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We discuss the decays of high-spin natural-parity resonances lying on a leading Regge trajectory. We do
this by studying the reaction VP — PP in a dual resonance model with trajectories which are nondegenerate
in the resonance region. This allows for SU(4)-symmetry breaking in meson decay rates. Owing to the
factorization property of Regge slopes and to the equal-spacing rule, we find rates which depend only on an
overall normalization (and the low s p trajectory slope ;). Agreement with data is good.

I. INTRODUCTION

It is well established by now that the nonrelativ-
istic quark model gives a good description of the
low-lying quark bound states (including charm).
Less clear is how the quark model can describe
high-angular-momentum excitations—particularly
since these lie on Regge trajectories and appear in
amplitudes satisfying duality constraints. The
most compact and satisfactory description of these
states on leading trajectories is in terms of dual
resonance models, or, simpler, via a one-term
Veneziano ansatz for the scattering amplitude. In
some sense this represents an extreme case of
the quark model still not fully accessible through
the standard bound-state picture. It is well known
that a single-term Veneziano formula cannot be an
adequate description of a scattering amplitude.

We do believe, however, that the simple Veneziano
formulation will survive as a procedure for calcu-
lating the couplings of high-L gg excitations on the
leading Regge trajectories. In particular, it offers
a way of incorporating the symmetry-breaking ef-
fects of unequal quark (or meson) masses. It is
for this purpose that we will employ the Veneziano
model.

Experiment requires that we admit Regge tra-
jectories which at low s (in the resonance region)
do not have common slopes.!”? This means that
there is no universal spacing of resonances in
(mass)?. The quark model has no trouble with this,
but the same cannot be said of dual resonance
models. If trajectory slopes are constant and are
not degenerate, a well-known disease occurs
(noted by Mandelstam®): A scattering amplitudes
diverge at large s as |t| increases.

The trouble caused by nondegenerate slopes in
the Veneziano model can be argued away, as done
by Igi.! One simply assumes that in the resonance
regions the slopes are not degenerate, but that at
sufficiently large s all trajectories become paral-
lel. No fundamental reason for this is offered, nor
can one give the s range where the transition to a
universal slope occurs. We will adopt this idea
and employ it to discuss the decays of high-L ¢
states.

In a previous? article two of us examined the fac-
torization properties of the leading Veneziano am-
plitude? for PP~ PP, [P a pseudoscalar in an SU(4)
15+1 plet]. We found that nondegeneracy of slopes
was related to the breakdown of nonet-type mass
formulas for, e.g., p, D, and J [or SU(4) breaking
of higher than first order]. Despite this, the pa-
rameters of the Regge trajectories were not arbi-
trary. We proposed equal-spacing rules for the
trajectories. This and factorization of the trajec-
tory slopes enabled us to express all slopes (at
low s) in terms of one parameter. We then ex-
tracted the coupling constants of a meson of spin
L (on the leading trajectory) to two pseudoscalars.
The resulting predictions agree well with existing
data. (These predictions hold for mesons L in the
low-s range where the trajectories are nondegen-
erate but approximately linear).

In this article we extend the analysis to the case
VP — PP where V is a vector meson lying on the
leading trajectory. We show that a simple quark-
line rule gives all LVP couplings in terms of only
two parameters—an overall normalization and the
slope of the p trajectory in the resonance region.
Since we have nondegenerate slopes, SU(4) sym-
metry-breaking effects are included.
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Section II is devoted to the derivation of our rule
for LVP couplings. Decay widths are calculated in
Sec. III, and our conclusions are in Sec. IV. Some
details are left to Appendixes. Appendix A gives a
derivation of the LVP coupling from VP - PP
Veneziano amplitudes. Appendix B contains the
decay rate formula for L~ VP (L has natural pari-
ty and arbitrary spin).

II. LVP COUPLINGS

In this section we derive the L VP couplings from
Veneziano’s parametrization of the process?*

Ve, k) +P,(k,) = P,(k,) + Py(k,) @.1)

and study the asymptotic constraint on the Regge
trajectory for this reaction (we are assuming that
only asymptotically are trajectories linear and of
the same slope for all reactions). The vector par-
ticle polarization is € (momentum %) and the pseu-
doscalar momenta are k,, k,, k;. The scattering
amplitude is

T =(ekk )i (s,t), (2.2)

where (@bcd)=¢, ,,,a*b’c*d’ and s,t,u are Mandel-
stam’s variables. The vector meson is p, w, ¢,

* D* F* orJ and the pseudoscalars are any
threefold combination of 7, K, D, F, and n,, where
7, is the c¢C pseudoscalar (we will not discuss n and
7’ here, as they are not pure quark states). The
amplitude ¢(s, ) in (2.2) consists of one or more
beta functions of the form

Tl -a,(s)I(1 - o))
r@-a,(s)-az0)

where a,(s) and a4(t) are the Regge trajectories
contributing to the s and { channels. There are
four sorts of amplitudes, depending on which ex-
ternal particles are present:

(1) Amplitudes crossing symmetric in all vari-
ables s, t, and #. This is Veneziano’s original
reaction wr =77, The amplitude #(s,,u) is

MEF,,(s,1) +F, (s,u) +F,,u,t)] . 2.4)

F g(s,t)= (2.3)

(2) Amplitudes crossing symmetric in two vari-
ables (s and u, say) with all channels receiving
contributions from definite Regge trajectories.
This class contains

wK—~1K,
JF =1 F,

wD—-7D, JD—-n.D,

D*nc—.Dnc’ F*nc_’Fnc‘

The amplitude involves two beta functions. The
first four amplitudes are illustrated by wK—=7nK,
namely

Mol F gy (5, 8) + F o, (e, 2)] (2.5)

and the last two are

ON DECAYS IN THE DUAL RESONANCE. 1549

X3[FD*J(S,t) —FD*J(M, t)]
and
A[Fpxy(s,8) =Fpuy, )] . (2.6)

(3) Amplitudes with contributions from two chan-
nels (s and ¢, say) but with two exchange-degener-
ate trajectories (p-f and w-A,). The reactions in-

volved are
K*K—~KK, K*D—KD,
D*D~DD, F*F-~FF.

In parametrizing these reactions, we separate the
p-f contribution from the w-A, contribution. For
instance, K*'K"— K*K" is

MEF,, (s,8)+F  (s,0) +F,(s,0) +F, (s,0]. (2.7

(4) Finally, amplitudes with two contributing
channels (s and ¢, say), each with a unique Regge
trajectory. There is only one term in the ampli-
tude; as an example wK —~ DF is given by

AGFK*D*(s’t)‘ (2.8)

In Egs. (2.4)-(2.8), the \’s are normalization con-
stants. Remarkably, there is only one independent
constant. We now show how to reduce all the A, to
multiples of a single X.

In Appendix A we give the LVP couplings, g.

As they stand, the couplings do not incorporate
constraints relating them to one another. Two
steps are necessary in order to do this:

(A) Consider four reactions with a fixed vector
meson in the initial state. Each can be represented
by a quark-line diagram where the two quarks in
the vector meson are of fixed flavor. The others
can be varied at will. The diagrams are shown in
Fig. 1; q,, q,,...q, label the quark lines with ¢,7,

S

O'+ 0"

t-> q}/;\\’:/(:

1

NSO
q 9
/BN

(a) (b)

(d)

778N\
(c)

FIG. 1. Quark-line diagrams of two reactions VP — PP
involving the same vector mesons but different pseudo-
scalar mesons. ¢y, ¢y, ***, and g4 label the quarks;
q1 g3 is the vector-meson channel; the others are pseu-
doscalar-meson channels.
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the vector-meson channel. Now notice that the
same LVP coupling enters in the s channel of
Figs. 1(a) and 1(b) and in Figs. 1(c) and 1(d). The
same is true in the ¢ channel of Figs. 1(a) and 1(c)
and of Figs. 1(b) and 1(d). But since the same
coupling enters in different reactions, all four
must be related to one another. Then we find that
the LVP couplings can be expressed in the follow-
ing form:

’
EXSZ ()P (2.9)
axz
where N;™=2X(L - 1)!, X is a common constant for
a given vector meson, and & .is an SU(4) Clebsch-
Gordan coefficient. The slope parameters are
those of the trajectories having the quantum num-
bers of q,7,, 9.9,, 9:9;, Where q,q, is the L chan-
nel, ¢,g, the vector-meson channel (held fixed) and
g9, the pseudoscalar channel.

We will illustrate this procedure by deriving the
consistency condition for the s-channel couplings
of Figs. 1(a) and 1(b). From Appendix A, Eq. (8),
we have

1 (a gq)zl,-z

b— =b— 3l
’ ! 51 L 7
alz (a4’4’ a12 a4'4'

where we have used the factorization property of
the slopes aj,al, =(aj,)?, etc. Since the two cou-
plings are identical we find

a/al,=b/al,.,

and we can choose a =xa}, and b=xa},,., delivering
the promised relation between the normalization of
Figs. 1(a) and 1(b). We can handle the normaliza-
tions of Figs. 1(c) and 1(d) the same way. Applying
this procedure to the pairs 1(a)-1(c) and 1(b)-1(d),
the normalization of all four reactions are fixed
relative to one another and Eq. (2.9) follows. We
have not assumed SU(4) symmetry for the couplings
in this. The Clebsch-Gordan coefficients follow
from the LPP couplings in our discussion of the
LVP vertex in Appendix A, and by the crossing
properties of VP~ PP, For degenerate Regge
slopes both LPP couplings and LVP couplings are
in fact SU(4) symmetric.

(B) still another constraint has to be satisfied by
the couplings. Two LVP couplings can be related
by interchanging the quantum numbers of L and V.
In the notation of Eq. (2.9) they are

al

2 22 (@),
12

DY

and

FIG. 2. Quark-diagram interpretation of the sym-
metry-breaking effect of Eq. (2.12); ¢,4; and g3, are
respectively the vector-meson and pseudoscalar-meson
channels.

al
33 7 yL=1
A3 a’ (022) NL ¢
13

Of course, for L =1 the L meson is a vector meson
and the above two couplings are identical. Then

(2.10)

If we use the factorization conditions aj, =
= (af,@})? and a!f, = (af,aj) 2, (2.10) can be sat-
isfied in a symmetrical fashion by taking

XZE)‘(a;iia{l)l/z’ A3Ek(aé3a£1)1/2 ‘

Now we get the final form for the LVP couplings,

gV2 =gLVP2:£7\aés(aé3)L-1NL ’ (2.11)

where A is just an overall normalization constant,
common to all reactions.

Equation (2.11) is easily interpreted using the
quark line diagram of Fig. 2. To show how sym-
metry breaking enters, write (2.11) as

a’ al) L7t
gy*=&r (—&7”) (-73) (@))*2Ny,
P

al (2.12)

where a}=aj, is the slope of the Regge trajectory
with the quark content of the pseudoscalar in Fig.
2 and aj=ay, is the slope of the trajectory with
the quark content of the pair created in the vertex
of Fig. 2. We will discuss yet another form for
(2.12) later.

III. DECAY RATES

In this section we present predictions for decay
rates (including symmetry-breaking effects). In
Sec. II we derive our main result for the LVP ver-
tex (Eq. 2.12); the symmetry-breaking effects are
contained in the factor

(ap/a))(ap/a)t™,

which we can rewrite yet again (using the factor-
ization property of the Regge slopes)

(ap/al)(ay/a))(@p/as)P(ag/a))s2,

ay, is the vector-meson trajectory slope, and a/,
is that of the decaying meson L. Notice that aj

(3.1a)

(3.1b)
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=a,, a;, or a}, depending on the flavor of the
created quark pair in the vertex of Fig. 2. The
factor (a)/a) ™ clearly disfavors the creation of
a heavy-quark pair in Fig. 2, inasmuch as aj
<a). The factor 1/a/, always appears in the decay
amplitude for a particle lying on a Regge trajec-
tory of slope a/.®

It is instructive to compare the LVP (g,) and
the LPP couplings (gp) derived in Ref. (2) and
given in the Appendix (Eq. A7). We find

al al L
B L
gP2=X° (ﬁ) (Z!T) (CY",) NL‘

P
Because of the different spin structure of the cou-
pling, no dependence on @}, and &} is present [see
Eq. (3.1b)].

Substituting (2.12) into the decay rate expression
(Eq. B4) we have

EX ab (g’ﬂ) i
vPE o (af)E?
L=VP 4 a! \a} o
1 22273(L4+1)!
X
2L +1 (ZLT!

kZL*l

s (3.2)

where & is the c.m. momentum of V or P in the
decay. The ratios of slopes from Ref. 2 are
apx/a)=0.924, a)/a)=0.854, aj«/a;=0.761,
apx/al=0.703, and a’/a)=0.579. As in Ref. 2 we
use @, =0.88 GeV2. Then all rates are fixed by
one parameter .. We use the rate for A,—~ pr (Ref.
6) (which is the most accurate) to get

A 4m=15.4 GeV™*,

with £=4. In Table I we list the calculated decay
rates for the low-spin mesons together with avail-
able experimental values. The £ coefficients (rel-
ative to that for A,pn) are also listed.

TABLE I. Partialdecayrates. £ is obtained from £ by combining different isospin chan-
nels. The mass values used for D**, etc. are derived in Ref. 2, mp xx =2.35, mp xx=2.49,
mpxxx=2.65, mp xx+x=2.80 GeV. Their partial widths are just sample calculations to show the
order of magnitude. The decays F**—D*K , D***—wD, F***—K *D etc. are either below
the threshold, or very close to the threshold. We do not attempt to calculate them.

3 Theory (MeV) Exp. (MeV)
Tensor meson JF=2* decays
A,—~pm 4 72.3+4.0
K **—K * 4 28.5+ 1.7 33.4+3.8
—pK 4 6.7+ 0.4 7.1+2.0
—wK 4 1.9x 0.1 4.9:1.9
f'—K*K +K*K 4 12.1+ 0.8
D**—D*7 4 4.6
JP =3~ decays
g—wrm 2 53.4 +32 large 47 mode
—K *K +K *K 2 3.4+ 0.2 small
w (1675)—~pm 6 148.3+ 8.7 seen
—K *K +K*K 2 2.6+ 0.2
Ky (1800) =K *r 4 46.7+ 2.8
—pK 4 29.3+ 1.8
— WK < 8.9+ 0.5
— oK 1 1.6
D***—~D*r 4 11.7
F*¥*x—D*K 2 8.3
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IV. CONCLUSION

Our main result is that for L, a meson of not too
high spin on a leading Regge trajectory, LVP cou-
plings can be read off a quark-line diagram (Fig.
2). Symmetry breaking enters through nondegen-
erate slopes for certain g7 trajectories. We have
given rates for decays of L to a vector plus pseu-
doscalar meson. Large symmetry-breaking ef-
fects occur in the couplings of nonstrange and un-
charmed mesons L into strange and/or charmed
particles. Except when the final state involves 7,
or F or requires that an s5 or ¢C pair be created
from the vacuum, we find little suppression of
charmed-meson decays due to symmetry breaking.

We close with some specific remarks:

(1) Our rate predictions compare well with the
(scanty) data. We remark that from A,~ p7 we
predict that w(1695) [which has a width of 150
+20 MeV (Ref. 6)] decays principally to pr (148
MeV). A measurement of this decay would be wel-
come.

(2) Our predicted K**—~ wK width is about 13
standard deviations away from the experimental

result (which has a rather large error, see Table
I). An accurate measurement of this width checks
this and any other model relating A,—~ pr and K**

—~ wK and incorporating SU(3) breaking.

(3) From its Km and K*r, pK modes, we predict
that K (1800) has a width 2120 MeV.

(4) Since charmed-meson decay rates are little
affected by symmetry breaking, the real tests of
the scheme lie in the relations between L — PP and
L - VP rates.

We believe that Veneziano amplitudes with non-
degenerate trajectories offer a useful phenomeno-
logical description of the decays of moderately-
high-L qg states on leading Regge trajectories.
This contrasts with the nonrelativistic quark mod-
el, which we believe better suited to describe
states of low L.?
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APPENDIX A: THE LVP COUPLING

Let the reaction (2.1) be described by a one-term Veneziano amplitude (the generalization to more than

one term is straightforward):

r-a,(s)r(-ayt)
t(s,t)=2F t)=x 4 B (A1)
(s,8)=F ,p(s,t) TG _a. () —a,0)
The resonance L of mass m; and spin L contributes to the s channel. The contribution of L to T is
1
T L Lgehy 85 g2l g b, oy ()8 2] Gyeiky) (A2)

n

where &; =k, —k;, A=k -k, h, 1.,,”(17) is the polarization state 7. The terms in the first and second set
of brackets of (A2) are the LPP coupling (g,) and the LVP coupling (g,). Now we use

1
Zhul...”(n)h:l...n(n)=L—!(—)L Z gulp’l'
n

jieeedg
permutations
vytevg

Buvy,

(A3)

+terms proportional to K=k, +k =k, +k,

and note that from the helicity amplitude that T « sin6P] (cosf) (sinf comes from (ek,k,k,) and P} is the
first derivative of the Lth Legendre polynomial). Only the first term in (A3) contributes to the highest
power of cosf (cosf)L™ and we can thus read off the coefficient of @},

2L¢1(L! )2

T = (ek,koky) (—(%fk;)L"gvgp A

) P} (cosb) ————
s =my

1 (A4)

2

where %, and k; are initial and final c.m. momenta. Doing the same thing for the Veneziano amplitude we
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find for s—m % a,(s)~L,

2(L)

T = (ekyegky) (_ X (g et @) 22 ) P} (cosé) —— . (A5)
A -

(2L)!

Comparing (A4) and (A5) we have

1

A
gv8p=—% (@’ )LIN N, =—————
vo P a'A B Ly L 21.([ _1)! ’

where, from Ref. 2

A, -
get=gr (@3 )N,

L

(A6)

(AT)

(%) is in general different from a}). Equation (A7) has a quark-diagram interpretation: If L is composed
of 4,7, the two pseudoscalars are ¢,7; and ¢, with @, =, ; . From (A6) and (A7) we extract our final re-

sult,

gpe O
v GQW L»

where A=1,2/1,.

(A8)

APPENDIX B: DECAY RATES

The derivation uses the unitarity relation for V(k,, €,) +P(,)~ V(k,,€,)+P(k,). Polarization vectors and

momenta are as indicated. Our coordinates are

ka=(Ea’010,k), kb=(Eb’0’0’ _k)’

k.= (E, ksin6, 0,k cosb), k,=(E,, -k sin6,0, -k cosb), (B1)

€2) =\/%_(0, +1,-1,0), €X¢) =L (0,Fcos#, i, +sinf) .

V2

For a natural-parity meson L coupling to VP, the only independent helicity amplitude is easily seen to be
T, =T.., (Te=0). Labeling initial and final helicities of the vector meson by n,, 7, we have as s = m7%,

&y’ oo n
T,,f,,;s—_Vm—Lz Z (LS )P RRRRNZORS LU M LN O] | NN ¢ ) Z- LI L (TR U N LR V) P (B2)

where k,=k, - k,, k,=k_ -k;. As in Appendix A we extract the highest power of cos6 and find

g 2L+ DL - DL _df(6)

T, ~&,°m, @) s=-m;?’

(B3)

and the decay rate is given by

1
lim [ dcosf TLdk(6)

Iiove=a3
LVPTRIm 2 simpz J o

&t 1 (23L'3(L—1)!(L+1)!) p2Lel
4r 2L+1 L)1 :

(B4)
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FIG. 1. Quark-line diagrams of two reactions VP — PP
involving the same vector mesons but different pseudo-
scalar mesons. qq, ¢3, """, and gy label the quarks;
¢ @3 is the vector-meson channel; the others are pseu-
doscalar-meson channels.
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FIG. 2. Quark-diagram interpretation of the sym-
metry-breaking effect of Eq. (2.12); 4,73 and 37, are
respectively the vector-meson and pseudoscalar-meson
channels.



