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We construct all solutions to the SU(2) Yang-Mills field equations in Minkowski space that are invariant under an 
SO(4) subgroup of the conformal group. They are real, regular and have finite energy and action. A connection with the 
instanton solution is pointed out. 

The similarity between the four dimensional SU(2) 
Yang-Mills field and the two dimensional 0 (3)  non- 
linear a-model  [3] with regard to pseudoparticles [4] 
suggests that the Minkowskian classical Yang-Mills 
field theory is completely integrable, too. However, 
so far we know of  only one non-trivial, real finite en- 
ergy solution to the Yang-Mills field equations in 
Minkowski space. This one solution was found (in a 
complex form) by De Alfaro et al. [1] and was later 
shown to be gauge equivalent to a real solution by 
Cervero et al. [2]. 

In this let ter  we exploit  the invariance of  the Yang- 
Mills field equations under an SO(4)-subgroup o f  the 
Minkowskian conformal group. First we rewrite the 
field equations in a manifestly SO(4)-covariant way. 
Then, upon mixing isospin with one of  the SO(4)- 
spins, we obtain all SO(4)-symmetric solutions. They 
are real, regular, non-abelian and have finite energy 
and action. 

We consider an SU(2) Yang-Mills field A~ =A a oa/2i p 
in Minkowski space*. The action is 

_ 1 f d a x  Fa Fauv (1) 
S = 4g 2 t~u 

where 

= F a o a F v . ~ = ~ A  - ~ A  +[A,G]. (2) 

Correspondingly, the field equations are 

3 u Fuv + [ , 4 ,  Fuv] = 0. (3) 

* Greek indices ta, v, o, ... run from 0 to 3 and are subject to 
the metric guy = diag (+, - ,  - ,  - ) .  Greek indices c~,/3, ~/... 
resp. latin indices a, b, ... k, l ... take on values from 1 to 4 
resp. 1 to 3. Repeated indices are always summed over. 

They are conformally invariant, i.e. i fAu  is a solution 
and xU -~ x'U is a conformal mapping in Minkowski 
space then 

A' (x) = A(x ' ( x ) )  ax'~/Ox" 

solves the eqs. (3), too. 
The conformal group in Minkowski space is iso- 

morphic to 0(4,2).  The action of  an element A E 0(4 ,2)  
on a point  x is conveniently writ ten down by using pro- 
jective coordinates for x,  viz. we identify x with a ray 
in the cone [5] 

C4,2 = (~jA , A  = 0 . . . .  ,5[(~:0)2 _ (~1)2  _ (~j2)2 _ (~j3)2 

_ (~4)2 + (~5)2 = 0}  (5)  

XtZ = ~t~/(~4 + ~5) .  

The conformal mapping x u -* x 'u corresponding to A 
is then given by:  

x,t~ = ~,#/(~,4 + ~,5); ~,A= AAB ~B. 

Let us now focus on the SO(4) subgroup of  0(4 ,  2), which 
acts on ~a, o~ --- 1, ... 4, and leaves G 0 and ~5 fixed. An 

SO(4) adapted parametrization o f  the rays in C4, 2 is: 

= r(sin T, n 1 , n 2, n 3, n 4 , cos 7"). (6) 

This amounts to a parametrization of  space-time points 
according to: 

x0 sin r x k  n k 
- • - - -  ( 7 )  

COS T + l,/4 ' COS T + t'/4. 
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The space M = {(r, n)lr E R, n E S 3 } will be called 
"superworld". The mapping (7) is one-to-one on the 
subspace M = ((r,  n)l it[ < rr; (cos r + n 4) > 0}. There- 
fore, we may identify Minkowski space with M. 

The superworld M has previously been used in con- 
formal quantum field theory. Its outstanding features 
are firstly that the universal covering of  the conformal 
group acts on it in a differentiable manner and secondly 
that it allows for a conformally invariant causal order- 
ing of its points. For details, see ref. [6]. 

In order to rewrite the field equations (3) in (r, n)-co- 
ordinates it is convenient to introduce new vector po- 
tentials B u: 

A u dx u = Bu c°~ where co 0 = dr, ~k  = 7la~-k n ~ dnt3 (8) 

'ok denote 't Hooft 's ([7] ,  appendix) SO(4) - covariant 
'0-symbols, i.e.: 

k __'0ka, k =6kl, k _  "0043- '0i4 "0i]- ekli" (9) 

Thus, under the conformal transformations 

' A a  n #, r = r ;  n '~ = A E S O ( 4 )  

They are dual to the differential forms co u, i.e. for any 
function.fir,  n) we have: 

df  = wu Vtaf. 

Note also that V k and V t do not commute: 

IV k, vii = -2  %tj v/ .  

From eq. (1) we now obtain the action in the new 
language: 

lr 

S -  1 dr . f  d4n 292 f 

X 5(1 - nan a) 0(cos r + n 4) G a G auu (15) /~V 

As expected, the inte~ation runs over the subspace 
M of the superworld M, i.e. over a region of  finite 
volume. Hence, any regular field B u on M has finite 
action. 

Finally, the action principle yields the field equa- 
tions: 

the B-field transforms as: (10) V l Glo + [Bl, Glo ] = 0 

fr0(r, n) = B0(r , An); Bk(r,  n) = Bl(r, A n ) R ( A ) I  k V0G0k + [B 0, Gok] -- ViGlk -- [B l, Glk] (16) 

R(A) is a three dimensional orthogonal representation 
of SO(4): 

k l k A a (11) R(A) l "0043 = "03'6 mTa 0" 

Let us also define a new field tensor Guy by 

F v d.x ta X dx v = Guy w u X coY; Guy = -Gvu ,  

In terms of the vector potential this becomes: 

GOk= V OB k -  VkB O+ [B 0 ,B k] 
(13) 

Glk = 7IB k -- 7kB  l + 2 elk/B] + [B l, Bk] 

+ ekl/Gt] = O. 

We now seek SO(4)-symmetric solutions to the 
field equations (16). Thus, we are concentrating on 
potentials/~u satisfying: 

/fl0 (r, An) = 7r(A)ab Bb(r ,  n) 
(17) 

B~(r, An) = rr(A)a b B~l (r, n) R (A-1 ) I  k 

for all A ~ SO(4). Here, rr(A) denotes some three di- 
mensional orthogonal representation of SO(4). A care- 
ful analysis shows that all such fields are gauge equiva- 
lent to 

where we have introduced covariant derivatives: 

V 0=a /Dr ,  V k =-} '0~ n '~ - n  ~ • 
an o 

(14) 

~0 = 0, ~k(~, n) = q(O 8~,, ~(A) = R(A) (18) 

where q is an arbitrary (real) function of r. 
Let us insert the ansatz (18) into the field equa- 
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tions: 

Goag = 0 8a~; G~I = q(q + 2) eak l (19) 

~t" + 2q(q + 1) (q + 2) = 0 (20) 

(the dots denote derivation with respect to r). This 
is the equation of motion of  a particle moving in the 
double well potential V(q) = ½ q2(q + 2)2. There are 
two types of  solutions of  eq. (20): when the "energy" 

e = } ( 0 2  + q2(q + 2)2} (21) 

is smaller than the bump of V(q) at q = - 1 ,  we find 

q = - 1  + (1 + x , ~ )  1/2 dn{(1 + x / ~ ) l / 2 ( r  - TO); k l )  

k 2 = 2x /~ / (1  + x / ~ ) ;  e ~< ½ (22) 

whereas when e > } the solution is: 

Hence, the energy of  these solutions is finite, too. 
For the sake of  completeness we finally reproduce 
the solutions in their x-coordinate form: 

AaO = 4q(r(x))')'2xOxa; 9" = [(I + xUxu)2 + 4x 2] -1/2 

(27) 

a Aak = -4q(r(x))'r2{}( 1 + x xu)6 k + eak/X j + xax k} 

where q(r) is one of  the functions (22), (23) or (24) 
and r = r(x) must be calculated from 

sin r = 2x°7;  cos r = (1 -- XUXu)7; Irl < rr. 

There is a simple connection between the mechanics 
of  SO(4)-symmetric fields described here and the one 
(anti-) instanton solutions in euclidean space. In terms 
of (r, n)-coordinates the euclidean equations of  mo- 
tion are obtained by performing the following substi- 
tutions: 

q = --1 + (1 + X / ~ )  1/2 cn((8e) 1/4 (r -- r0); k2) (23) 

k 2 = (1 + X / ~ ) / 2 X / ~ ;  e > } 

E o = iv, BE = ( - i )B0 ,  B k = B k 

GOEk = (-i) aok, -- % .  

(28) 

(dn and cn denote Jacobian elliptic functions, [8 
§8.14]). There is also a r-independent, but unstable 
solution, namely: 

q = constant = - 1 .  (24) 

When translated back to x-coordinates one recovers 
the solution of De Alfaro et al. in a real gauge. 

All the solutions above are regular functions on ~I. 
Their restriction to M therefore provides a set of  
regular, finite action solutions of  the original equa- 
tions (3). A simple expression for the energy-momen- 
tum tensor 

Our = -~ ( -  Faux Fan + ¼ guy Faocr FaP°} (25) 

is obtained at x 0 = 0: 

3e 16 
Ouu=O f o r / a 4  =u; 000 g2 (1 + x 2 )  4 '  

e 16 
Okl =Sklg2 (1 + x 2 )  4" 

(26) 

The variable o ranges from - ~  to +% i.e. the eucli- 
dean action is: 

o o  

s E  - 1 f do f d4n 6 ( 1  - n% '~) GaEG aE. (29) 
2 9 2 _  uu m' 

For SO(4) symmetric fields (eq. (18)) this becomes 

S E - 6"2 fdo{}(0E) 2 + V(qE)} (30) 
g2 

and the field equations reduce to 

~/.E _ 2qE(qE + 1) (qE + 2) = 0. 

The potential V(q) has two minima, one for vanishing 
fields and one at q = - 2 ,  i.e. for 

B k = u  -1 VkU, u =n 4 - i n k o  k (32) 

which is a pure gauge. The mapping n ~ u(n) has wind- 
ing number one [9]. In quantum mechanics tunneling 
takes place between the two separated vacua. In lead- 
ing order of h the amplitude for this process is given by 
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the contr ibut ion to the euclidean path integral of  those 
histories which interpolate between the vacua in ques- 
tion and that minimize the action (30) [9, 10]. These 
configurations are: 

qE(o)=  --211 + e ~ 2(a-c~°)] -1.  (33) 

In euclidean x-space these solutions turn out  to be pre- 
cisely the one (anti-) instanton solutions (in a singular 

gauge). 

I thank H. Lehmann for a critical reading of  the 
manuscript.  
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