Dilations and interaction

Detiev Buchholz and Kiaus Fredenhagen

I Institut fiir Theoretische Physik der Universitit Hamburg, Germany

(Received 30 August 1976)

As a consequence of the geometrical features of dilations massless particles do not interact in a local,
dilationally invariant quantum theory. This result also holds in models in which dilations are only a

symmetry of the S matrix.

1. INTRODUCTION AND MAIN RESULTS

The conventional argument showing that massless
particles do not interact in a local, dilationally invari-
ant quantum theory is in the simplest case the following
one (see, e.g., Ref. 1): suppose ¢ is a scalar Wight-
man field transforming under dilations according to

DS x)D(N) =2 - p(x). (1)

If ¢ has a nonvanishing matrix element between the
vacuum and a massless one-particle state, d can only
be one. Then ¢ has canonical dimension and this im-
plies that it is a free field. This reasoning is quite cor-
rect. However, since the argument depends upon the
existence of a field ¢ with the special properties men-
tioned above, the conclusion appears to us to be rather
premature. First, there is no physical reason to rule
out ab initio all models in which the basic fields do not
transform like a finite-dimensional representation un-
der dilations. And secondly, even if the fields trans-
form in this way, it could happen that they do not inter-
polate between the vacuum and the massless one-par-
ticle states. In general one should only expect that
suitable polynomials in the fields have this property.

It is the aim of the present note to close these apparent
loopholes. Using only the geometrical features of dila-
tions and the basic properties of local field theory, we
give a fairly general argument confirming the above
no-go theorem.

The setting used for the analysis may be sketched as
follows: We deal with an irreducibie field algebra § of
bounded operators acting on a Hilbert space /. ¥ is
generated by a net 0 -§ (0) of local algebras attached to
the regions () of Minkowski space. We may forego here
a formal specification of the usual structural assump-
tions on the theory like locality, covariance, spectrum
condition and uniqueness of the vacuum. (For a detailed
discussion see, for example, Ref. 2). In addition to
these familiar properties we require that there be a
continuous, unitary representation A—D()) of the multi-
plicative group of the positive reals in#. The opera-
tors D(X), the dilations, satisfy

D U(x) = U(x)D{A) and DQ)U(A)=UMD(N,  (2a)

where x = (x,, X) - U(x) are the translations and A - U(A)
the Lorentz transformations. Moreover, the dilations
D(N) induce automorphisms of the field algebra § with
appropriate geometric properties:

DVNFO)DNV) =F(x-0). (2b)
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These rather general assumptions suffice to prove the
following statement:

If there exist massless pavticles in the model, (i.e.,
a family of subspaces H{> CH on which the unitarvies
Ulx), U(A) act like an ivveducible vepresentation of the
Poincaré group with mass zevo and helicity s,), then
the S matrix for these particles is trivial,

Our interest in this problem arose in discussions with
Haag on supersymmetric field theories. In a recent ar-
ticle Haag, Lopuszanski, and Sohnius have analyzed the
structure of all possible supersymmetries of the S
matrix.® They found out that in a pure S-matrix formal-
ism there is essentially only one way of a complete
fusion between internal and geometrical symmetries,
including dilations. Since such a structure looks very
promising from the point of view of physics, one may
ask whether it can be embedded into a conventional field
theoretical setting. As a consequence of our analysis
the answer to this question is negative: If the theory is
to describe collisions of massless particles and if dila-
tions are to be a proper, unbroken symmetry, one has
to abandon some of the usual field theoretical assump-
tions. At present it is unclear how the assumptions have
to be modified and we refrain from speculations. How-
ever, we want to emphasize that even in a modified
scheme the local observables (the currents, etc.) should
have a structure similar to that of § given above. What
may then be learned from our analysis is that massless
particles in the vacuum sector of the observable algebra
do not interact. It is therefore unlikely that particles
like the photon and the #’- meson (both of which carry
the charge quantum numbers of the vacuum) can be in-
corporated into such a scheme. This apparently re-
stricts the possible range of application of these models
to weak interaction physics.

2. THE PROOF

The central idea of the proof is very simple: we de-
rive an asymptotic expansion for the function 2
- DQJAD() at x =0, where A is a suitable local
operator taken from §. It turns out that

D(MNADN)? =(R,AQ) -1+ 1. ¢ +0(N), 3)

where this expansion is understood in the sense of oper-
ator valued distributions; € denotes the vector repre-
senting the vacuum and ¢ is some local field. Now the
crucial point is that if ¢ is not zero, it creates a mass-
less particle from the vacuum. I then follows from
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Huyghens’ principle (i.e., the timelike commutation
relations between local and asymptotic fields given in
Ref. 4) that the S matrix of this particle can only be
trivial.

Unfortunately, there are models in which, for kine-
matical reasons, all local operators A give rise to a
vanishing ¢. However, this defect can be cured by a
slight modification of the above expansion: dilating and
boosting the operator A simultaneously, one arrives at
an expression similar to (3), but with a nontrivial ¢. To
abbreviate the argument, we confine our attention to
models involving only one type of massless particles
with helicity s =0. But we shall give a brief outline of
how to proceed in more complicated situations.

Now let A be any operator from § which is localized
in a bounded region  C R*. We regularize A according
to

A, = [ dto@) UNAUB)™, (4)

where t ~ U(t) are the time translations. ¢(f) is a test
function with compact support which has a Fourier
transform fﬁ(w) with a twofold zero at w=0. The smooth-
ed operator A, is still local and we get the following
bound on its two-point function:

Lemma 1: Let A—~E(A) be the spectral projections of
the mass aperator M = (P?)} /2 where AC R* is any Borel
set of mass values. Then

‘(Awﬂy E(A)U(X)AWQ) ‘ <c- (1 + ‘x'4)_l
'{”E(A)Aﬂllz+||E(A)A*9“2}

where the constant ¢ depends neither on X nor on 4.

Proof: Using the methods of the Jost~ Lehmann—
Dyson representation, one can show that the function

ha(x) =(AQ, E(A)U(x)AQ) — (A*Q, E(8)U(- x)A*Q)

vanishes in the spacelike complement of some bounded
region (J; which depends only on the localization
region () of A (see, e.g., Ref. 5, Lemma 6.2). Now,
if one puts ¥(t) = [ ds P(s)e{s +1}, one gets, owing to the
spectrum condition,

(4,9, E(A)UXA,Q)
= [ dty(n)(AR, E(8)U(, 0AQ)
= [ dat " (AR, E(a)U(t, X1 ARQ)
= [ atpef(AQ, E(a)U(t, x)AR)
- (A*Q, E(A)U(- ¢, - x)A*Q)}

= [ At (Oh,lt, x),
where
() = (2m/2 fo ” dwi(w) exp(— iwt)

= fomdw\{é(w)tzexp(—éwt).

Since | @(w)|? is a test function with a fourfold zero at
w=0, it is easy to verify that ¥'(#) is continuous and
1g*(H))< c-(1+1£1%", Taking the support properties of
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ha(x) into account, one arrives at
|(4,9, E(2)UXA,Q)|

<f dt

“ltlElxl-R

TNOIRRINGE Y

sct [ e A+ DT IE@)AQIP + I E(a)A*lE,

where R is some length which depends only on A. From
this inequality the statement of the iemma follows at
once. =

We take now the operator 4, and carry out the follow-
ing manipulations: First we dilate it, then we boost it
in a fixed direction, and finally we smear it in the two
remaining spatial directions. For the boosts we fake
those in the x; direction:

B0+ 2 5002

=2ty fa+ah) '
1

K, = A>Q. (5)

Then if x' = (0, x,, ¥;) denotes the projection of X onto the
(x5, x,)-plane and if @x' = dx,dx,, we set

By=x1- [ @ Ax) UEHUKID(NVA,

x p( k) U, (6)

where f(x") is any test function with compact support.

To begin with, we examine the localization properties

of B,: Since A, is localized in some bounded region 0,

it follows from (6) that B, is localized in {X- K0 + supp/}.
Now lim, . * + K, =P, where P is the projection onto the
ray (¢, - a,0,0), ac R. Therefore, the operators B,

are, for sufficiently small %, localized in a fixed bound-
ed region (J,. The next step is to show that the sequence
B, converges to a (possibly zero) one-particle state

in the limit of small A:

Proposition 2: Let B, be the operator defined in rela-
tion (6}. Then the weak limit w-lim,. B, exists and is
an element of /.

Pyoof: The proof of this asserti9n is based on Lemma
1. Since U(X,) commutes with U{(x’) and £(8), we may
write

NE(a)BIIZ =22+ [ a2 [ d®'F(x") Ay")
X(A R, EQA) Uy - x" DA, ),

where we have made use of relation (2a). If we set
gx) =] ay'f (yL)f(xL +y"), we get, using Lemma 1,

lE(s) B,SI?
=22 [dPg(x)(A, 0, EQA) U(A'x)A )
< sup,lely))| e f (1 + %] H?
JlIE(a)AQIE + HE(AL)A*QIIZ

Putting A=R", it follows that the sequence B, 1s uni-
formly bounded in \. Putting 8, =[a, b], where 0<a
<b <, it follows that lim, ., E(4,)B,QU =0 because the
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continuity properties of the spectral resolution imply
lim, .l E{Aa,)®1 = 0 for every vector & =/. Thus the
sequence B, converges weakly to zero on the ortho-
gonal complement of the one-particle space 4. It re-
mains to establish its convergence on #;. Since we are
dealing with only one type of massless particles with
helicity s =0, we may identify the one-particle states
¥ ¢ A1 with their momentum space wavefunctions ¥(p)
in LR®, d®/21pl). The dilations and Poincaré trans-
formations act on these functions as follows:

(D()T)(p) = 1+ ¥(Ap), (7a)
(U(t, X)) (p) = expli(t| p| ~ xp) ¥ (p),

and
(UR)¥)(p) = T(A o), (7b)

where A™ op denotes the spatial components of the 4-
vector A™(Ipl, p). What is crucial now is that the wave-
function (4,9)(p) of the one-particle state E{0PA,Q is
continuous in p if A, is the operator defined in relation
(4). To verify this, we fix a set £ of Lorentz trans-
formations A which are close to the identity I, e.g.,

L ={A:iA~Ii<3%}. Since A is local it is obvious that
all operators (U(A)MAU(A) -~ A), Ac/, are localized in
a bounded region { of configuration space. Therefore,
we get the estimate, using relation.(7) and Lemma 1,

(n/1pDlellph 2 AR (A <p) - (AQ)(p) |2
=(1/2|p]) - (UA)FAU(A) - A) Q) (p) |2
=(2m=. [ d®x exp(ixp) - (UM)FAU(A) - 4),9,
EQohUX(U(A)TAU(A) - A), Q)
< c o) - nEopAQIZ + II(UK) - 1) ECohA*QIF,

and this inequality holds for all Ae/ and pe R?. Since
we may take for @ a test function which has a zero only
at the origin, it is evident that lim, _,(AQ)(A <p)

= (AQ)(p) for p#0. But this shows that (AQ)(p) and there-
fore also (4,9)(p) = (2m/2¢(1p|)(AQ)(p) are continuous
at p+0 because for every sequence p, converging to p
we can specify a sequence of Lorentz transformations

A, such that, for sufficiently large n, A,-p=p, and
lim,A,=I. In order to establish the continuity of
(4,9)(p) at p=0, we estimate

(1/2lp) A, 2@ 2

=(2m) [ d®x explixp) - (4,2, E(OH UXA,Q) < c.

This bound holds uniformly for all pc R® and implies
lim, . (A ,2)(p) =0. Now we are almost finished: Using
relation (7), we get for the wavefunction (B,$2)(p) of the
one-particle state E({0})B,Q

(Bx(p) =277 (p") - (4,2 (1- K5 o p),
where
7@ = @0 [ & expl(- ix'p )X with p* = (0, py, p3).

An easy calculation shows that lim, . Akt e p=3(Ipl
+p1)ey, where ¢ =(1,0,0). Taking into account the con-
tinuity of p—~ (A,9)(p), we get

lim,.,(B,2)(p) =27 - 7(p") - (A, G| p| +p,ler).  (8)
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It then follows from the bounded convergence theorem
that the limit lim,.q [(@®p/21p})¥(p)(B,R)(p) exists for
all test functions ¥(p) with compact support. These
functions are dense in L3(R?, d®/2pl) and since the
vectors B,? are uniformly bounded in A we conclude
that the weak limit w-liml.oE({O})B,‘ﬂ' exists. This fin-
ishes the proof of the statement. .

Remark: Using the above proposition and the locali-
zation properties of the operators B,, one can show that
lim,.,B, also exists on a dense set of vectors in#4.

The wavefunction of the one-particle state w-1lim,.,
B\Q is given by the right hand side of equation (8). It
is therefore easy to specify a local operator A for which
this vector is nontrivial: Pick, for example, a one-
particle state ¢ /i which is invariant under spatial
rotations R~ U(R). Since § is irreducible, there exists
a local operator 4; ¢§ such that the matrix element
(@, A,9) is not zero. The operator 4 = [du(R)U(R)

XA U(R)™, where du(R) is the Haar measure on the
group of rotations, then has the desired property. If
one takes A; Hermitian and the functions ¢, f real, one
can even arrange for the approximating operators B,
to be Hermitian.

In the remainder of this section we shall show that
the existence of an operator sequence B, with properties
mentioned above implies that the massless particles do
not scatter. The argument is based on results recently
derived in Ref 4 in the context of collision theory for
massless particles. We recapitulate the main facts
briefly: As in the massive case, there are collision
states

in in out out
& X+ X &, and &; X - X &,

in# corresponding to incoming and outgoing configura-
tions ®,, ..., ®,cH, of massless particles. These vec-
tors have the familiar Fock structure known from a

free theory. They can be generated from the vacuum 2
with the aid of asymptotic fields A'® and A°**. The bound-
ed functions of the fields which are localized in a re-
gion U constitute the local asymptotic field algebras
§'2(0) and F°*(0) respectively. They have commutation
relations with the basic fields which may be interpreted
as the field theoretical version of Huyghens’ principle:
If 0 is any bounded region and if (J,, (J_ are two regions
which have a positive and negative timelike distance
from (), then

[F, F?"]=0 and [F, F°"]=0 (9)

for arbitrary Fe§ (D), Firc §*(0,), and Fo't c Fo(() )
This relation is the key to the proof of the following
statement.

Proposition 3: If there exists a bounded region () CIR*
and a sequence of Hermitian operators B, c () which
converges weakly on the vacuum to some nonzero vec-
tor in /4y, then the collision states

in in out out
q;lx...x <I>,,and Ql Koo on X Qn

coincide for arbitrary configurations &,, .
Consequently, the S matrix is trivial.

..,q’HGHl-
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Proof: We define Bf = U(L)B,U(L)™", where L=(A, x)
is an arbitrary Poincaré transformation and U(L)
= Ulx)U(A) is the corresponding unitary in /. Since B,

converges weakly on the vacuum to some nontrivial one-

particle state & €/, we get w-lim, .\ BfQ=U(L)® =&,
These vectors form a total set in 4, because the
Poincaré transformations are irreducibly represented
in ;. Now the operators B are localized in the region
L. Using relation (9), we get therefore

(Fi*@,, Fo*Q) = lim (Fi"B; Q, Fo'tQ)
A=0

= }irﬂn (Firq, FotBLQ) = (FirQ, FOt®,), (10)

provided Fi®c §®(L),)and F* c §°** (L().). Since the
operators A'" and A° are free fields, it is straight-
forward to verify that the bounded operators Fi* and
F°" in this relation may be replaced by products of
smeared field operators A", ..., AM and A%%, ..., 42",
which are localized in L, and L{)_respectively. Thus
we arrive at

(AlP .. ABG,, AT - ATRQ) = (AL - - AQ, A -+ - APD,)
(11)

mel

Now we can prove the proposition by induction. For a
one-particle state there is nothing to show, so let us
assume that

in in out out
<I>1)<...>< q’m:4’1 XooeoX q;m

for arbitrary configurations ®;, ..., ®,<#,. This im-
plies in particular that A"... APQ =AM ... A%"Q and,
using relation (11), we get

(Alin .. 'A,ianL,Auut . 'A:UtQ)

m+l

=(Afr.. .A}:Q,Aout .. -A;’,“‘Q)L)

mel
— (Af“t .. _A:)"utn, A?nu+t1 .. _At’)'utéL)
— (Ai:ut .. -A;“td)L,AOUt .. 'Ag"tﬂ),

m+l

where the last equality sign follows from an explicit
calculation of the scalar products. If we set &,
=APQ, ..., ®,=A%Q, we can reexpress this equation
in terms of the collision states,

in in in out out
(@lx."xémxélnémdx.”x ‘bn)
out out out out out

:(le cee X émx (PL;q)m*lX ser X d;n)!

provided Al*, ..., AS" are operators with the special
localization properties mentioned above. However,
keeping in mind that the vectors &, form a total set in
#:, one can extend this equation by continuity to arbi-
trary configurations &,, ..., &, ®; c/;* and it is then
obvious that

in in out out
<I>1>< treX ¢md\lzél Xoeee X (tnnl'

Combining the two propositions it follows that the
massless particles in #/; do not interact if the dilations
are a true symmetry. We have established this result
only for one type of massless particles with helicity
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s =0. In the presence of a family of one-particle spaces
H{PCH on which the unitaries Ulx), U(A) act like an
irreducible representation of the Poincaré group with
mass zero and helicity s;, the main modifications are
in the second part of the proof of Proposition 2: For
vectors ¥ e /¥ relation (7Tb) changes according to

(U(A)\I’)k(p) = exp[iska(A, p)] ’(‘I’)k(A'l ° p),

where the index % refers to the space /#/%’. The func-
tions a(A, p) are the Wigner phases.® They are not com-
pletely fixed by the structural relations imposed by the
Lorentz group. As a matter of fact we may choose a
convention such that the fuactions a(A, p) are simul-
taneously continuous in A and p except at p=0; more-
over, we may require that a(K,,p) =0, where K, are
the boosts in the x; direction introduced in relation (5).
It is then easy to verify that the functions (B,9),(p) are
continuous and that the analog of relation (8) holds. The
proof of Proposition 3 carries over almost literally, and
we may therefore omit the details.

Finally we want to point out a further generalization
of our main result. In an asymptotically complete the-
ory of massless particles there always exist two repre-
sentations D'™(}) and D°*(A) of the group of dilations
which act on the asymptotic fields A™ and A°*, respec-
tively, as in a free field theory. Their commutation
relations with the translations U(x) and Lorentz trans-
formations U(A) are again given by (2a). However, they
do not, in general, act on the basic fields according to
relation (2b). In order that the dilations are an asymp-
totically visible symmetry, it would be sufficient to re-
quire

D'*(2) = D°"Y(X) =D(N) (12)

and relation (2b) could be dropped. But this assumption
still implies that the S matrix is trivial! To verify this,
one has only to realize that Propositions 2 and 3 still
hold in this case with obvious modifications. The proof
of Proposition 2 depends on the clustering properties of
the vacuum and relation (2a) and therefore applies. Of
course, the operators B, are in general not local. How-
ever, relation (10) which was crucial for the proof of
Proposition 3 can still be established, This follows sim-
ply from the fact that the asymptotic nets () —§ ()
and ) —F°() transform under the dilations D(})
=D"™(\)=D°"*(») according to relation (2b). Hence, if, for
example, A € §(0), where () is any bounded region
which contains the origin and if Fite §i8((0,), where (),
has a positive timelike separation from (J, one gets for
A<l

[D(NAD(M™, Fi?]
=DN[A4, D) F*D(X1)ID()1 =0

by Huyghens’ principle. A similar relation holds for

Fout cFout() ). It is then easy to verify that the opera-
tors B, commute for small A with the operators in
§1(0,) and §°4(0_) where the regions (,, {_ depend only
on the localization properties of f and A,. The rest of
the argument can then be carried over.
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