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Single-term Veneziano dual amplitudes with nondegenerate Regge slopes are examined in detail.
Factorization of parent resonance residues and the equal-spacing rule extracted from the universal-slope case
are used to determine all the leading-meson-trajectory parameters in terms of that of the p. Relations
between nondegenerate slopes and SU(4)-symmetry-breaking effects are discussed. The predicted meson mass
spectra and the partial decay widths into two pseudoscalars are shown to agree well with data for the cases

in which data exist.

I. INTRODUCTION

Investigations of the properties of charmed me-
sons! in the duality scheme have been carried out
by several authors. One framework used is the
concise dual Veneziano model® which has been suc-
cessful in dealing with ordinary particles. In order
to accommodate the new particles, a modification
of the Veneziano model is needed, and this modi-
fication takes mainly two forms: (a) incorporating
the SU(4) structure in the original Veneziano mod-
el with a universal Regge slope,® and (b) modify-
ing the original framework to allow different slopes
for different meson trajectories.*

Scheme (a) is supported by the mass-quantiza-
tion relation® ap«(mp?) =3 (Ref. 3) satisfied by the
D trajectory with the universal slope apx=a;
=3 (m,> -m,*) . This approach leads to the gen-
eralization of the nonet mass formula to SU(4) in-
cluding vector and pseudoscalér mesons, but it
has difficulty in accommodating the J/¢ particle.
There is evidence that the J/y trajectory possess-
es a smaller slope. If we take ¢'(3.7) as its first
daughter, then the slope is a} ~0.25, while taking
¢’(3.7) as the second daughter gives a; ~0.5. An-
other estimate obtained by taking x(3550) as the
2** exchange degenerate partner of J/¢ gives a
=0.33. The last value of @; leads to m, =2.84
GeV, if the Ademollo-Veneziano-Weinberg mass-
quantization rule® @,(m, *)=3 is used,® where .
is the cc 0~ * state. In all these cases the slope
of the J/¢ trajectory is much smaller than that of
the p trajectory, a;~0.9 GeV™.

Scheme (b) is motivated by the drastically dif-
ferent mass scales of the charmed and ordinary
mesons which are expected to give rise to appre-
ciable higher-order symmetry-breaking effects.

16

One of the possible consequences is that coupling
constants may significantly deviate from their
[SU4)] symmetry values. This in turn will re-
quire that the universality of the trajectory slope
parameters be broken in Veneziano amplitudes,
as slopes and coupling constants are related there.
The presence of higher-order symmetry-breaking
effects in the charmed SU(3) sector of SU(4) can
be seen from the poorly satisfied charmed nonet
mass formula, e.g. m;*+m,”=2mp+*, which is
good only to 20%.

The Veneziano formula with nondegenerate
slopes has a serious problem. It leads to an ex-
ponentially increasing scattering amplitude for
large fixed angle at high energy.” A way out of
this difficulty was proposed recently by Igi,® who
suggested that the phenomenon of nondegenerate
slopes occurs at low energy and that at high en-
ergy, where the Regge asymptotic expansion is
applied, all the slopes become universal. Although
such a proposal is very difficult to implement
analytically, it provides an attractive phenomeno-
logical framework tailored to the resonance region
and may be useful in the description of certain as-
pects of the new particles.

Many interesting relations have been derived in
terms of single-term Veneziano amplitudes in the
case of degenerate slopes, such as the nonet mass
relations involving vector (tensor) and pseudo-
scalar mesons,? the equal-spacing rule,’ the mass-
quantization rule,® factorization of the parents and
the first daughters,'® etc. (They are not all inde-
pendent.) Further, the couplings of two pseudo-
scalar mesons to all the particles on a leading tra-
jectory are related to each other, and these cou-
plings of the particles of the same spin, but lying
on different trajectories, satisfy SU(3) symmetry.
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Undoubtedly, some of these results will no longer
be true in the case of nondegenerate slopes.

In this article, restricting ourselves essentially
to the resonance region, we study in detail the
properties of the Veneziano model with nondegen-
erate slopes. We examine the factorization proper-
ty and propose a scheme to express all the slopes
of the leading meson trajectories in terms of, say,
that of the p trajectory, and thereby determine
them unambiguously.!

In Sec. II we review briefly some of the results
known in the case of universal slopes. In parti-
cular, we put the factorization conditions in a
form such that we can adopt them to the case of
nondegenerate slopes. Section III treats the non-
degenerate slopes. In Sec. IV, we present a dis-
cussion of the symmetry-breaking effects and cal-
culate the meson mass spectra and the partial
widths of the leading 17,2%, 3~ mesons decaying
into two pseudoscalar mesons. We also predict
the mass of the F*. Our conclusions are given
in Sec. V.

II. FACTORIZATION

To put things in perspective, let us recaptiulate
some of the known results involving only the old
mesons. Consider the following s-channel pro-
cesses with their single-term Veneziano ampli-
tudes:

A ™ =n'n7)=A"V,,(s,8), (2.1a)
A n~=K*K7) = X™V (s, 8), (2.1b)
AK'K™=K'K ) =30 [V, 4s, 0+ Vg,ls, D
+ Vyols, 1)+ Vauls, D],
(2.1¢)
where

T(1-a,(s))T(1-a,()
F(1-a,(s)-a,t)

Va(s,t) =

and @,, a,, @g+, and a4 represent the exchange-
degenerate p-f-w-A,, K*-K**, and ¢-f' trajector-
ies.

We first fix the normalization constants A", A™
and A% by considering Regge expansions in the ¢
channel for large ¢ and small s. Following Igi,?
we assume that when {- «, the slopes of the tra-
jectories contributing to the { channel reduce to a
universal value. The p trajectory exchanged in the

J

AT 1

+_ - +_ - _ ’ L 2
A(r*n~=1"n7)~ a———*;,(s—s,,) T |:(2¢1pk"2)

LrL+1P
(2L +1)

s channel leads to

ATT(1=a,(s)) (-a,t) % (1+O<1)) , (2.2a)

t

AT (=a,(8))=ajt) % (1 +o<%>) . (2.2p)

éz\"r(l—ap(s))(—a"bt)"‘i’“) (l +O<—:—>) ,  (2.2¢)

for the three processes, respectively. Since a;
=ag+=ay in the ¢ channel for -, factorization
gives

AMAK=2(2™)2, (2.3)

If we further argue that the p residues take SU(3)-
symmetric values, we have

A=A =T,

(2.4)

We need only Eq. (2.3) in this and in the next sec-
tion.
Next we consider the factorization constraints
at the s-channel resonances, where the slopes are
not necessarily equal. For s-s; and a,(s;)=L
we obtain
AT 1

aj(s-s.) T(L)

L -1
xI] @0+,

Afm*n =ntr7) =~
(2.5a)

ATK 1
+ - tpr -
A(m*r"-K*K") a—;(s-sL) X03)

L-1
x I (astt) +m), (2.5b)

_A 1
ag(s-s;) (L)

L-
XI-I’ (a¢(t) +n).

In Egs. (2.5a) and (2.5b), the even- and odd-spin
parents and their daughters contribute to the I =0
and I =1 amplitudes, respectively. Therefore at
each integer ! (0 <l <L), there is only one particle
contributing. In Eq. (2.5¢), there are two particles
contributing to each value of /, the one with /=0
and the other with /=1. This gives'rise to a fac-
tor 3 to the resonance residues in the reaction
K*K--K*K~. Writing Eqs. (2.5) in terms of
states with definite angular momenta, we have

AK'K)~-K'K™) -

(2.5¢)

2L (L)?

P, (2))+a, T(2L)

(2a) k)P _y(29)+ -+ ] .

(2.6)
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To obtain the expressions for A(t*7~-~K*K") and
AK'K~-K*K~), we make the substitution

(A", apk.?an) = (™, afs ko kg, am) and

(A*, a4k 4, ax). The quantities &, and ky are the
c.m. momenta of the 77 and KK systems, z; is
the cosine of the c.m. scattering angle, and

ar=L[-5-3 0,00 +2a,(m,)],
arx=L[=3 -3 a,(0) + @, (m,>) + agx(mg’)
—z(ajs —a) (s, -2m,>)], (2.7)

a[(:L[ —% ap(0)+ap(m[(2)+a¢()’nk2)

-4
—‘é'(a’d)—a;))(SL 7—2/&2,(2)] .

Factorization at the parent level together with Eq.
(2.3) gives'?

apay=ags?. (2.8)

Factorization of the first daughter can be achieved
in the case of the degenerate slopes if the follow-
ing conditions are satisfied:

my® =ma® = mgr® —mg® =mg’ =2mi’ +ma? (2.9)

which imply the nonet mass formula m,* +mg4’

=2myg+®. They can also be rewritten in terms of

the trajectory parameters,

o, (11, = Qo (mi?) = @ @ =) (2.10)
or

,(0) + @ 4(0) = 2 (0) (2.11a)
or

a, (mg®) + @ gmg®) =25 (my?) . (2.11p)

The last two expressions are equivalent forms of
equal-spacing rules. Equation (2.10) gives the
mass-quantization rules® if it is set equal to 5. It
is clear from Eq. (2.7) that factorization of the
first or subsequent younger daughters is impossi-
ble if the slopes are different.”® The condition
analogous to Eq. (2.9) for the nm—7mm, nm— DD,
and DD - DD scatterings leads to m,* —m,” = mp**
—mp® =my;% -2mp® +m,%. The last identity is satis-
fied rather poorly, indicating that factorization of
the first daughters cannot be maintained in gener-
al even if the slopes are degenerate, when the
charmed-meson channels are included in the con-
sideration.

III. TRAJECTORIES FOR NONDEGENERATE SLOPES

Our strategy in this section is to consider the
two relations derived in the preceding section, the
factorization of the trajectory slopes and the equal-
spacing rules, as basic properties of the leading
meson trajectories. These two relations are, of
course, not on equal footing. Factorization rela-

tions [see-Eq. (3.1)] can be derived from an asymp-
totic symmetry such as Eq. (2.4) and the factor-
ization of parent particles irrespective of the de-
generacy or the lack of degeneracy of the slopes.
The equal-spacing rule, extracted from the case
of degenerate slopes, is, however, an assumption.
As will be seen in the next section, the good pre-
dictions which follow indicate the validity of this
assumption. From the above argument, we can
write the factorization conditions as

@,ay= apx’,
aja)= aps’, (3.1)
ahal=ap?,
and the equal-spacing rules as
@,(0) + @ 4(0) =2a,+(0) ,
a,(0) +a,;(0)=2a,%(0), (3.2)
a 4(0) + a;(0) =2ap+(0),

which we generalized from Eq. (2.11a). The gen-
eralization of Eq. (2.11b) is

ap(m,f) +a g(mg®) =20 x(mg?) ,
ap(mnz) +ay(mp®) =2ap*(mp?) , (3.3)
@ glmp?) +ay(mp?) =2apx(mg?) .

Equations (3.2) and (3.3) are alternaiive equal-
spacing rules. They cannot hold simultaneously,
otherwise a common slope will result for all the
trajectories. We do not propose to use relations
such as (2.10), which gives directly ratios of
slopes. They are inconsistent with Eq. (3.1), un-
less nonet types of mass formulas hold. The sec-
ond and third lines of Eq. (3.1) are derived from
the following sets of amplitudes, following a simi-
lar derivation as outlined in Sec. II:

A~ =D°D°) =A"PV,px(s, 1),
A(DD°~D°D%) =5 AP[V, /s, t) + Vyy(s, t)

(3.4a)
(3.4b)
+Vorls, )+ Vy (s, D),
together with Eq. (2.1a) and A"A? =2(\"?)?, and
AK*K==DD%) =5 XN*P[V, px (s, 1) + Vpx(s, )],
(3.5)

together with Egs. (2.1¢) and (3.4b) and A¥A?
= (\*P)2, If we further assume asymptotic symme-
try for the p residue, we have A’ =1""= ;)" and
K _\D _ KD
AK=aP =KD,
Equations (3.1) and (3.2) give'
’ mk*z

afr=al 2 [1+@=-myPmg /mg+*)?],

" (3.6)
apx =), —2 [+ (1=my*my® /mps*) /2]
J
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Relations similar to (3.6) can be derived from
Eqgs. (3.1) and (3.3) with m,?, mg*®, and mg4* re-
placed by my>—ms’, mgx*—my’, and mg-my’ in
ajx, and m,®, mp*®, and m;* by my*-mp®, mpx*
-mp®, and my2-mp® in apx. Note that when the
nonet mass relations, i.e., m,* +mg’ =2my+* and
m,® +m,* = 2mps*, become exact, Eq. (3.6) leads to
degenerate slopes, aj=ak+=ap+, etc. Equations
(3.1) and (3.3) also give a universal slope if mass
relations such as m,®—m,* = mygx>—my® = mpx*—my®
hold.’® The nonet mass relations are assumed to
hold with the presence of first-order symmetry-
breaking effects, suggesting that the nondegenerate

slopes are due to symmetry-breaking effects high-
er than the first order.'®* We shall come back to
this point again in the next section. Taking m,
=0.768, mgx=0.894, my=1.02, mp+=2.01, and my
=3.098, all in units of GeV,'” we obtain

ayr/a,=0.924, ay/a;=0.854,
ab*/a;f:O.'?Gl, a,’,/a;=0.579, 3.7
apx/a,=0.703 .

Equations (3.1) and (3.3) give ratios of slopes
about 3% higher than the above. This demonstrates
the stability of the equal-spacing rules.

IV. SYMMETRY BREAKING AND DECAY WIDTH

Consider the elastic scattering of two pseudoscalar mesons, a+b—-a+b, which is described by the fol-

lowing amplitude:

A =)V 45(s, 1) + possible terms with different s-channel poles.

For s =m;* and a(m,®) =L,

A 1
A% &, T(D

T(2L+1) —my,

L 2
2L[r(L+1) (2} k) P;(cosf)wn

(4.1)

Only particles on the leading trajectory are considered. The decay width of this particle L to a+b is given

in the narrow-resonance limit as

T ogip=br
L-a+bd £L16nmL2 S"mLz

1
lim (s-m.?) f d(cos6) P, (cos6A
-1

:A AL -1 E_é)(f_’a LJ 2L+1L k2L+l 42
167 b(ep) [<a’A a) QL+ m® 4.2)

where £, is the isospin factor. We normalize the
width in terms of a;,. The factor in the square
brackets,

ap)(ap )
)

gives rise to a symmetry breaking which can also
be seen from the coupling constants. For the vec-
tor- and tensor-meson couplings one has

ar oy

2_ L 2 B

v =3zA¢ < )( )
ab 1 a’, CY:, ’

’ 7\ 2
2._ 1 ap ap ’
= 410 (25) (2 o
A P

Equation (4.3) predicts a large symmetry-break-
ing effect for high-spin resonances on the p-f-w-
A, trajectory decaying into KK or DD. A ready
interpretation of this symmetry-breaking effect
can be given in terms of quark diagrams. Suppose
that the decaying particle L is made of quarks

r

q.9,, particle a, ¢,q, and particle b, ¢,5,. We
shall call ¢,7, the initial quarks and ¢,g, the pair-
created quarks. Then a/, is the slope of the tra-
jectory made of the initial quarks, and aj is that
made of the pair-created quarks. (See Fig. 1.)
Thus, a’; is the slope of the trajectory on which
the decaying particle lies and ay can only be a,
ay, or aj. Therefore the first factor of Eq. (4.3),
a,/a’, gives rise, in general, to an enhancement
and the second factor, (a;,/a:.,)". to a suppression.
The latter can be understood intuitively as follows.
The creation of a pair of heavy quarks from the
vacuum is less probable than that of a pair of light
quarks. This type of argument has been used in
the literature in the discussion of couplings of DD
(and FF) to the ordinary vector mesons and to
J/¢ and ¢’. The presence of the first factor 1/a’,
is expected from the general formulas of the width
of a resonance on a Regge trajectory.'®

In order to determine all the trajectories and
the widths given in Eq. (4.2), we use a} and the
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FIG. 1. Quark-diagram interpretation of the symmetry-
breaking effect of Eq. (4.3).

decay width I' -, as inputs. The latter involves
the least error of all the vector-meson decay
widths and the former has been repeatedly deter-
mined in the spacelike region. We shall use o
~(.88 GeV "2, which comes from the following in-
formation: (a) The p-f-w-A, trajectory goes
through £(2.04) (Ref. 19) for a,(m,?)=4. (b) A re-
cent fit of the TN charge-exchange reaction®® gives

TABLE I. Predicted mass spectra and partial widths into two pseudoscalar mesons.

MASAAKI KURODA AND BING-LIN YOUNG
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@,(0)=0.48, which leads to @, =0.88 GeV ™ when
it is extrapolated to the timelike region and re-
quired to pass through the p.
Let us restrict ourselves in the following dis-
cussion to the equal-spacing rule, Eq. (3.2). In
Table I, we list the resulting slope parameters
and the predicted mass values together with the
experimental masses if they exist. Input masses
are underlined. The values of the slopes are close
to those used by Igi.* We note the following: (a)
The resonance at J=3 on the K*-K** trajectory
with the predicted mass 1.805 GeV can be identi-
fied with K,(1.8).?! (b) The predicted mass 3.677
on the a; with a; =3 agrees well with that of
J'(3.684), since ¢’(3.684) should be identified as
the second daughter of @; =3 resonance on the a,.
(c) The F* mass is predicted to be 2.14 GeV,
which is higher than the prediction of 2.06 GeV
in the charmonium model.?> We observe, however,

(i) The

underlined vector-meson masses, «;=0.88 GeV™*, and the p— 27 width are input. (ii) The de-
cay, D*°— D, is very close to the threshold; therefore, the calculated width is extremely
sensitive to the masses of D*” and D’ used. See Ref. 22. (iii) Ry = /oy

Mass (GeV)

Partial width (MeV)

a’ (Gev?) &; Theoretical Experimental Thecretical Experimental
71 mode
P 1- 0.88 1 768 152 +3
f 2* 0.88 2 1314 1271 1770 155.8 145.8+18
g 3" 0.88 1 1690 1690 65.301;2 50.6 43.4£9
h 4* 0.88 2 2000 h(2040) 103afs 70.2 seen
KK mode
F o2 0.88 1 1314 1271 4.76R,, % 3.06  4.68+1.62
A, 27 0.88 1 1314 1310 6.49R ,,%cr} 4.16 4.79+0.15
w 3" 0.88 1 1690 1675 7.46R , a2 3.6
g 3" 0.88 1 1690 1690 8.06R°p3(y",2 3.9 small
R4 0.88 1 2000 h(2040) 69.1R,fogd 5.1 seen
¢ 1" 0.752 2 1020 3.07R,, 3.6 3.20%0.34
FbUooer 0.752 2 1539 1516 41.8R o0} 43.3 4010
) 3" 0.752 1923 57.TRpp0rh? 41.1
K7t mode
K* 1~ 0.813 P 0.894 44 1R g* 47.7 49.4+1.8
K*= 2* 0.813 E 1425 1421 50 1R g*a 48.5 60.6 +8.4
K*** 37 0.813 ; 1805 K 5(1800) 44 4R, p*h? 33.9
DT mode
D* 1= 0.67 2.01 5.86R,p* 7.69 keV  seen
D** o 0.67 2.352 2.58R,p*cif 2.98
D*** 37 0.67 2.65 3.65R,prate  3.71
DK mode
F* 1= 0.619 2 2.14 probably below threshold
F** 2* 0.619 2 2.49 0.89R, pxv g 1.1
F*** 37 0.619 2 2.80 4.12R,pxad2 4.5
DD mode
J/p 17 0.519 2 3.10 below threshold
X 2* 0.519 2 3.39 below threshold
? 37 0.519 2 3.68 below threshold
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that the prediction of the charmonium model of

the masses of D, D*, and A,(2.25) are in general
lower by 20-30 MeV compared with the experimen-
tal values.! (d) The mass-quantization rules,
which are not part of our inputs, are satisfied rea-
sonably well for the known pseudoscalar mesons.
Using the p, K*, D*, F*, and J/¢ trajectories in
aey(m,,,2 =%, where mp is the corresponding pseudo-
scalar mass, we obtain the first three relations
from the Adler PCAC (partial conservation of
axial-vector current) consistency condition but the
last two cannot be derived this way. Solving these
relations, we obtain n,=0.147, m,=0.43, mp

=1.82, mp=1.94, and m, =2.94, all in units in GeV.

The various decay widths into two pseudoscalars
are also given in Table I. Except for the p—2m
width, which is used as an input to fix A", all the
other widths listed are predictions. Experimental
values of masses are used in the calculation if
available. We also give the isospin factor &, [see
Eq. (4.2)] and the experimental widths. For the
D*, the width listed is for D*°~ D°°, which is
barely above the threshold and has been ob-
served.?® To indicate the symmetry-breaking ef-
fects, we also list the widths in terms of the
slopes. All the predicted widths suffer an error
of the order of 4%, mainly due to the ambiguity
of the value of @ and the assumption of exact ex-
change degeneracy.

To conclude this section, a remark on D*°-~ D°°
is in order. It is very close to the threshold;
therefore, the calculated width, strongly sup-
pressed by the limited phase space, is sensitive
to the mass values of D*° and D° used. (We used
the values given in Ref. 22.) Although the pre-
dicted width is of the order of keV,* the predicted
coupling constant for D*°D°r is larger than the
SU(4)-symmetry value by the factor (a}/ap*)Y2

V. CONCLUSIONS

We emphasized that relations, such as the nonet
mass formula, the equal-spacing rule, and the mass
quantization rule, are related to the factorization
requirement at the first daughter level in the case
of the universal slope. Then we proposed that the
facotrization relation and equal-spacing rule,
which relate the parameters of different trajector-
ies, hold even when the trajectory slopes are dif-
ferent, and thereby we determined the parameters
of all the leading meson trajectories in terms of
the slope of the p trajectory. The predicted decay
widths of vector mesons, tensor mesons, etc. into
two pseudoscalars agree well with the data when-
ever a comparison can be made. The nondegener-
ate slopes improve the prediction of the corre-
sponding degenerate slopes. This can be seen in,
e.g., I'kxgo0)~kn, Which is independent of the ab-

solute value of aj. The predicted partial width
agrees with the data within the experimental error,
while the degenerate slopes, giving rise to exact
SU(3)- [SU(4)-| symmetric couplings, predict a
value which is three standard deviations too small
in comparison with the data. Another interesting
case is D*°~ D1 in which the predicted width is
larger than the SU(4)-symmetric value by 30%.
Note that the D*Drn coupling constant is dimension-
less; therefore, it is not clear how to introduce a
mass scale into the effective Lagrangian which

can account for symmetry-breaking effects. In
the present approach the scales are provided by
the slope parameters whose ratios are determined
by the factorization condition as well as the equal-
spacing rule. An accurate measurement of the
D*°~ D°r° K**(1420)-Kn, and f - KK widths
could serve as additional tests of the present
scheme, in particular, as a test of the equal-spac-
ing rules. A direct check of the equal-spacing
rules can be achieved if the masses of recurrences
of the various trajectories, as listed in Table I,
are experimentally determined. Let us further
notice that strong suppression will occur in the
KK and DD mode of high-spin particles lying on
the p-f-w-A, trajectory, owing to the factors
(a;(*/a;,)’“ and (apx/a,)*. An experimental check
of these factors is possible for the former but re-
mote for the latter.

There are other schemes beside ours which dis-
cuss nondegenerate slopes. One of them, proposed
by Close et al.,** assumes the following relation
between the slope ay, of a leading trajectory and
the lowest vector-meson mass on it, my: ay
=3my~'. These slope parameters do not satisfy
the factorization condition (3.1). Another scheme,
proposed by Finkelstein and Tuan,” in which @/,
>~ a/x, etc. are assumed, leads to degenerate
slopes when the factorization of the resonance
residues is assumed.

As a concluding remark, beyond the present
phenomenological level, a more precise formula-
tion of the dual resonance model with nondegener-
ate slopes is necessary. In this formulation, it is
necessary to define, among other things, the en-
ergy range outside of which the slopes become uni-
versal. This range was left unspecified in the
present phenomenological treatment.
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