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Abstract. It is shown that physical positivity holds in Wilson's lattice gauge 
theories, i.e. transition probabilities between gauge invariant states are non- 
negative and the quantum mechanical Hamiltonian has real eigenvalues only. 

I. Introduction 

Ever since lattice gauge theories were proposed by Wilson [11 there was the 
question, wether the scheme will indeed yield an acceptable quantum field theory in 
the continuum limit. One o f the required properties that does not obviously hold in 
the lattice theory is physical positivity 1. In this paper we are going to explicitly 
construct the quantum mechanical space of  states for euclidean lattice gauge 
theories. We will also derive a formula for the transfer matrix, i.e. the operator e-"~, 
where H is the q.m. Hamiltonian and a is the lattice spacing. 

Euclidean lattice gauge theories are defined as follows (for details, the reader is 
refered to Wilson's papers). We consider a cubic, four dimensional lattice, whose 
points will be labelled by four integer numbers n = (n o, n 1, n 2, n3), Inol -<_ M, tn/t < L (i 
= 1, 2, 3), thus giving a total of(2M + 1)(2L + 1) 3 sites. At each lattice point n there is 
attached a classical Dirac spinor % (the quark field) whose entries are elements of a 
Grassmann algebra (cp. Appendix). The gauge field U(n, 12) (# =0, 1, 2, 3) sits on the 
links between the lattice sites. It is an element of the gauge group G, which is taken to 
be SU(N). Correspondingly, the quark field tp, carries a colour index c~, ~ = 1 ..... N. 
To keep the reasoning as transparent as possible, we will assume that there are no 
flavour degrees of freedom. Our results are however true for the more general case 
aswell. 

The dynamics of euclidean quark and gluon fields can be expressed in terms of 
their correlation functions (euclidean expectations, Schwinger functions): 

(~o ~ ... ~m> = z -  ~ j' ~ g ~ v 2 ~ c v q ) l  ,.. % eA . (1) 

1 Osterwalder and Seiler have announced a result concerning this question [5] 
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The qh's are any of the fields ~p,, ~,, U(n, #), U+(n, #). The quantity A is the action [1]: 

a =~ -~.~.+K y~ [@,,0 +~.)V(n,~)~.+~+~.+~(1-~.)Cr+(n,~)~] 
#=0 

+ ½go 2 2 r r  [ U(n, t~) U(n +/~, v) U + (n + ~, #) U + (n, v)] t (2) 
/ 

where K is a dimensionless parameter related to the quark mass and g0 is the bare 
quark-gluon coupling constant. Finally, Z is the partition function: 

Z =S ~ U ~ t ¢ ~  e~ (3) 

and ~U,  NF, ~t~ denote the product measures I ]  dU(n,#) (dU is the invariant 
rt, 

measure on the gauge group G), [ I  dl#,,~ and F[ d~n,~ respectively. The normali- 

zations have been choosen such that f dU = f d~p~p = i dgpYp = 1 2 

Letting M and L tend to infinity we obtain the infinite volume lattice gauge 
theory. Hopefully, this theory has a critical point at K = 1/8 and go =0. The 
continuum gauge theory can then be thought of as a certain limit of the lattice 
theory for large distances (in lattice units) keeping K and go near their critical 
values. 

Physical positivity can be expressed in terms o f the euclidean expectation values 
defined above. This is the celebrated Osterwalder-Schrader positivity condition 
[2]. It states that if (9 is any polynomial of positive time (n o > 1) fields tp, 7p, U, and 
U +, we should find 

(0((9 +)(9) > 0. (4) 

Here, 0 denotes euclidean time reflection and (9+ is the complex conjugate of(9 (e.g. 
~+ =Y0~). It will be proven in Section II that the expectations (1) indeed satisfy this 
positivity condition provided 0 < K < 1/6. The Hilbert space ~ of physical states 
can then be constructed in a standard fashion. As a linear space ~ is just the set g+ 
of all gauge invariant polynomials (9 of positive time fields 9, ~P, U and U ÷. The 
inner product in 24 ~ is taken to be: 

(e~,e~)= <0((9;~)(9~>; (9~,(92~+ (s) 
(division by the subspace of all null vectors and completion are understood). The 
q.m. Hamiltonian can now be found by identifying e -~H with the operator T that 
shifts the elements o f g + by one lattice unit in the positive euclidean time direction. 
In order that this procedure yields an acceptable Hamiltonian we must make sure 
that T > 0. For a continuum field theory this requirement is automatically fulfilled 
whenever (4)holds. In the lattice case an additional argument is needed. 

The construction of the space of physical states of a euclidean field theory via 
the Osterwalder-Schrader positivity property of the euclidean expectations is 

2 Boundary conditions will be specified in Section II 
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generally applicable. However, for a lattice theory there is a more natural 
procedure. Having a momentum aswell as a volume cutoff, it should be possible to 
set up a canonical, hamiltonian formalism for equal time fields, such that the 
euclidean expectations become vacuum expectation values of appropriately 
translated time zero fields. Positivity (4) then holds automatically and ~f~ is equal to 
the time zero quantum mechanical Hilbert space. 

At the cost of  fixing a convenient gauge, one would also like to have a space of 
states ~e ~ J(Y where the fundamental fields can act. In the euclidean framework the 
gauge can be fixed (or partly fixed) by modifying the definition (1) of  the expectation 
values as follows: 

(01... q~>g = Z2 t ~ ~ U@~NO~ol... q~,,eag(U)- (6) 

The function g is called the gauge fixing function. In order that the physics is not 
affected by the introduction of g, we must require that 

<e>~ = <e> (7) 

for all gauge invariant polynomials (9 of  the fundamental fields. 
I f  positivity (4) is now true for all combinations (9 of positive time fields, we can 

construct ~ in the same way as ~ .  
An example of  an admissable gauge fixing function is3: 

g(U) = H 6(U(n, 0 ) -  1) (8) 
n 

i.e. this is the gauge, where the time component  of  the gauge vector field has been set 
equal to zero. 

In Section II we are going to use this gauge, establish a canonical scheme for 
equal time fundamental fields ~v,, t-p,, U(n,j) (] = 1, 2, 3), give an expression for the 
transfer matrix T in terms of these operators and finally prove that the 
corresponding Schwinger functions are equal to the euclidean expectations (6). 

II. Construction of  the Quark-Gluon Quantum Mechanics 4 

A. Definition of the Time Zero Hilbert Space 

In this paragraph we consider a three dimensional lattice with vertices 
n = (n 1, n 2, n3), nie ~, ]nil <L .  At each site n there is an operator Dirac spinor ~b,. 
With the links between the lattice points we associate an N × N-matrix U(n,j)~, 
(j = t, 2, 3) of  gauge field operators. We assume periodic boundary conditions, i.e. 
there are also gauge fields on the links connecting boundary points of  the lattice. 

The time zero fields ~b,, U(n,j) act in a Hilbert space Jg  that is the tensor product 
of  a pure  fermion space of  states 22gv and a pure gauge field Hitbert space Jr%. 

JYG is easily described. It is just the space of all square integrable, complex 
valued functions f(U(n,j)), i.e. since there are 3(2L+1) 3 links we have 

3 In case cyclic boundary conditions are choosen for the gauge field, Equation (7) is true only in the 
infinite volume limit, provided the color symmetry is not spontaneously broken (cp. Section II) 

4 Quark-Gluon quantum mechanics on a (space-) lattice has been considered by Kogut and Susskind 
[9] 
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~G-~-[L2(G)-] 3"(2L+ 1)3" The operator (J(n,j)=e acts as a multiplication operator on 
the wave functions f(U): 

[ (J(n,j)~p f ]  (U) = U(n,j)~p. f(U). (9) 

We will henceforth always work in the representation for vectors of,,~G described 
here and thus agree to write U(n,j)~B instead of (Y(n,j)~e respectively U + (n,j)=p for 
the operator which multiplies f(U) with U+(n,j)~e = U-l(n,j)~p. 

Sufficiently well behaved operators A in ~ G  can be represented with the help of 
an integral kernel K A ( U  , U ' ) :  

(Af)(U) = ~ 1-[ dU'(n,j)K A(U, U') f(U'). (10) 
n,j 

This will be the case for the transfer matrix to be studied later. 
The fermion Hilbert space JfF is the Fock space built from an operator spinor 

field 2, that satisfies canonical anticommutation relations 5 : 

~ +  2raft} = {Z,~, Z,.,} --0. (11) 

The field ~ ,  acts in ~ = ~ v ® ~ a .  It does not have a canonical anticom- 
mutator, but 

{Vno~, ~)mfl} = ( B -  l)  . . . .  fl, {Wna, ~)mfl} = {l~no:, Wmfl} = 0 '  ( 1 2 )  

The matrix B . . . .  p depends on the gauge field and is given by 

B . . . .  e=6.m6~ - K  ~ (U(n,J)~a.+Lm+ U+(m,J)~a,,+Z.) " (13) 
j =  1 ,2 ,3  

It is an easy exercise to prove that B . . . .  ~ is hermitian and strictly positive for any 
configuration of gauge fields, provided [K[ < 1/6. In fact, B >  1 - 6[K[. Thus B-  
exists and (12) is well defined. The restriction [K] < 1/6 already occurs in the free field 
case [3-] and is unessential, because K is near 1/8 in the continuum limit. 

An explicit representation of ~, in terms of the canonical field 2 is : 

(B-1 /2]  ~, ; A + &+ ~ / ~ - 1 / 2 ' 1  ~,= = Z ,  , . . . .  ,/~m, ~P.~ = Z (14) Amfl~, *~" lmfl,n~ " 
mfl m e 

Note that B does not act on Lorentz indices. 
One can perform gauge transformations in J r ,  too. They correspond to time 

independent gauge changes in the euclidean framework (such gauge transfor- 
mations survive, when the gauge fixing function (8) is introduced). 

For any field V, of SU(N)-matrices there is a unitary operator R(V) such that 

[R(V)f](U(n,j)) =f(V~ 1U(n,j)V"+? for all f ~  J f~  
(15) 

R(V)~.R(V) - ~ = V~ 1. ~n. 

5 e is a shorthand for colour and Lorentz indices. Of course, when we write U(n,j)~¢ resp. (7j)~¢ there 
are only colom" resp. Lorentz indices involved. The v-matrices used are euclidean ones, i.e. 

An explicit representation is given in Equation (32) 
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By its definition B is gauge covariant. Therefore, ~b transforms as 2 under gauge 
transformations. An operator (9 is called gauge invariant, if it commutes with R(V). 

For  later convenience let us define a normal ordering prescription for operators 
that are polynomials in t~, ~b +. We set 

N[cp] = the same as q~, but the fermi operators reordered such that all 
the fields (1 + 7o)~b, ~b + (1 - 7o) stand to the left of all operators 
(1 - ?,o)t~, t~+(1 +7o). (16) 

For  example, N [ ~'~b] = ½(6(1 - y0);p - v)r(1 + yo)V) ~') 6 
It's clear that to any classical composite field ~p involving equal time tp's, t~'s, U's 

and U+'s we can uniquely associate an operator in fig by replacing the classical 
variables by the corresponding time zero operators and performing the normal 
ordering. 

B. Definition of the Transfer Matrix ~F 

We will now give an explicit expression for the transfer matrix T as an operator 
acting in ~ .  In the next paragraph it will be verified that ~r is indeed the transfer 
matrix of the euclidean theory discussed in Section I. 

With respect to the gauge field T is an integral operator. Its kernel Kr(U, U') is 
however an operator in the fermion Hilbert space ~ v .  It has the following 
structure : 

KT(U, U')= T;(U). T~(U). S(U, U'). Ta(U'). Tv(U' ) . (17) 

T v is the only part of T that depends on fermion operators : 

TF(U ) = det (2KB) 1/~ exp (~-½(1 - Yo)C)~) e x p ( -  )~. M2). (18) 

The matrix C . . . .  ~ is similar to B . . . .  ~ (see footnote 5): 

C . . . .  e -  ~ ~ {U(n,j)~,~(7)=~cS,,+j,,,- U+(m,j)~(7)~3,,,+i,.}. (19) 
j =  1,2,3 

C is a skew-hermitian matrix independently of the gauge field configuration. The 
matrix M is equal to 1/2 lnB/2K and hence hermitian (we assume 0 < K <  1/6). In 
Equation (18) summation over all indices nc~ resp. m E is understood. 

The remaining contributions to Kr(U, U') account for the plaquette terms in 
Equation (2): 

T~(U)=exp(2go)-2~. ~ rr{U(n,i)U(n+Lj)U+(n+;i)U+(n,j)}, (20) 
n i ~ j =  1,2,3 

S(U, U')=exp½go2y,  ~. {Tr[U(n,j)U'+(n,j)]+Tr[U'(n,j)U+(n,j)]}. (21) 
n j =  1,2,3 

The relevant properties of  the transfer matrix thus defined are summarized by 
the following theorem. 

6 @T is the transpose of ~b and the sign in the second term is due to fermi statistics 
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Proposition 1. a) "1" is a selfadjoint, bounded operator in o~. 
b) It is gauge invariant under the restricted class of gauge transformations 

discussed in the preceding paragraph. 
c) It is strictly positive, i.e. all its eigenvalues are larger than zero. 

The only not obviously true statement made here is the claim that T is strictly 
positive. This property of T allows one to define a Hamiltonian H by setting: 
H = - t/a In ~c (a is the lattice constant). H is bounded and has real eigenvalues only. 

To prove the proposition, we first observe that it suffices to verify that 
(X[ T[X) > 0 for all nonvanishing vectors IX)~ it ' .  But, from Equation (17) and the 
fact that T G and T F are bounded and invertible, we see that it is enough to show strict 
positivity for the integral operator S that acts in WG. Our task is furthermore 
simplified by noting that S is a product of identical operators, one for each link. 
Thus we are left to prove that 

d Ud U'f*(U) exp½g o 2 {Tr(U-1 U') + Tr(U-1 U') + } f(U') > 0 (22) 

for all square integrable nonvanishing functions f on the gauge group G = SU(N). 
This is easily done. For, the kernel in (22) can be expanded in a Fourier series on the 
group G: 

exP½go2{TrV+TrV+}= ~ c~)~(~)(V) (V=U-1U') .  (23) 

is the set of all irreducible representations of G and Z (~) is the character of the 
representation v~ G. In order that (22) holds, it is necessary and sufficient that the 
numbers c~ are all positive. 

To calculate the c]s we expand the left hand side of Equation (23) : 

exP½go2{TrV+TrV+} = ~ a,~(TrV)"(TrV+) ", % , > 0 .  
n ,m=0 

Now, (TrV)"(TrV+) " is nothing else than the trace of the tensor product 
representation of SU(N) that is composed of n quark and m antiquark repre- 
sentations. Reducing out the tensor product mentaly, we find 

(Tr V)"(Tr V+) ~ = 2 c,,(n, m)Z~(~3 

where c~(n, m) is just the number of times the irreducible representation v occurs in 
the tensor product of n quark and m antiquark representations. Hence, 

c v= ~ anmC~(n ,m) 
n , m  - -  0 

is nonnegative. It must be positive, because all irreducible representations o f S U(N) 
can be obtained by reducing out tensor products of quark representations [4]. 

C. Reconstruction of the Euclidean Expectation Values 

Given any polynomial q~ of the time zero fundamental fields we define its time 
translate q~t by 

~ t=  ~ T - '  t= - M ,  - M + I , . . . , M - 1 ,  M.  (24) 
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The Schwinger functions of a set q$1,tl, .... qSk,t~ of  such operators with t 1 <... <t  k 
are I-2] 

S(4~l,,,...qSk,,,) = ~  1 T r { ~ 2 ~ +  1~1,, ' --.dk,,,} 

= ~ - i  T r  { T "  +M(~I ~Ft2-Q(~2 ... ~k~F M+I - ' k }  (25) 

where ~ = T r  ~C 2M+ 1 
Letting M tend to infinity we get 

S(c~l,tl--. 4;k,t~) = (Tr Po) -1 Tr {Poq$1,~1 ... 6k.tk} • (26) 

Po is the projector on the lowest energy subspace. If the largest eigenvalue of ~ris not 
degenerate, (26) becomes 

s ( $ , , ,  ... dk,Jo . (27) 
I0) being the physical vacuum state. I do not know wether this happens for lattice 
gauge theories. If not there could be spontaneous colour symmetry breaking. 

We wish to establish equality of the euclidean expectations defined in Section I 
and the corresponding Schwinger functions considered here. To this end we must 
specify the boundary conditions to be used in Equations (1) and (2). In the space 
directions of the lattice we assume periodic boundary conditions as was done for the 
time zero fields. As for the time direction, we choose periodic boundary conditions 
for the gauge field and anticyclic boundary conditions for the quark field: 

l p M +  1 , .  = - -  I ~ _ M ,  . ; IP_M_ 1,. ~--- -- tpM,,. (28) 

For  M ~ o o  these boundary conditions are no worse than e.g. periodic boundary 
conditions, provided the vacuum is unique 7. 

We are now ready to formulate and prove the reconstruction theorem: 

Proposition 2. Let c b 1 ..... Ok be a set of polynomials of  the classical fields % ~, U, and 
U + at equal times t 1 < ...<t k respectively. Assuming boundary conditions as defined 
above, we have 

( ~  ... ~ ) ~  = S(N1-6~], ... N[$~],k) (29) 

where g is the gauge fixing function (8) and N [ 6 ]  is the normally ordered operator 
(cp. §A)). 

Of course, this theorem proves Osterwalder-Schrader positivity (4) of the 
euclidean expectations (...}g, For  M-* oo one readily verifies that the Hilbert spaces 
~2f defined in Sections I resp. II A) can be identified naturally. Moreover, the space 
'-~ of gauge invariant states is equal to the s ubspace o f ~@ that consists o f the vectors 
which are invariant under the restricted class of  gauge transformations mentioned 
in §A). 

I do not consider the question of boundary conditions in euclidean lattice gauge theories as settled 
(physically). For, we know that there are topological sectors for the continuum gauge field [6]. Such 
sectors are easily missed, when choosing wrong boundary conditions for the finite volume theory. As an 
example for a similar situation we may take the lattice massive Thirring model, where a delicate 
dependence of the particle spectrum on boundary conditions has been observed [7] 



2 9 0  M .  L i i s c h e r  

To prove Proposition 2 we have to show that 

Tr { ~ + MNEq~ 1 ] ~ -"NEe 22... Nrq~kl fM ~1 -,~} 
= S ~ U~V~Cp ~1.-. ekeAg(U). (30) 

The idea is, to use a representation of T in terms of Grassmann variables as 
explained in the appendix. The integrations appearing on the right hand side of 
Equation (30) stand for the summations (sum over all intermediate states) needed 
when multiplying operators. The U-integrations are already there because the 
gauge field part of T is an integral operator. 

To explicitly write down the Grassmann form of ~r it is convenient to use the 
following variables : 

XI,n 
- l X 2 , n / .  } +  ~ + - + ~ . 
Z.=l~+ / ,  ----(xl,,,x2,,,Yl,,,,Y2,,) (31) 

lYl,.I 

(the colour index has been omitted). The two-spinors 2, and ~. are canonical 
operators and play the role the operators ~z do in the appendix. 

Choosing the representation 

7 o = ( :  _ ~ ) ;  7 j = i ( _ ; j ;  j) (crj'Pauli matrices) (32) 

we can rewrite Tr(U ) [Eq. (18)] as 

TF(U) = det (2KB) 1/4 exp (9' c2) exp ( - 2 + M2 + ~M2 +) 

where, according to (19)and (32),we have set C = ( _ c 0 ; ) ,  Using canonical 

anticommutation relations and expM = (2K)- 1/2B1/~ we find 

Tp(U) = det (2KB) 1/4 exp( - 2 + M 2  + ~MS' +) exp (2K)?B- 1/2cB- 1/22). 

Hence, by (A8), (Ag), and (A10), the Grassmann equivalent of Tr(U) + Te(U' ) is 

[ T~ ( U)7)(U')] (x +, y+ ; x, y) = det(B. B') 1/2 exp(2Kx + B - 1/2cB- i/2y + ) 

• exp(2Kx+B - 1/2B'- 1/2x- 2KyB'-  I/2B- 1/2y+) exp(2KyB'-  1/2c'B~- 1/2x). (33) 

With the help of this formula and Equation (A6) we can rewrite the left hand side of 
Equation (30). The normal products N[q~j] thereby translate into the classical form 
¢i" This is so because the order of fermi operators in N[q~] has been choosen such 
that all fields 2, ~ are the to left of all operators 2 +, ~+. Thus (A10) is applicable. 

At each fixed time there will be an integration over x, x + and y, y+. In these 
integrals we make the substitution 

1 

2 . 

k;/ 
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The Jacobian of this transformation is killed by the factors detB 1/2 resp. detB '1/2 in 
Equation (33). 

Using these rules, collecting all contributions patiently, finally yields Equation 
(30) [the anticyclic boundaty conditions for the fermi field match with the trace 
formula for Grassmann integral operators, cp. (A7)]. 

Acknowledgements. I wish to thank G. Mack for reading the manuscript and J. Magnen for discussions. 

Appendix. Some Useful Formulas Involving Grassmann Variables [8] 

We consider a system of fermion operators al, fi~ ;--- ; ft,, ~i~ + satisfying canonical 
anti commutation relations: 

{ak,  4 7  } =  kz, az} = + + = 0 .  

The corresponding Fock space F is spanned by the vectors 

Ikl...kj)=a~...h%lO);gtklO)=O for all k;]lt0)ll =1 .  

We are now going to establish an isomorphism between F and a subalgebra f¢ ÷ 
o fa  Grassmann algebra (#. N is taken to be generated by the totally anticommuting 
objects aI, ai- ;... ; a,, a~ +. (#+ is the subalgebra generated by the elements a~+,..., a,+ 
alone. The isomorphism mentioned above is defined by mapping the vectors 

+ + off# +. The image of a general vector IX)~F tki,... , k j) onto the elements ak...ak~ 
under this mapping will be denoted by X(a÷). 

The scalar product in F can be expressed in terms of Grassmann variables : 

-'5;" aj+ a, 
(XIY)=~da+~da,,..da-(da~e ~ol "(X(a+)) +Y(a+). (A1) 

The integral over Grassmann variables is defined as follows. First, we note that the 
integrand is always a polynomial in the generators a k and a +. Hence, it suffices to 
specify the integral for monomials. We choose 

+ + + da, da,,...da~ dalala 1 ...a,a+~ = 1. 

The integral of other monomials vanishes. 
Linear changes of variables can be done as for ordinary integrals. Thus, if b k 

2 Akla', b2 - ~ Akt a[- one finds 
l 1 

da+, ...da~f(a, a +) = IdetAI 2 ~ db2 ... d b S ( A -  ~b, A * -  ~b +). (A2) 

Linear operators in F have a representation in terms of Grassmann variables 
too. To any operator A in F we associate an element A(a ~-, a) off# by the following 
rule : if 

(k~,..., kjtAlt~ .../,5 = (01ak~... ak,Afi~ ... gt£ tO) = A(k~... k~lI~ ... l,) (13) 

we set 

A(a +, a)= ~ (1/j!i!) a~...ak+~A(k~...kjllr..t~)ah...a~. (14) 
{k~ ...k~} 
{h ...l~3 
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This definition has been choosen such that 
_ ~ b + 

(AX)(a +) = S db~ + ... dbl e j ~-1 J b~ A(a +, b)X(b +), (A5) 

i.e. A(a ÷, a) is the integral kernel representing the operator A. 
For the product of two operators A and B we obtain 

n 

(A. B)(a +, a) = ~ d b  2 ... d b ,  e J ~1 b~ bj A(a +, b)B(b +, a) (a6) 

and the trace of A is given by: 
n 

T r A = ~ d a + . . . d a l e  J=~ A ( a + , - a ) .  (A7) 

It is the somewhat unexpected sign appearing in this formula that :forces one to 
assume anticyclic boundary conditions in the time direction for the fermi field p (cp. 
Sec. II). 

We finally collect some formulas for special operators A. 

A : ¢k,~ a~Akzaz ~ A ( a  +, a ) :  e ~'~ a~(eA)Mal ( A N )  

2 Aklal Y. a~c~k~a2 ~ ar~(eA'eZ)kzaz 
A = e  ~,' .e ~,~ ~ A(a+,a)=e  k,~ (A9) 

I fB =B(h +) and C = C(gt) are operators that depend on ~+ resp. gt only, then we have 
for any A 

(B. A .  C)(a +, a) = B(a + )A(a +, a)C(a) . (A 10) 
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