertex model [ 1 ] 

In this section we establish the connection between the Thirring model and the 
eight-vertex model (the Baxter model). The Hamiltonian of the massive Thirring 
model on a one-dimensional lattice with spacing a and N = 2r sites is given by 

~ . + ~ . )  + ( - 1 ) "  + + 
n = - - / ' +  1 

G (q~+q5 n 1 + i } 2a -~)((~n+l(~n+l - ~ )  - E o  . (2) 

The q~n'S are f'ermion operators: {~n, ~b+m) = 6nm and q~r+l = ~b-r+l. G is a tenor- 
realized coupling constant and v(G) is the finite renormalization constant needed to 
make the speed of light equal to unity. Up to first order in G we have v(G) = 1 + 
Gin *. Finally mo denotes the bare mass and a number Eo is included to make the 
ground state energy vanish. 

The leading short distance behaviour of the massive Thirring model is the same as 
the one of a massless Thirring model with coupling constant g ** [6]. The relation 

between the two coupling constants G and g is 

7f \n/l\ 7T ] 

Unlike G and v(G) the bare mass m 0 depends on the lattice constant a (i.e. on the 

¢' This is the form of v(G) expected when the lattice theory is naively "derived" from the con- 
tinuum field theory taking Wick ordering into account. The more complicated expression (5) 
is however needed to recover the correct dispersion law E = (M 2 + p2)112 for one-particle 
states in the continuum limit (c.f. sect. 4). 

~'* For the definition ofg we use the same convention as Coleman [2]. This amounts to a nor- 
malization of the interacting (electric) current j u such that the charge Q = ft = eonst.dxjO(x) 
takes on integer values only. 
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cut-of 0 ,  

8 e s i n e . ,  .~2e/Tr 
m 0 - (~ aJV/) 

7ra 

M is the physical soliton mass. Finally we have 

2e 
v(a) = 

7r sin e 

(4) 

(5) 

The continuum limit of the lattice theory is taken by first letting N ~ ~ and then 
performing the limit a -+ 0. Formally, the Thirring field operator becomes in this 
limit * 

X l (t, ha) = (2aZ 2 (a))-  1/2 ~b n (t) 

X2 (t, na) = (2aZ 2 (a))-  1/2 {b n (t) 

(n even), 

(n odd) , (6) 

where Z2 (a) is a cut-off dependent wave function renormalization constant. 
Luther has proven that the low-lying eigenvalues of  H converge in the continuum 

limit (c.f. sect. 4). It is however not yet clear, whether the n-point functions of X, 
X + approach a non-trivial limit for a + 0. If they do, we may expect the limiting n- 
point functions to be the Wightmann distributions of  tile renormalized massive 
Thirring model. 

Consider now the lattice theory that is defined by the Hamiltonian of  eq. (2). 
With the help of a Jordan-Wigner transformation we can relate this model to a Hei- 
senberg spin-chain problem, the X Y Z  model. Its Hamiltonian is given by 

x x  + y y  z z HXyZ =--½ (&OkOk+l Jy%Ok+ 1 +&OkOk+l) . (7) 
k = - - r + l  

Here, o~, o~, oK denote the three Pauli matrices at site k and periodic boundary 
conditions are implied. 

The Jordan-Wigner trick yields a representation of  fermion operators in terms of  

* In o r d e r  to r ecove r  the  c o n v e n t i o n a l  f o r m u l a t i o n  o f  the  c o n t i n u u m  t h e o r y  in t e r m s  o f  a sp ino r  
f ield q~ a n d  w i th  

one  has  to  s u b s t i t u t e  

1 + + ~ X l  X2) - ¢ ' z = ' ~ x l + x 2 ) ,  ~ 2  = - 
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spin operators, 

k 1 

dp+k = e ilr(N + 1)/4o-~¢ 1-I 
/ '=-- r+ 1 

[ion] , 

G +l¢ _ 1 x - ~ ( 0  k + i 4 ) .  

Under this transformation H becomes 

(8) 

x x  + y y  H = H x y z  +½(1 + (--1)r+F)(JxOrO_r+ 1 JyorO_r+l)  + const. , (9) 

with the identifications 

0 Jx =Ta + lm °  ' 

_ 0 1 
Jy - ~ -  -fmo , 

G 
J~ 4a 

and the definition * 

(10) 

r 

( - - 1 )  F = l - I  0"~ = exp iTr qS~,q5 k (11) 
k = - - r + l  k = - - r + l  

Note that ( - 1 )  F commutes with H x y z  and H. We thus see that in the sector where 
(_ 1)F = (_  1)r+ 1 we have H = Hx3~z, but if ( -  1) f = ( -  1) r, we find H to be equal to 
another Hamiltonian Hxyz .  This operator is given by eq. (7) and anticyclic boundary 
conditions, 

O•r+ l  = (Ix 
- -  - r + l  , 

1 = --OY--r+ 1 , 

0 " ~ +  1 = O'a r + l  . (12) 

Unfortunately we cannot be cavalier about boundary conditions. F ~ ,  as can be veri- 
fied explicitely for Jz = 0 (e.g. [7] ), the three Hamiltonians H x r z ,  H x y z  and H 
have different spectra. In view of the presence of  topological solitons we should not 
be surprised by the fact that in the boson language the theory depends delicately on 
what boundary conditions are assumed. 

t, 
* In the coup l ing  c o n s t a n t  range Jx  > Jy  > IJzl this  q u a n t u m  n u m b e r  is equa l  to ( - 1 )  v in 

Baxter's notation. 
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If  we introduce projection operators 

P+ : ½(1 - (--1)r+F),  

P = 1(1 + (-- l)r+F),  (13) 

we have [ H x y z ,  P_+ ] = [Hxyz,  P_+ ] = [H, P+ ] = 0 and eq. (9) becomes 

H = P + H x y z  + P - H x y z  + const . (14) 

From experience with the free model (Jz = 0) and the exact results obtained by 
Baxter [8] and Johnson et al. [9] for Jz va 0 we may then infer that 

(a) P+(P_) is the projector on the subspace with an even (odd) fermion number 
above the physical ground state. 

(b) For large N the spectra of  P+Hxgz  and P _ H x y z  are the same. This is true for 
H x y z  as well. 

We now proceed to exhibit the connection of  the X Y Z  spin chain with the eight- 
vertex model. The reader interested in this model itself should consult the original 
articles of  Baxter [8].  The central object in the discussion of  the eight-vertex model 
is the transfer matrix T. This is an operator acting in the same sapce as H x y z .  It de- 
pends on three real parameters V, ~, I with 

0 < / < 1 ,  0 < ~ < K t ,  (15) 

where K1 is the complete elliptic integral of  the first kind of  modulus l (ref. [10] 
§8.112). Let 

a I = 0 x 0 2 = 0 y 0 3 = 0 z 0 4 = 1 

w 1 = on(V,  l)/cn(~, l) , w2 = dn(V,  l)/dn(~, l ) ,  

w3 = 1 , w4 = sn(V,  l)/sn(~, l ) ,  

4 

~(~, 13)xv = ~ wj4,~o{,v, 
/=l  

(16) 

where sn (u , / ) ,  cn(u,  l) and dn(u,  l) denote the Jacobian elliptic functions of  argu- 
ment u and modulus l [10].  For each pair c~, ~3 we look at ~R(c~, fi) as some operator 
acting in a two-dimensional auxiliary space. 

The transfer matrix T is now given by 

TaG = Tr {~(a_r+ l, 13-r+ 1)ZR(a- r+2,13-r+2) .../R(c~, 13r)} , 

o~ = (s_r+ 1 ..... ~r) ,  /3 = (t3 ~+ l ..... 13r), (17) 
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(the indices C~k,/3,, refer to site k of tire spin chain). As has been shown by Baxter 
[8] H x y z  is a logarithmic derivative of T, 

T Hxyz=Jxsn(2~,l)U[T-1 ~ t g :  S - I  +cons t . .  (18) 

If  we identify 

12 = (j2 x _ e 2 ) / ( j 2  j2z) ' cn(2~, l) = - J z / J x  , (19) 

U denotes a simple unitary transformation * 

U o ~ U - 1  = __(lZk , 

U4U-t = ! - 4  
(k odd) 

[ cr y (k even),  

U4U-I = I-°~ 
(k odd) 

o~ (k even). (20) 

Formula (18) holds also for ~ t x y  z if we replace T by 

TaG = Tr {/R(a-r+ 1, /3--r+ 1)ff~(O~--r+2, /3--r+2) "'" ~ ( O l r ,  ~r) i°x } . (21) 

The transfer matrix T has a remarkable property that will be the clue to the con- 
struction of many conserved quantities. If  we keep ~ and I fixed and let V vary, we 
find [81 

[T(V), T(V')] = [T(V), T~(V')] = 0 (for all V, V') ,  (22) 

(the same is true for T too). Thus, T(V) is a one-parameter family of  simultaneously 
diagonalizable matrices. Of course, if we knew the eigenstates and eigenvalues of 
T(V) we could solve the X Y Z  problem. In fact, this observation provides one of the 
cornerstones for the exact evaluation of eigenvalues of  H x y z  [8,9]. 

3. Construction of local charges for the lattice theory 

We first construct a set of charges for the X Y Z  model with cyclic resp. anticyclic 

* This transformation is needed because we are interested in the coupling constant region Jx > 
Jy > IJ z I instead of the "fundamental" domain -Jz  > - J y  > IJxl. 



M. Li2seher / Massive Thirring model 481 

(eq. (12)) boundary  condit ions.  Let  

Gn = U  l _ _ T  U -1  , n = 0 , 1 , 2 ,  . . . .  (23) 
0 V n v :~  

From eq. (22) it is clear that the real and imaginary parts o f  these operators  com- 

mute  wi th  each other  and also with  H x y z .  However  in the con t inuum limit  the G,~'s 

do not  become local charges (c.f. sect. 1). This defect  can be removed by taking 
cumulants  * 

I - o n + l  )1 Cn = U - I n ( T - I ( ~ ) T ( V )  U -1  , 
k 3 V n+ 1 v=~ 

n = 0, 1 ,2  . . . . .  (24) 

A p r o o f  that the C n'S are indeed local charges is included in an appendix.  It is shown 
there that  

G-- ~ G(x), 
X = r+ 1 

Cn(x) a po lynomia l  of  @ ,  Ix - y l~< n + 1 . 

Fur thermore ,  Cn(x')  can be obtained from Cn(x) jus t  by applying a translat ion by 
¢ 

x - x latt ice units. 

For  example,  we have 

i(]xSn(2~,/))2C1 = 1 ~ Jk" (O'k+ I X Jk+2)  + const. ,  
k==r+ 1 

with 

Jk x v z 
= (J:~ok,JyOk,Jzok). 

Replacing T by T (eq. (21))  we obtain a set o f  commut ing  charges Cn" They dif- 

fer from the Cn's by boundary  terms only. 

We now combine  Cn and Cn in such a way that the new charges will be local in 
the fenn ion  language, 

Qn = in(Jxsn(2~, l)) n+ 1 (P+Cn + P_ C'~) .... ground state expec ta t ion  value. 

(25) 
Summarizing,  we have found an infinite set of  local, conserved charges for the 

* The relation between G n and C n is the same as thai between disconnected and connected 
Green functions at vanishing external momenta in field theory. 
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fermion problem (2) 

Oo = H ,  
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[Qn,Qm] = 0 ,  n , m  = 0 , 1 , 2  . . . . .  (26) 

4. Evaluation of the charges on the one-particle states 

In this section we are going to use exact results for the largest and second largest 
eigenvalues of the transfer matrix T. In order to state these results we have to intro- 
duce some more of  Baxter 's parameters * 

r : n K J K ; ,  X : ngJK'l, 11 = n~/Kl.  (27) 

Here, K I denotes the complete elliptic integral of the first kind with modulus f = 
(l 12) 1/2 . We also define the new moduli  k l ,  k2 by 

nK; /K  1 = X,  rrK'2/K2 = 2X, (28) 

(K l is a shorthand for Kkl  ). 
Let To(V ) be the eigenvalue of  UT(V)U-a on the ground state of H. Similarly, 

define Ts(V), TT(V) and Tb(V) to be the eigenvalues of UT(V)U -1 (resp. UT(V)U -1 )  
on soliton, antisoliton and breather states respectively. 

From the work of Johnson et al. [9] we then infer that for N-~  

, o t ) - ' v ' - "  " ' "  4 -  , , 

- 2 n  ~< q5 ~< O. (29) 

Here, ~ is a parameter related to the momentum of the particle (see below). 
1 Breather states (i.e. bound states of soliton-antisoliton pairs) occur only if~t > gn 

i.e. by eqs. (10), (19), (27) i f G  > 0. They are labeled by q5 and an internal quantum 
number n = 1 ,2 ,  3 . . . .  ; n < (~/~t 1) -1 . For the corresponding eigenvalues of T we 

have 

T o ( V )  ' ' 

G =qS+-in(r X)~-iX, 0~<~b~<2n. ( 3 0 )  

To express the parameter ~ in terms of the momentum p of  the particle, we must 

* The parameters r, X, ~, k 1 and k 2 are all functions of G 1 or (by (19)) OfJx, Jy, Jz. 
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find a translation operator exp {ilP2a} such that the field q~n transforms as 

ei~2a~onei~°2a = ~bn_  2 (cyclic boundary condit ions).  (31) 

Note that we are using a staggered lattice (eq. (6)) so that only translations by an 
even number of lattice units are pure space translations (more about the staggered 
lattice can be found in ref. [11] ). We now observe (c.f. appendix) that T(~) is a shift 

operator for the spin operators: 

T(~)~k T(~)-1  = o k -  1 • 

It is then not hard to prove that the choice 

e i9~2a = 4 - N  {P+ U T  2 (~ )U-  1 + p _  O~2 (~)U-  1 } , (32) 

meets all requirements. 
We know that T0(G) = 2 N" Hence, for large N the momentum p of the soliton is 

given by 

eip2a = ('Ts(~) i2 rr 
\ To (-~ ~ ] , lpl~< ~-a" 

For later calculational convenience let us define a scaled momentum q 

(33) 

}s(~) e iq - Iq[~ rr . (34) 
To(,~) ' 

Also, we will henceforth adopt the convention that a Jacobian elliptic function of 
t t 

modulus k I resp. k 1 and argument u is written as snu resp. sn u etc. We then find 

and with the help of [10] we get 

Kl~5 K I 4  
s i n q =  c n - - - ,  c o s q = s n - -  (36) 

7/" B" 

The same formulae hold also for the antisoliton whereas for the breather modes eq. 

* I apologize to the patient reader for introducing so many symbols that make the basically sim- 
ple reasoning somewhat cmnbersome. I however fllink that in the long run they will prove use- 
ful. Also, the notions have been choosen in such a way as to conform (wherever possible) 
with the referenced literature. 
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(36) must be replaced by 

K1(9 Kt~ 
sin q = - 2  s n - -  cn 

Tf 7f 
s n ' y  n 2 ~ { c n  y)  + ( s n ' y )  2 , 

c°sq [ sn2K'~ ~ (  ]D -K~ 2~( 1-' 7i" (37) 

where 

KI r/(T _ )k) = K,II. / ( ) ~  ] 
Y = T  ~ -  " 

Recalling eqs. (14) and (18) we now proceed to calculate the energy E of  the one- 
particle states [ 9 ]  

(a) Soliton, antisoliton: 

K1 K1O K1 
E = Jxsn(2~; l)~l, l dn T = dxSn(2~; I)-~1 ~ - - ~ - ~ "  (38) 

(b) Breather modes: 

E - K1 KI~b+ 

. .K1 2 F . . . . .  = Jxsn(2~; l } ~  ~7, /1 - (cn'y cos ½q)2 ,¢~n 2 ~q + (k',s~'y cos lq)2. 
(39) 

From eqs. ( 3 ) - (5 ) ,  (10) and (19) we find that in the continuum limit a ~ 0 

la = e,  k', = aM, l = 4( laM)  e/~ , 

~=1 e,  Jx . . . .  ~ - - -  , (40) aTr sin e 

and therefore 

E = x / ~  + pZ (soliton, antisoliton) , 

, _. mr(~_ ) 
E=X/~2 +p2 Mb = 2M s i n ~ -  -- 1 (breather) .  (41) 

Thus, in the continuum limit the lattice theory reproduces the correct relativistic 
dispersion law for the one-particle states. 

We are now well prepared to calculate On (eq. (25)) for the one-particle states in 
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the lattice theory (a > 0). For the soliton we obtain 

Qn=in(Jxsn(2~; l ) )n+l  - -an+l  In e - ' q  "~s(V) v=~ 
a v , , + ,  To(V)  " 

(42) 

The factor  2N To-o 1 (V) accounts for the subtraction of  the ground state expectation 
value of i n (JxSn(2 ~; l)) n + t {p+ Cn + P_ Cn ). Inserting the explicit expression (29) 
for "Ts(V)/To(V) yields 

I~- )l n a n # 
Qn = Jxsn(2~; I - - -  E ,  

and with dq/d~ = [(Tr/K~)Jxsn(2~;/)] - 1 E  we get the beautiful formula 

(43) 

a /'/ 

Eqs. (43) and (44) are valid for all three types of  particles discussed if we use the 
corresponding energy expressions (38) resp. (39). Note that the soliton and the anti- 
soliton carry the same charges. Hence, the electric (topological) charge is not a linear 
combination of Qn's. 

We conclude this section by remarking that one should not take the continuum 
limit of  eq. (44) directly by replacing q by p and E(q)  by the continuum expressions 
(41). The result would be trivial. Instead, one must take linear combinations of  the 
Qn's and divide them by appropriate powers of the lattice constant a. This obstacle 
does however not disturb the subsequent considerations, because we are going to 
discuss scattering processes on the (infinite volume) lattice. The results are then for- 
nrulated in a way which is independent of  the lattice constant and hence the conti- 
nuum limit of  these statements can be taken trivially. 

5. Conservation laws for scattering processes 

In this section we consider a general scattering process in the infinite volume lat- 
tice Thirring model involving solitons, antisolitons and breathers. The charges Qk 
imply conservation laws that severly restrict the possible scatterings. These conserva- 
tion laws emerge from the fact that a conserved charge like Q (eq. (1); the constant 
has to be chosen such that Q annihilates the vacuum state) acts additively on asymp- 
totic states (this can be proven by arguments similar to those given in ref. [12] ). 
This theorem applies also to a lattice theory like the one considered here * 

* This statemenl can be checked explicitly fi)r the charges Qk in the two fermion channels by 
inspection of the exact scattering state eigcnvalue of the transfer matrix T(V) obtained by 
ref, [91. 
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Thus, given a scattering process with m incoming particles with scaled momenta 
t ql ,  ..., qm and m'  outgoing particles with momenta q'l ..... qm' they satisfy the con- 

servation laws 

t 
Qk(ql)  + ... + Qk(qrn) = Qk(q'l) + --- + Qk(qm'),  k = 0, 1,2, .... (45) 

Here the Qk's are given by eq. (44) where E(q) is the energy (38) resp. (39) of the 
corresponding particle. 

To explore the full content of eq. (45) it is most convenient to define an operator 
valued generating function G(z) for the charges Qk, 

b G(z) = sn(2~; l) ~ - -  Qk Jxsn( ~;I z k (46) 
/ ¢ = 0  

Here, z is a complex number. Let Gs(z, 4), Gs(Z, 4) resp. Gb(Z , 4, n) be the eigen- 
value of  G(z) when applied to a soliton, antisoliton resp. breather state with quantum 
numbers 4 resp. 4, n (c.f. (36), (37)). Upon inserting (43) into (46) we obtain 

Gs(z, O) = Gs(Z, O) = dn K~ (0 - z) , (47) 
7T 

Gb(Z,~b,n)=dnK1 (0+ z ) + d n K 1  ( 4 _ - z ) .  
7r 7( 

(48) 

Consider a scattering process involving solitons only. The conservation laws (45) 
are then equivalent to the statement that 

Gs(z, 41) + -.- + Gs(z, 4m) = Gs(z, 0;) + ... + Gs(z, 4'm') , (49) 

for all z. 
The Jacobian elliptic function dnu is a doubly periodic meromorphic function of  

u. It has elementary periods 2K1 and i4K'l and poles at u : iK'l and u = i3K'1 (mo- 
dulo 2K1 resp. i4K'l). Hence Gs(z, 4) has got simple poles for 

K'  • 1 

z = 4 + 2nu + 17r~7 (2• + 1) (v, ~¢ E Z ) .  (50) 

Recalling 0 ~< 4 ~< 2rr we see that the poles in eq. (49) cancel if and only ifrn = m' 

and {41 ..... 4m) = (4'1 ..... 4m}. 
Similar arguments apply if we consider an arbitrary scattering process. The out- 

come is that 
(a) The total number of  fermions (solitons, antisolitons) and the number of 

breather modes with internal quantum number n are conserved separately. 
(b) The sets of momenta Pi (PI) of incoming and outgoing ferlnions are equal, 
(c) the same as (b) holds for each type of breather mode separately. 
Of course, these conservation laws remain true in the continuum limit a ~ 0. We 
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have thus proven that there is no production of  fermions nor breathers in the (con- 
tinuum) renormalized massive Thirring model. 

Let us finally remark that there is no soliton-antisoliton reflection in the classical 
sine-Gordon theory. Such a process is however not forbidden by the conservation 
laws established here, because the soliton and the antisoliton carry the same charges* 
This fits perfectly with the perturbation theoretic result (e.g. ref. [13] ) that the re- 
flection amplitude does not vanish in the quantized massive Thirring model. This 
statement is furthermore confirmed by a semiclassical calculation done by Korepin 
[14]. 

6. Conclusions 

In this paper we have considered the quantized massive Thirring model with a 
(non-covariant) cutoff  provided by a space lattice. Infinitely many conserved, dyna- 
mical charges were constructed and the corresponding conservation laws for scatter- 
ing processes were derived. Although the charge densities could in principle be ex- 
pressed in terms of  field operators, the amount of  labour necessary to produce such 
a result becomes very large for the "higher" charges. This obstacle prevented the 
direct comparison with the works of  Berg et al. [3] resp. Flume et al. [4] so far. 

The fact that the lattice massive Thirring model is partially exactly soluble makes 
it interesting also from another piont of  view. With the aim of  explaining quark con- 
finement in non-Abelian quark-gluon theories some authors [15,16] have considered 
lattice versions of  these models. Although quark confinement was then shown to oc- 
cur, it remained unclear what effects dominate in the continuum limit and whether 
colour is still confined. These questions were studied [17] in the massive Schwinger 
model using Pad4 extrapolation techniques. A critique of these calculations can now 
be drawn from the experience with the lattice massive Thirring model: to obtain the 
correct relativistic dispersion laws (41) we were forced to renormalize the velocity 
of light by introducing the renormalization constant v(G) (c.f. (2), (5)). Attributing 
this effect to the use of  a non-relativistic cutoff  we are led to conjecture that the 
velocity of  light must be non-trivially renormalized in (Hamiltonian) lattice theories. 

The author would like to thank G. Mack for reading the manuscript and critical 
comments as well as D. Buchholz, A. Izergin, H. Lehmann and K. Symanzik for dis- 
cussions. 

Appendix 

Proof of  locality of  the charges Qn 

We first seek a more explicit expression for the quantities Gn (eq. (23)). To this 

* Of  course, they have opposite electric (topological) charge). 
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end we reshuffle the o-matrices in the definition (16) o f ~ ( a ,  ~) to obtain [8] 

4 

~(o,, ~)xx, = ~ pj(d)x~ (d)%,,, 
/ '=1 

with 

(A.1) 

where (c.f. (20)) 

4 

R~,m)=u½ ~ p } " O 4 4 + , V - 1  , 
j = l  

Periodic boundary conditions mean that 

4 

R f f  n) = U 1 ~ l  n ( m ) c j a J  U 1 r I ~r~ r+ 1 .= 

P(I m) = om P~ 

O Vm V=~ 
(A.8) 

(A.9) 

p, --l(w, - w 2  - w 3  +w4),  p2 =½(-w, +w2 - w 3  +w4),  

= - 1 ( _  w 
P 3  2 1 -- W2 + W3 + W4) , P4 ---- ½ ( W I  + W2 + W3 + W 4 )  (A.2) 

For V = ~ we have p l  =P2 =P3 = 0 , p 4  = 2 and therefore 

/R(a,/3)xx , I v=~ = 26x~ ~aa' , (A.3) 

and by eq. (17) 

T(~)c~ = 2 N x a r + 2  x °e r + 2  (A.4) 
u /3 r + 3  U /3 r +  3 " - ' ~ a r j 3  r+ 1 • 

Thus, 2-NT(~) is a unitary shift operator for the spin operators. Obviously 

T(~) -T ' r  = 2-NfV_r+2 ~7-r+3 ~T--r+l (A.5) 
C~--r+l °~- - r+2  "'" ~ r  ' 

[T(~) -x T(V)] up = 2 N Tr {/R(a_r+2, (3_r+l)lR(a_r+3, (3_r+2) 

.../R(a_r+],/3r)) . (a.6) 

To express the derivatives of  eq. (A.6) with respect to V at V = ~ in terms of  spin 
operators o{~ it is convenient to introduce operator valued n-point functions G n ( x l ,  
.... Xn) by the following rule: for each n-tuple (x I . . . .  , Xn) of (not necessarily diffe- 
rent) lattice points, let m/denote  the number Of Xk'S being equal to/ .  Define 

Gn(x  1 . . . . .  Xn) - R(m-r+l)R (m-r+2) R~ mr) (A.7) 
- - r + l  r+2  ... , 
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To account for the trace operation in eq. (A.6) it is understood that the o]_r+l ma- 
trices appearing in the last factor of (A.7) are to be put to the left of R (m+(+1). 

The operators G n can now be written in the form 

G n = ~ C n ( X l ,  . . . , X , ) .  ( A . 1 0 )  
Xl,. . . ,Xn = - - r+l  

This is clearly not a local charge. 
We are now going to list some elementary properties of  the n-point functions 

Gn(xl ,  ..., Xn). Note first that 

R~ ° )=  1 for all k .  (A.11) 

Itence Gn(xl . . . . .  Xn) is in fact a product of  operators R(x m). Therefore, 
( a )  ao = 1; Cl(x) =R (2) 
(b) Gn(x~ ..... xn) is a totally symmetric function of its arguments. 
(c) Gn(x 1 ..... Xn) is translationally covariant, 

U T ( ~ ) U - I G n ( X l  . . . . .  x n ) U T ( ~ ) - I u  -1  = G n ( x  1 1 , x  2 - l . . . . .  x n - 1 ) .  

(a. 12) 

(d )  Gn(x  t . . . . .  Xn) has "cluster properties". Let A 1 ..... Ak be a partition of  (Xl, 
• .., Xn) into k clusters with n l, ..., nk elements respectively. For the corresponding 
G n functions we write simply G n 1 ( f i l l ) '  Gn2(A 2) etc. Then, if the distance between 
all pairs of clusters Ai ,  A / ( i  v~/) becomes strictly larger than one lattice unit, the 
operators Gni(Ai) a n d  Gn/(Aj) commute. 

Furthermore 

Gn(xl ..... xn)  = Gnl (A I) ... Gnk(Ak) • (A.13) 

This last property of  Gn(xl ,  ..., xn) suggests that we consider truncated n-point 
f u n c t i o n s  GT(x1 . . . . .  Xn) well known in field theory and statistical mechanics. Thus, 

we define recursively 

a.(xt .... ,x.)-- ~ 
k= I Partitions of (x I , ..., Xn) 

into k clusters A i ..... Ak 

S (a, v, (a ~ )... cT,,(A k)). 
(A.14) 

Here, S denotes a symmetrization operation, which must be included because the 
o p e r a t o r s  GTi(Ai) do not always commute. Explicitly we have 

_ 1  ~ T T #(GTI(AI) "'" GTk(Ak)} k! Gnat(') (A~rO)) "'" Gnat(k) (An(k))" 
permutat ions  rr 

(A.15) 
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Clearly GT(x) = GI(X ) and it is not hard to prove by induction that G T ( x 1  . . . . .  Xn )  

has the same properties (b), (c) and (d) as G n ( x  1 . . . .  , xn)  with (A. 13) replaced by 
a (xl . . . . .  

As is well known (e.g. ref. [18] ) eq. (A.14) can be formulated elegantly with the 
help of generating functionals 

n=O Y/. xD.. . ,xrl=_r+l 

r 

zT( J )  = E ~-] E GT(x1  .... x n ) S ( x  ) J(Xn) 
n=o n. Xl , . . . , xn=_r+l  

(A.16) 

J is an arbitrary test function on the lattice. Eq. (A.14) is then equivalent to stating 
that 

Z(J) = S exp zT(J)  for all J .  (A. 17) 

Setting J =  constant = V -  ~ and using (A.10), (23) we see that 

Z ( V  - ~) = U T - I ( ~ ) T ( V ) U  -1 = $ exp z T ( v  - ~) . (A.18) 

The operators Gn commute. By induction we can prove that the quantities 

GT(x  . . . . .  xn)  , 
Xl,...,Xn=--r+ l 

commute too, The symmetrization operation ~ in eq. (A. 18) is therefore superflu- 
ous. From the definition (24) of the charges Cn we conclude that 

on+l 
Cn - z T ( v -  ~) 

a V n+ 1 v=~ 

_ -  S 
X l,...,Xn+ l =--r+ l 

GT+ 1 (X 1 . . . . .  X n + l ) .  (A.19) 

Let us define a charge density 

Cn(X) = S GT(x ,  X1 . . . . .  Xn) . 
Xl ,..., xn ~ - r +  l 

This is a translationally covariant (c.f. (A. 12)) operator and 

(A.20) 

Cn = ~ Cn(x ) .  (A.21) 
x=--r+ 1 

Cn(x ) is also a local operator in the sense that it is a sum of product of factors R (m) 
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with Ix - y I ~< n. This is so because GT+ 1 (x, x a ..... x n) satisfies cluster properties as 
explained above. We have therefore proved that Cn is a local charge for the spin 
chain. 

The charges Cn can be obtained from Cn just by replacing R(r m) (eq. (A.9)) by 

~!m) ,T 1 ~ (m)  l 1 _ r~m)02 02 (m) 3 3 = U - ~ p ~  O r O r +  1 e'z r - - r + l - - P ~  OrO-r+l +p~m))u  - t  

Hence, Cn is a local operator and 

U T ( ~ ) U - I ' C n ( x ) U T ( ~ ) - I  u -1  : Cn(x -- 1 ) ,  

(A.22) 

"Cn(-r) = Cn(r) . (A.23) 

We now observe that the projection operators P+, P_ (eq. (13)) commute with 
R~m), ~(m) and hence with Cn, Cn. It is then not difficult to prove that up to a con- 
stant the charge iQn (eq. (25)) can be gotten from Cn by substituting in eqs. (A.20), 
(A.21) the fermion expression 

[iJxsn(2~; l)] m {}i(p~m) + p~rn))(O~Ok+ l - Ok+ i Ok) 

+ ( _ l ) k  l~(m)w~,+,,+ gt/-'s ) t~ 'k~k+l  + O k + l O k ) +  2ptm)(OkOk 1 + -- ~ ) ( O k + l O k + l  -- l )  

+ ½pi m)} , (A.24) 

fo rR~ m). Therefore the Qn's are local with respect to the fermion field theory. 
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