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Starting from the reggeon calculus, the various possibilities of absorptive pomeron 
cut corrections in the triple-Regge region are considered. For the case of pp + pX, we 
estimate their importance at present day energies. We conclude that at highest ISR ener- 
gies, pomeron cuts of the eikonal type are not enough, and enhanced diagrams with at 
least one additional triple-pomeron coupling need be included. 

1. Introduction 

Recently several authors [l-6] have pointed out that a pure Regge-pole descrip- 
tion of inclusive processes a + b -+ c + anything in the triple-Regge region cannot ac- 
count for the observed cross sections. In inclusive photo and electroproduction 
[l-4] y + p + rrfPO + X, the pure Regge-pole model predicts a zero in d*o/dpfw* 
at pf = 0. But such a dip has not been seen in the data. In the same reaction, recent 
measurements show a target asymmetry which a Regge-pole description without 
cuts cannot account for [3]. In describing the charge exchange reaction p(n) + p -+ 
n(p) + X [S] by the exchange of Regge poles, all parameters of such a model are 
fixed from other reactions. Hence this process provides a good test for the Regge 
mechanism. However, the theoretical cross sections are too large in comparison 
with the data. All these failures of the Regge-pole model have been suggested to be 
cured by absorptive or cut corrections. 

An even stronger need for cut corrections exists in pomeron dominated reactions 
such as pp + pX. In a recent calculation [6], absorptive corrections to the pomeron 
pole exchange turned out to be considerably larger than one might expect from the 
experience with two-body reactions. For very large energies where reggeon field 
theory becomes applicable one knows [7] that even infinitely many pomeron cut 
contributions are necessary in order to yield a theory for hadron-hadron scattering 
that is free from inconsistencies. At present energies we are still outside of this 
asymptotic domain. But certainly some of these cut contributions which will be 

dominant for larger energies are relevant already at ISR energies. What these contri- 
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Fig. 1. Different types of initial and final state absorptive corrections. 

butions are and how important they are at NAL or ISR energies needs still to be 
examined. 

When computing corrections to the pure Regge-pole exchanges, most of the 
authors [l-S] have been guided by the idea of initial or final state absorption. Ini- 
tial state absorption then easily leads to the pomeron exchange between the in- 
coming particles a and b (fig. la). In the final state, however, there are several ways 
to include absorption: a pomeron can be exchanged between particle c and any of 
the cluster particles (figs. lb, c, d) and, in addition to that between particles within 
the cluster (figs. le, f). The first contribution is fairly easily computed by means of 
the absorption formalism known from two-body reactions. Among the other po- 
meron corrections only that of fig. Id has been included in existing papers. In ref.[2] 
the size of these absorption corrections has been treated as a free parameter, and it 
turned out to be much larger than predicted from fits to two-body reactions. This 
could indicate that in fact some of the other absorptive corrections need to be in- 
cluded in order to restore the consistency between two-body scattering and inclu- 
sive reactions. The main reason why these contributions have been disregarded so 
far, is that, within the s-channel language of initial or final state absorption, their 
computation is rather elaborate. A much more convenient way for their calculation 
is given by the reggeon calculus which recently [8,9] has been derived for the triple- 
Regge region. In order to make contact between this reggeon diagram technique 
and the picture of initial or final state absorption, one uses the cutting rules of 
Gribov et al. [lo]. One then finds that, in addition to the absorptive corrections 
considered above, there are other contributions of the same size which need to be 
taken into account. It is the aim of this paper to make use of this reggeon calculus 
and discuss the various cut contributions to the triple-Regge region. In particular 
we want to get an idea of what kind of corrections are relevant at present day ener- 
gies. To start with, we consider pomeron dominated processes and estimate the 
size of several reggeon graphs. Their relative importance is energy dependent, and 
at low energies (s - 100 GeV2) one needs other cut contributions than at ISR ener- 
gies (s = 3000 GeV2). In particular we find that the eikonal formula which has been 
derived by several authors [4,6,1 l] is not an adequate description at highest ISR 
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energies. To make this paper as self-contained as possible, we first (sect. 2) list the 
rules of the reggeon calculus and demonstrate the connection with the picture of 
initial or final state absorption. Sect. 3 contains our estimates, whereas some details 
of our calculations are put into an appendix. In the final section we draw our con- 
clusions. In a future paper, we will perform a similar analysis for some Regge-pole 
dominated reactions. 

2. Reggeon calculus and the absorption picture 

We start by listing the main rules of the reggeon calculus for the triple-Regge region. 
This reggeon diagram technique has recently been derived both from a partial-wave 
analysis [8] and from the high-energy behaviour of hybrid Feynman diagrams [9]. 
The starting point is Mueller’s argument which relates the double differential inclu- 

sive cross section to the iV2 discontinuity of a 3 -+ 3 scattering amplitude (fig. 2) 

d20 1 

dtdM2 32ins2 
-=- discM2 T3_,3(s+i~,s-iiE,M2, t). 

For the 3 + 3 amplitude we use a Sommerfeld-Watson representation: 

T+,3(s+ie,stie,i142 tie, t) 

=&. ~~jdjldj2dj~j,d’~~,~‘2C;jjtjZ(M2)i-il-izF~~,jz,j,t), (2) 

where 

tj, = (ewinil + rl)/sin 7rjr , 

Ejj;iiljz = (e -i*u-i1-i2) tTT1T2)/sin n(j -jl -j2). (3) 

In eq. (2) the three j-variables are the angular momenta of the three cross channels 

(fig. 3). Dual to each cross channel, one has a large energy variable and, associated 
with it, a signature factor. F(jlj2,j,t) is the partial-wave amplitude and contains the 
singularities of Regge poles and cuts. In order to combine eqs. (1) and (2), we ob- 
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Fig. 2. Optical theorem for the inclusive cross section a + b + c + anything. 
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Fig. 3. Triple-Regge pole diagram. 

serve the ie prescription in (1) and take the discontinuity in M2. This leads us to 

d20 1 1 
c+im 

. . . -=- 

sss 

il * i2 

dtdM2 1677~~ (2~9~ c_im 
dIldl2dJ lJ,S tJ,S 

x (M2)j_j’_j2F(i1,i2,i,t). 
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The reggeon calculus for the triple-Regge region now states that any pole or cut 
contribution can be written in the form of eq. (4). Furthermore, it gives the rules 
how tp compute the partial wave F for any given reggeon diagram. These rules are * 

(i) Replace the momentum transfer t by a two-dimensional spacelike momen- 
tum variable Q q2 = -t 

(ii) Like in’an ordiiary Feynman diagram, there is a k-integration J d2k/(2n)2 
for each internal loop, and momentum is conserved at each vertex. The net mo- 
mentum at the bottom of the diagram (fig. 3) is zero. At the two upper ends, the 
net momentum is 4. 

(iii) Any given reggeon diagram should be drawn in such a way that all reggeon 
lines point upwards. All reggeon vertices must be ordered from the bottom to the 
top of the diagram. In the example of fig. 4a, there is no ambiguity in ordering the 
reggeon vertices. In fig. 4b, the triple vertices 1 and 2 may occur in two configura- 
tions. Vertex 1 can be above vertex 2 (as shown in fig. 4b) or, alternatively, below 
vertex 2 (fig. 4~). Both configurations must be taken into account. One then finds 
in each diagram a uniquely defined “branching” vertex with the following property: 
it is the highest vertex in the diagram which connects the two branches leading to 
the upper right- and left-hand ends. In fig. 4a, the branching vertex is the central 
triple-Regge vertex. In figs. 4b and c it is vertex 1 and 2 respectively. 

(iv) Passing fhrough the diagram from the bottom to the top (fig. 4), draw a 
horizontal cutting line for each intermediate reggeon state. For a n-reggeon state 

* We use the formulation given in ref. [8]. 
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Fig. 4. Reggeon calculus for the triple-Regge region: the horizontal dotted lines denote the 
various intermediate states for which a factor [j + (n - 1) - ZZ&(Y(~~)]-* is needed. (cf. the 
rules given in sect. 2). 

below the branching vertex write a factor 
n 

u + (n - 1) -2 4w-’ . (5) 

For intermediate states of the upper left and right branch with nr and nz cut reggeon 
lines write 

nr 

[il + Cnl - l> - 2 a(ki)l-1 3 (6) 

n2 

Liz + k2 - 1) - 2 Mwl 3 (7) 

respectively. In eqs. (5)-(7) cr(ki) are the trajectory functions of the reggeon lines 
intersecting with the horizontal cutting lines. 

(v) For each 2-particle-n-reggeon vertex write a factor (i)“-‘N,. The branching 
vertex obtains the (real) factor rb, and each of the remaining triple-Regge vertices 
is denoted by ir/d2 (the 42 is due to our definition of r in the pole diagram eq.@)). 

(vi) For the exchange of n indistinguishable reggeons put a factor l/n!. 
We want to make a few comments about these rules. We have been using the 

word reggeon in order to indicate that these rules are valid not only for pomeron 
exchanges but also for reggeons such as p, rr, etc. The vertex factorsN, and r are, 
in general, functions of the momenta of the adjacent reggeon lines. What is impor- 
tant is that, except for the branching vertex they all are the same as in 2 + 2 reac- 
tions. This leaves rather little freedom for the parameters of cut corrections in the 
triple-Regge limit. 

After this brief review of the reggeon calculus we want to demonstrate in what 
sense initial and final state absorptive corrections are contained in reggeon diagrams. 
We apply the cutting rules of Gribov et al. [lo] to the M2 discontinuity of the 3 + 3 
scattering amplitude and evaluate the discontinuity in one of the s-variables, say 
the left one. This is equivalent to considering the process a + b --f c + X as a two-body 
reaction and looking for the various s-channel discontinuities. As an example we 
analyse the graph of fig. 5a. Applying the argument of ref. [lo] to the left-hand side 
of the diagram, we consider all possible ways of cutting the left-hand side from the 
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Fig. 5. M2 and s-discontinuities in a Regge-cut diagram. In (a) the cut denotes the M2 discon- 
tinuity according to eq. (1). In (b)-(d) we consider the part on the left-hand side of the cut (a) 
and take the discontinuity ins. (b) represents the diffractive cut, (c) the multiperipheral and (d) 
the double multiperipheral cut. 

top vertex down to the bottom vertex. For the cutting line running between the 
reggeon lines, we obtain the intermediate states of fig. 5b. When the cut runs along 
one of the reggeon lines, we arrive at the configuration of fig. 5c. Finally, the cutting 
line may pass simultaneously along both reggeon lines, and this corresponds to fig. 
5d. In fig. Sb we easily recognize the initial state absorption and one of these final 
state absorptions which we have described above (fig. la). The other types of final 
state absorption are obtained if we perform a similar cutting analysis for other reg 
geon graphs. From the analysis of fig. 5, however, we learn that other configurations 
than final or initial state absorption are of the same size and cannot be disregarded. 
The reggeon calculus automatically includes all these contributions. 

3. Quantitative analysis of pomeron cuts in pp + pX 

In this section we use the reggeon calculus which we have described in sect. 2 in 

order to calculate various pomeron graphs for the process pp + pX. In particular we 
are interested in the question which graphs are relevant at present day energies. This 
is not meant to be a fit to experimental data, but an attempt to classify the differ- 
ent types of pomeron cut corrections and estimate their size at available energies. 
Details of our calculations are contained in the appendix. 

We start with the pole graph (fig. 3). Its contribution to d2a/dtdM2 is 

(8) 

We take o!(t) = 1 + a’t with QI’ = 0.25 GeVm2. Calculations in reggeon field theory 
[ 121 have shown that in order to give the pomeron a renormalized intercept at one 
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Fig. 6. Eikonal type pomeron cut corrections to the pole graph (eqs. (12) and (13)). 

a bare intercept above one is needed. Using the value of ref. [ 121 for the shift of the 
intercept we found that up to ISR energies our results do not alter significantly if 
we use the critical intercept rather than 1. For the sake of simplicity we therefore 
will take the pomeron intercept at 1. For both the pomeron-particle-particle coupl- 
ingg(t) and the tripe-pomeron coupling r(tl,tz,ts) we assume an exponential 

t-dependence: 

g(t) =go eeAlt112 , (9) 

r(td2J3) = i-0 e 
-B(ltll+lt2l+lt3l)/2 

(10) 
The values for the constants A and B are taken from ref. [6]: A = 3.5 GeVe2, B = 
1.0 GeVe2. For go and ro we use go = 10 GeV-I, ro = 0.50 GeV-I. The value of r. 

is taken from a pomeron pole fit to the inclusive cross-section data. This value, how 
ever, is uncertain by a factor of 2. Furthermore, our analysis will show that a pome- 
ron pole fit to the data is not well justified, since pomeron cut contributions in the 
triple-Regge region are also very important. All this makes the numerical value for r 

rather uncertain. For our qualitative estimate we choose a value that lies roughly 
half-way between the lowest and highest value obtained from the pole fit. Using the 

expressions (9) and (lo), we rewrite (8): 

F 
h-0 

po’e = i67M2(cos $nq2)2 
exp [-(A + B + 2cu’ ln(s/M2))q2] . (11) 

In the following we will, for simplicity, neglect the y2 dependence of the denom- 
inator and replace cos inq2 by 1. 

Next we consider the graphs of fig. 6. The explicit calculations are given in the 
appendix. Here we only quote the results at q2 = 0. For fig. 6a we obtain 

g; 
Fpole 167ra’[ln s -tin + (2.4 + B)/2a’] ’ 

02) 

and for the graph of fig. 6b 

1 
X 

4(ln s-$int(24+B)/2crf)(ln s+$in+(2A+B)/2a’)-(ln M2t(_4tB)/2a’)2 ’ 

(13) 
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Spore stands for the expression in eq. (11) at q2 = 0, and we have presented our re- 

sults in a form which emphasizes the size of pomeron cut diagrams relative to the 
pole contribution. In writing down the expressions for fig. 6a and fig. 6b, we en- 
counter two-pomeron-two-particle and three-pomeron-two-particle coupling func- 
tions. They contain the finite-mass part of intermediate states of the pomeron-par- 
title system. In a first approximation, one takes into account only the elastic inter- 
mediate state: 

N2(s2A2h - Q2) =&2MkJ - W2)/d2 3 (14) 

M429W, (4 - kl - k212) = &&MWf(4 - kl - k2j2> . (15) 

A way to include inelastic contributions is to multiply (14) by a number h > 1 and 
(15) by h2. However, due to the relative smallness of inelastic contributions, this 

number X is only slightly above one and does not affect the outcome of our analy 
sis. We will therefore use (14) and (15). Another point we want to comment on is 
the signature and phase structure of our diagrams. In the representation (4), the en- 
tire phase structure is exhibited in the two signature factors, and the partial wave F 

is real. When the signature factors are written as 

j+ = ePini12 /sin&$ , (16) 

the whole’phase structure is contained in the first factor on the right-hand side of 
eq. (16). Its influence on the size of our diagrams turns out to be very small. The 
results given in eqs. (12) and (13) have been calculated including the phase factors 
of eq. (16), and the result of this are the $i?r terms in the denominators of (12) and 
(13). For the numerical estimate we neglect them. 

Using the values for go, ro, cy’, A and B given above, we compute the factors multi 
plying Fpole in (12) and (13). They give the weight of the pomeron cuts relative 

Table 1 

Diagram s = 20 s = 1000 s = 3000 

fig. 6a 
fig. 6b 
fig. 3+2 X fig. 6a 

+ fig. 6b 
fig. 8a 
fig. 8b 
fig. 9 
fis. 10 

M2=4 M2= 10 Iv?2 = 200 

-0.42 -0.42 -0.35 
0.19 0.19 0.13 

p.35 

-0.04 
0.018 

-0.05 
0.025 

0.35 0.43 

-0.07 -0.14 
0.028 0.046 

-0.02 -0.036 
0.044 0.07 

M2 = 500 

-0.35 
0.13 

0.43 

-0.17 
0.056 

-0.014 
0.088 

M2 = 600 M2 = 1500 

-0.34 
0.12 

-0.34 
0.12 

0.44 0.44 

-0.16 -0.19 
0.049 0.06 

-0.16 a) -0.19 a) 
0.08 0.098 

a) Here we use M2 = 5 and M2 = 2, since for this diagram s/M2 plays the same role as M2 in fie 
other case. 
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Fig. 7. Pomeron cuts which lead to the eikonal formula, eq. (17). 

with respect to the pole contribution. The results are listed in table 1. Looking at 
the numbers and its variation over the range of energies, one notices that this kind 
of pomeron cut contribution is rather large at low energies and only slowly decreases 
as the energy goes up. This has already been found by the authors of ref. [6]. The 
reason why the two-pomeron cut in the triple-Regge region is much larger than the 
two-pomeron exchange in the two-body reaction pp -+ pp can be traced back to 
simple combinatorics. In two-body scattering the two-pomeron exchange requires 
a l/2! because of statistics, whereas this factor is not present in the two-pomeron 
cut in the triple-Regge region. In the fourth row of table 1 we show the sum of all 
four contributions, the pole graph, fig. 6a and its complex conjugate, and fig. 6b. 
According to our rules, fig. 6a occurs with a negative sign, while fig. 6b is positive 
again. Because of the strong two-pomeron cut, the result is very small. It is, roughly, 
the square of [pole graph minus the graph of fig. 6a]. 

There are two conclusions to be drawn from this result. The first is that estimates 
of the size of cut corrections, based on the experience from two-body physics, can- 
not directly be applied to the triple-Regge region. Secondly, because of the strength 
of the two-pomeron cut correction, higher orders of pomeron exchanges need to be 
taken into account (fig. 7). This suggests to use the eikonal formula for the sum of 
n-pomeron exchanges, derived by several authors [4,6,1 I]. It is easy to obtain this 
expression with the reggeon calculus, and we derive it in our appendix: 

with 

Y(s/M2,M2 ,bl,bz) 

(17) 

(18) 
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la1 lb1 

Fig. 8. Enhanced diagrams of eqs. (20) and (21). 

SW) = exp (19) 

This eikonal formula holds for the “elastic” inclusive reaction a + b -+ c t anything 
with c = a, where only pomerons are exchanged. It agrees with the expression of 

ref. [6]. For the case c f a, however, the basic exchange is that of a non-vacuum 
reggeon, and the eikonal approximation does not precisely specify how to approxi- 
mate the vertex particle a - particle c - n pomerons-reggeon. The basic assumption 

of the eikonal approximation means that, between the successive pomeron ex- 
changes, only the elastic intermediate state should be included. But in our case this 

leaves it open whether to use (g,)“ganC/2”‘2 organ,(gC)“/2”‘2 for the vertex (hereg,, 
g, are the pomeron couplings to particle a and c resp., and ga& the reggeon particle 
coupling). Using the latter choice, one arrives at the result of ref. [4]. The expression 
of ref. [ 1 l] can hardly be justified from this point of view, since contributions appear 

to be overcounted. 
In practice, one expands the exponentials of S(s,b) in (17). Table 1 then tells us 

that at low energies this expansion will converge rather slowly, whereas at higher 
energies the convergence will improve. 

The next class of diagrams we wish to consider are graphs with one additional 
triple-pomeron coupling, in particular the enhanced diagrams. The first graph is that 
of fig. 8a. It is the (simply) enhanced version of fig. 6a *. 

As to the square of this graph, one has both fig. 8c and fig. 8d. The first one con- 
tains a four-pomeron coupling, the size of which we do not know. The other one is 
double enhanced and contains already three triple-pomeron couplings. In our pres- 
ent considerations we will omit both of them and rather include that of fig. 8b. It 
contains a pomeron cut contribution on both sides of the diagram and has one more 
triple-pomeron coupling than the diagrams considered previously. The expressions 
atq2 = 0 of figs. 8a and b have the form 

F -&-3 ln 
In s + (A + 2B)/2cr’ 

Pole 167~’ go ln(s/M2) + (A + 2B)/2a’ ’ 
(20) 

* Fig. 8a is obtained from fig. 6a by inserting a pomeron exchange into the pomeron-particle 
pomeron-particle amplitude at the bottom of fig. 6a. This makes the graph of fig. 8a more 
singular than fig. 6a and “enhances” the high-energy behavior of fig. 8a. 
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for fig. 8a, and for fig. 8b 

Fp& ln(1 + C2), 

c = 
1 

)( 

c, =4C:121nM2[4(~ flns)(F +1n(s/M)) 

(21) 

Let US first compare eq. (20) with (12). For large In s, eq. (12) behaves like 
Fn,,r,/ln s, whereas formula (20) goes with Fpole In In s (for fixed s/M’). This dem- 
onstrates the well-known fact that enhancement “enhances” the large-s behavior 
by a factor In s In In s. For finite s, however, the enhancement effect is lowered by 
the small triple-pomeron coupling r as well as the log factor in (20). For small In s 

and ln(s/M2), the argument of the log factor is close to one and leads to a rather 
small value of eq. (20). The same argument also applies to eqs. (13) and (2 1). 

Numerical values for the factor multiplying Fpole in (20) and (21) are listed in 
table 1. Comparing the graphs of figs. 6a and 8a, we find that at low energies en- 

hancement (i.e. the transtition from non-enhanced graphs to enhanced ones) reduces 
the magnitude of a graph by a factor &. At highest ISR energies, however, the en- 
hanced graphs reach already t of their non-enhanced counterparts. The same relation 

holds between enhanced and non-enhanced diagrams that have pomeron exchanges 
on both sides (figs. 6b and 8b). We also notice a variation with M2. The enhanced 
graphs become most important for large values of M2. Our main conclusion is that, 
for s 2 1000 GeV’, enhanced graphs (i.e. those with one additional triple-pomeron 
coupling) start to become important. Depending on the desired accuracy of the 
analysis, it may even be necessary to include graphs with one more triple-pomeron 
coupling. 

There are still two diagrams left that have two triple-pomeron couplings (figs. 9 
and 10). The first one at q2 = 0 is obtained from eq. (20) by interchanging ln(s/M2) 

Fig. 9. The enhanced graph of eq. (22). 
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Fig. 10. The enhanced graph of eq. (23). 

and In M2 : 

F gi 10 -- 
pole 167~ go 

In In s + (A t 2B)/2a’ 

In M2 t (4 + 2B)/2&’ . 
(22) 

For the other one we obtain 

CT =A- ~ tlns, 3 a’ 

c 
H 

A+B )I 
-1 

+lnM2 ---,+21nM2 
a: a! 

(23) 
Again we find that at low energies they are about 10% of non-enhanced diagrams 
and go up to 50% at s = 3000 GeV2. The graph of fig. 9 also rather strongly depends 
on M2. In contrast to that of fig. 8a, however, its size becomes larger for small M2, 
i.e. large s/M2. In fig. 8a, the enhancement affects the+channel, and M2 being the 
energy variable conjugate to j must be as large as possible in order to stress the effecl 
of enhancement. In fig. 9 it is the jr channel in which enhancement takes place, and 
s/M2 now plays the same role asMa before. 

Finally, a word is in place about the q2 dependence of our diagrams. For the pole 
graph, the q2 dependence is shown in (11) and has, for small q2, the form ePq2,eff 
with 

(Y,R = A + B t 2a’ ln(s/M2) . (24) 

Similarly, the q2 dependence of the other graphs can be described (at least for small 

q2) by an exponential eeq24fl, where CK,R depends on M2, s/M2 and varies rather 
strongly between the different graphs. In particular the diagrams of figs. 6b and 10 
have a slope much smaller than the pole diagram. For larger values of q2, therefore, 
these pomeron cut diagrams will be more important than the pole graph. 

4. Conclusions 

To summarize the main results of our analysis, we order all our diagrams with 
respect to two properties. The first is the number of pomerons going down from the 
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Fig. 11. A simply enhanced graph with an eikonal type cut correction. 

top vertex to the bottom vertex (“eikonal pomeron”), the other the number of 
triple-pomeron couplings (“degree of enhancement”). At low energies, quite a large 
number of eikonal pomerons needs to be included, whereas enhancement is still ir- 
relevant because of the smallness of the triple-pomeron coupling. When the energy 
goes up, the convergence of the eikonal expansion slowly improves, and, at the same 
time, enhanced diagrams start to be relevant. At very high energies, they eventually 
will be the only important contributions, and reggeon field theory is necessary to 
sum them up. Within this general picture, our analysis of the triple-Regge region 
determines where we stand with our present day energies (s - 3000 GeV2). For an 
adequate description of the inclusive cross section, we still need several terms of 
the eikonal expansion. Because of the combinatorics the convergence is worse than 
in the 2 + 2 case. On the other hand, eikonal graphs alone are not enough. Diagrams 
with at least one, if not two, additional triple-pomeron couplings must be included. 
Combining these two groups of diagrams, we conclude that also enhanced graphs 
with eikonal pomerons (fig. 11) have to be taken into account. 

In so far the situation is quite similar to that found in the analysis of utot of pp 
scattering [13]. What makes it different is the existence of an additional degree of 
freedom, the relative size of M2 and s/M’. In particular the enhanced diagrams do 
depend on these variables, and depending on the kinematical region inside the triple- 
Regge region, different diagrams are the most important ones. On the whole one 
may say that cut corrections in the triple-Regge region have a much richer structure 
than in two-body reactions. 

Appendix 

In this appendix we give a few details of our calculations. First we consider the 
graph of fig. 6a. The partial wave F(jr,j2,j,~) follows from the reggeon calculus and 
has the form 

1 
F(i, ,.i,,i4 = m j- d2kN2.N2. r.g 

1 1 1 

X cu((q k)2) a(k2) 1 ~(4~) 2a(k2) 1 . jr - - -- + j2 - j - + 
64.1) 
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We insert this expression into the representation (4) and perform the j-integrations: 

X Jd’k N2. N2. r. g e-a’(c-in/2)[(q-k)2+k2] e-2a’rlk2 
> 

[ = 1n(s/M2) , v=lnM2. (-4.2) 

Using the formulas (9), (10) and (14) forg, r, and N2 respectively, (A.2) becomes 
1 2 -ffq 1 e-ina’q2/2 ~ 

2(2n)2 

X Jd2 k glro exp 

-2a’ q+$ k2 
( )I 

(A.3) 

The k-integration can be transformed into a Gaussian integral and for 4 = 0, leads 
to eq. (12). 

For the reggeon diagram of fig. 6b we proceed in the same way. For the partial 
wave we find 

Wb~,JJ) = (2nj4 --!- ld2kJd2k’N2.N2.Ng.r 

1 
X 

1 

iI-~(k2)-a(q-k)2)+1 j2-a(k’2)-cr((q-k)2)+l 

X 
1 

j - a(k’) - a(k’2) - a((k - k’)2) t 2 ’ 

Doing the j-integrations we obtain 

(A.4) 

d20 1 
- =& ggro4(2@4 dtdM2 s d2kd2k’ 

X exp {-(u’(t - $irr) [(q - k)2 + k2] - a’@ + fin) [(q - k’>2 + k”] 

- (y’q [k2 t kf2 t (k - k’)2] - ;(A t B) [(q - k)2 t (q - k’)2 + (k - k’)2] 

-A[k2+k’2]}. (A-9 

This leads to (13). 
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Next we derive the eikonal formula which represents the sum of graphs of fig. 7. 
For n pomerons on the left-hand side and m pomerons on the right-hand side the 
reggeon calculus leads to 

or(&--1 1 
rNn+~Nm+1Nn+m+I~M2~d(k~+kb)2)-~k&c4kb2) 

(-4.6) 

In the eikonal approximation only elastic intermediate states between pomeron ex- 

changes are taken into account. Formally this is achieved by approximating the 
two-particle-n-pomeron vertices by 

Ar, = 9/2(=1)/a . 
(A.7) 

Using this approximation in (A.6) and expressing the two delta-functions in (A.6) 
by an impact parameter integral, one finds an analytic expression for the sum over 
n and m: 

d2c 

dtdM2 
= -&l~~(~2~12 Sd2b d2b’ eiq(r’-b’) 

X 5 (q p d2k ,-ikbg2(k2) p(k2)-I]” 

n=O n. 2(27r)2 

sa(k’2)-1 ,-ik’bfg2(kf2) 

1 
m 

d2kOd2kb e-i(kOb-kbb’) 
or(k;)+or(kb?)-2 

(W4 

x (My4Wo+“b)2b2 * r.g*g*g. 

This is just eq. (17). 
Next we come to the enhanced graphs. Fig. 8a yields 

F(i~J2~jA = _$$ N2.g-g.r.r/d2 

X 
1 1 

jr - cu((q - k)2) - (u(k2) + 1 i2 - ~44~) 

X 
1 1 ____ 

j - 2a(k2) + 1 j - a(0) ’ 

(-4.8) 

(A-9) 
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The last two denominators are combined: 

1 1 r 1 

j - 24k2) + 1 i_1= s dx (j . - 1 + 
0 

2xCY’k2)2 

111 

(A.lO) 

It is now easy to perform thej-integrations: 

d20 1 
m=sg:rao _/ dx In M21g2 

X exp {-CY’~ [(q - k)2 t k2] - 2nxa’k’ - +(A +B)[(q-k)2+k2]-Bk2}. 
(A.1 1) 

The k-integral is of Gaussian type, and the x-integral is done at the end. The result 
is (20). 

The remaining graphs (fig. 8b and fig. 10) are evaluated in the same way, and we 
give only the expressions for the partial waves. For fig. 8b we find 

1 1 
X 

j2 - a(k12) - a(@ - k’)2) + 1 j - a(k’) - a(k’2) - a((k - k’)2) + 2 

X 
1 

j - 2a(k12) + 1 * 

The expression for fig. 10 is 

F(j1’j2’j9t) = + s d2kd2k’ N2.N2.N2*r.r 
(2&/2 jl _ a(k2) _ a((q _ k)2) + 1 

X 
1 1 

j2 - or(kf2) - (~((4 - k’)2) + 1 j - 2a((k - k’)2) + 1 

X 
1 

j - a(k2) - a(k’2) - a((k - k’)2) + 2 ’ 

(A. 12) 

(A.13) 
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