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We construct all solutions to the SU(2) Yang-Milis field equations in Minkowski space that are invariant under an
SO(4) subgroup of the conformal group. They are real, regular and have finite energy and action. A connection with the

instanton solution is pointed out.

The similarity between the four dimensional SU(2)
Yang-Mills field and the two dimensional O(3) non-
linear o-model [3] with regard to pseudoparticles [4]
suggests that the Minkowskian classical Yang-Mills
field theory is completely integrable, too. However,
so far we know of only one non-trivial, real finite en-
ergy solution to the Yang-Mills field equations in
Minkowski space. This one solution was found (in a
complex form) by De Alfaro et al. [1] and was later
shown to be gauge equivalent to a real solution by
Cervero et al. [2].

In this letter we exploit the invariance of the Yang-
Mills field equations under an SO(4)-subgroup of the
Minkowskian conformal group. First we rewrite the
field equations in a manifestly SO(4)-covariant way.
Then, upon mixing isospin with one of the SO(4)-
spins, we obtain all SO(4)-symmetric solutions. They
are real, regular, non-abelian and have finite energy
and action.

We consider an SU(2) Yang-Mills field 4, =Aﬁ d?/2i
in Minkowski space”. The action is

= 1 4 a
o Jatx ke paw (1)
where
e 9
F,=F.7-=04,-0A4 +[4,4)] @

Correspondingly, the field equations are
N UVl =
8, F* + [A“, F¥1 =0, 3)

* Greek indices u, v, p, ... run from 0 to 3 and are subject to
the metric g, = diag (+, —, —, —). Greek indices @, 8, 7y ...
resp. latin indices ¢, b, ... k, l ... take on values from 1 to 4
resp. 1 to 3. Repeated indices are always summed over.

They are conformally invariant, i.e. if 4, is a solution
and x* —~ x™# is a conformal mapping in Minkowski
space then

A;l(x) = A (x'(x)) ox"” [ox"

solves the egs. (3), too.

The conformal group in Minkowski space is iso-
morphic to O(4,2). The action of an element A € 0(4,2)
on a point x is conveniently written down by using pro-
jective coordinates for x, viz. we identify x with a ray
in the cone [5]

Cpa=Bha=0,.,516% - 1) - @) - %)
—EH? @)Y =0} (5)
Xt =g f(et + g5y,

The conformal mapping x* ~ x'* corresponding to A
is then given by:

X =g %) gA= AR

Let us now focus on the SO(4) subgroup of O(4, 2), which

actson £, a =1, ... 4, and leaves EO and 55 fixed. An
SO(4) adapted parametrization of the raysin Cy , is:

4

$=r(sin1',n1,n2,n3,n ,COST). 6)

This amounts to a parametrization of space-time points
according to:

0 sinr k nk
XTE e X @)

4

cosT+n cosTt+n
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The space M= {(r, )it ER,n € $3} will be called
“superworld”. The mapping (7) is one-to-one on the
subspace M = {(r, n)| ir| <m; (cos 7 + n4) > 0}. There-
fore, we may identify Minkowski space with M.

The superworld M has previously been used in con-
formal quantum field theory. Its outstanding features
are firstly that the universal covering of the conformal
group acts on it in a differentiable manner and secondly
that it allows for a conformally invariant causal order-
ing of its points. For details, see ref. [6].

In order to rewrite the field equations (3) in (7, n)-co-

ordinates it is convenient to introduce new vector po-
tentials B, :

M= H a = k = k [ B
A“dx Bﬂw where w" =dr, w Mo dn® (8)
"725 denote ’t Hooft’s ([7], appendix) SO(4) — covariant
n-symbols, i.e.:

k - k k _ck k
Mg = Mga M= 61 s 71,]- = eklj‘ ©)
Thus, under the conformal transformations
=7, n'%= A"‘ﬁnﬁ, A ESO®4)

the B-field transforms as:

(10)
By(7,n)=B(r, An); By(1,n)=B(r, An)R(AY,

R(A) is a three dimensional orthogonal representation
of SO(4):

ik 1 -k ]
R(A) 1Mo = Mg AY A s (11)

Let us also define a new field tensor G, by

va dx* X dx? = G‘w wt X WP Guv = —Gw.

In terms of the vector potential this becomes:

Gor = Vo By — ViBy + [By, Bl
(13)

where we have introduced covariant derivatives:
b}

Vo = a/9r, Vi =%n§ﬂ (n“ — _nf 2—) .

2= as) (9
n
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They are dual to the differential forms w*, i.e. for any
function f{r, n) we have:

= M
df=w Vuf.
Note also that Vk and v, do not commute:

From eq. (1) we now obtain the action in the new
language:

s

S=——1§ fd'rfdd‘n

28" 2y

X 8(1 — n%n®) 0(cos 7 + n*) G2 G*. (15)
As expected, the integration runs over the subspace
M of the superworld M, i.e. over a region of finite
volume. Hence, any regular field B, on M has finite
action.

Finally, the action principle yields the field equa-
tions:

ViGpo + 1By, Gl =0

Vo Gox + [By: Gord — VG — 1B Gyl (16)

+ EkliGIj= 0.

We now seek SO(4)-symmetric solutions to the
field equations (16). Thus, we are concentrating on
potentials B‘L satisfying:

By (1, An) = n(AY' Bé’(r, n)
(17)
BY(r, An) = n(AY';, BY(r, n) RAA™Y,

for all A€ SO(4). Here, n(A) denotes some three di-
mensional orthogonal representation of SO(4). A care-
ful analysis shows that all such fields are gauge equiva-
lent to
By =0, Bi(r,n) = q(r) 8%, n(A)=R(A)  (18)
where g is an arbitrary (real) function of 7.

Let us insert the ansatz (18) into the field equa-
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tions:
Gor =4 0% Grr=ala+2) & (19)
g+2q(g+1)(@+2)=0 (20)

(the dots denote derivation with respect to 7). This

is the equation of motion of a partlcle moving in the
double well potential V(g) =3¢ (q + 2)2 There are
two types of solutions of eq. (20) when the “energy”

e=1{¢" +4* @+ 2% 1)
is smaller than the bump of V{(g) at ¢ = —1, we find
g=—1+(1+v2e) 2 dn{(1 +V2e)2(r — 1)k}

=2/2e/(1 +V/2e); e<3% (22)
whereas when e > 4 the solution is:
g=—1+(1+v2" en{ @)™ (r —7,); k,} (23)
K= (1 +V2e)/n2e;
(dn and cn denote Jacobian elliptic functions, [8

§8.14]). There is also a 7-independent, but unstable
solution, namely:

e> %

g = constant = —1. (24)

When translated back to x-coordinates one recovers
the solution of De Alfaro et al. in a real gauge.

All the solutions above are regular functions on M
Their restriction to M therefore provides a set of
regular, finite action solutions of the original equa-
tions (3). A simple expression for the energy-momen-
tum tensor

_i a an
ﬁw —g2 {~F7\Fv +§-gw) F:U Farc} (25)
is obtained at x0 = 0:
3e 16
0 =0foru#v, 0y =— —m—,
w 00 g2 (1 +x2)4

(26)
16

6,,=8 —_—
kl Kkl 2(1+x)4
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Hence, the energy of these solutions is finite, too.
For the sake of completeness we finally reproduce
the solutions in their x-coordinate form:

AL = 4qG) 0%y = [(1 +x4x )2 +4x?] 712

@7
AL = ~4q(r(x) Y2 {31 + xtx )67 + eak].xf + x%xk}

where g(7) is one of the functions (22), (23) or (24)
and 7 = 7(x) must be calculated from
sin7 = 2x0'y; cosT=(1— x"‘x”)'y; Il < 7.
There is a simple connection between the mechanics
of SO(4)-symmetric fields described here and the one
(anti-) instanton solutions in euclidean space. In terms
of (r, n)-coordinates the euclidean equations of mo-
tion are obtained by performing the following substi-
tutions:
= E _ ; E _
o=ir, By = (*1)BO, B, =8B,
E E (28)
Gor = D Gops Gy = Gy

The variable ¢ ranges from —e to +eo, i.e. the eucli-
dean action is:

E"—l—zj fd4n5(l—n°‘

For SO(4) symmetric fields (eq. (18)) this becomes

a aE aE
n%) G, G 29)

2
=2 [do{h@®? + @™} (30)
and the field equations reduce to

—2¢E@E+ 1) @E +2)=0.

The potential ¥(g) has two minima, one for vanishing
fields and one at g = -2, i.e. for

By

=41 Vit u=n*—inko* (32)
which is a pure gauge. The mapping n = u(rn) has wind-
ing number one [9]. In quantum mechanics tunneling
takes place between the two separated vacua. In lead-
ing order of i the amplitude for this process is given by
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the contribution to the euclidean path integral of those
histories which interpolate between the vacua in ques-
tion and that minimize the action (30) [9, 10]. These
configurations are:

qE(0)= —2[1 +e* 20001, (33)

In euclidean x-space these solutions turn out to be pre-
cisely the one (anti-) instanton solutions (in a singular
gauge).

1 thank H. Lehmann for a critical reading of the
manuscript.
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