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Finite-energy solutions of the field equations of the non-linear o-model are shown to 
decay asymptotically into massless lumps. By means of a linear eigenvalue problem con- 
nected with the field equations we then find an infinite set of dynamical conserved 
charges. They, however, do not provide sufficient information to decode the complicated 
scattering of lumps. 

1. Introduction 

Recently there has been much interest in the two-dimensional non-linear o-model 
[1] as a simulator for the four-dimensional pure Yang-Mills fields, both on the clas- 
sical and on the quantum level. The classical field equations of the non-linear o-model 
in Minkowski space have been shown to be related to partial differential equations 
solvable by the inverse scattering method [2]. However, these results did not yield a 
clear understanding of the classical model in physical terms due to the complicated 
form of the local charges which were derived with the help of cumbersome "normal 
coordinates" in Minkowski space. 

In this paper we give an account of the classical field equations without relying 
on normal coordinates. We first analyze energy-momentum conservation and show 
that a generic solution decomposes into a set of massless lumps for large times. The 
problem of how to (exactly) linearize the field equations is attacked in sect. 3. 
Although we are not able to find a transformation to action and angle variables, our 
results are good enough to provide an infinite set of conserved charges (sect. 4), 
They are non-local but nevertheless satisfy an (non-Abelian) addition law. 
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2. Basic facts about  the non-linear a-model  

The two-dimensional O(n) o-model describes the motion of  a string of n-dimen- 
sional classical spins qa(t, x ) ,  a = 1 . . . .  , n of unit length: qaqa = 1 *. The action is 

s=½ fdZx a.qa ~)~qa , (1) 

giving rise to the field equations 

O~OUq a + ( 3 , q  b OUqb)q a = 0 , qb qb = 1 . (2) 

The invariance of  the action under dilatations implies that the energy-momentum 
tensor ®u~' is traceless: 

1 Ohqa Ouu = Ouq a Ovq a ~guv Oxq a , (3) 

~ u  = 0 , ®uv = ®vu • (4) 

Therefore, Our has only two independent components 

O~ = ~-(0oo +Ool)  O~ 1 , = ~((~00 -- 0 0 1 )  ' ( 5 )  

representing the density of  energy flowing from the right to the left and from the 
left to the right, respectively. Energy-momentum conservation says that 

Of = O, ~ - 0  n = O, (6) 

where we have introduced light-cone coordinates defined by 

~ = 1  0 =I(X0 X t ) .  (7) 5(X + x l ) ,  r/ 

Hence, ®~ depends on ~ only. In other words, the energy flowing from right to left 
runs with exactly the speed of  light and does not dissipate. 

The meaning of  energy-momentum conservation is made most transparent when 
considering the following situation. Assume that at t = 0 all the energy-momentum 
is concentrated on a compact  intervalx E [c~,/3], i.e. (auq)( t  = 0 ,x )  = 0 outside 
[a,/3] (see fig. 1). 

Eq. (6) now implies that ®u, is supported as indicated in fig. 1. We thus see that 
after some time has elapsed the spin string has separated into two lumps moving 
away from each other with the velocity of  light. Let us look more closely at the 
lump running to the right. There, 

~_~ O qa Of = qa ~ = 0 

* Notation: Greek indices ~, ~,, ... run from 0 to 1, Latin ones a, b .... from l to n. The metric 
is go0 = --gl 1 = 1 and the smnmation convention is implied. 
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Fig. 1. The support of ®Uv when (~gq)(0, x) = 0 for x q~ [~, ~]. 

and hence 

0 
~-~qa = o . 

Therefore, as t increases, this spin string is just shifted to the right but does not 
change its shape. 

To sum up, we have found that  the two-dimensional o-model describes massless 
lumps which scatter. These lumps are characterized by (3/O~)qa = 0 and (O/3~)qa = 0 
if they move to the right and to the left, respectively. When two lumps scatter they 
will deform each other. These deformations reflect the non-trivial dynamics of  the 
model. 

Note finally that the lumps discussed here fit into Coleman's [3] definition of  
aclassical lump. However, our lumps are of  an essentially kinematic nature and are 
not a manifestation of  an attractive force between elementary waves. 

3. Derivation of a family of  linear eigenvalue problems associated with the equations 
of motion 

Let us first consider the case n = 3. We start from the following set of  compatible 
equations [2]: 

~-~- O(V) = (1 7 -1 ) (q  × ~ q ) a l a O ( q ' )  
~ 

Or~ ' 

O(~) T • 0(~)  = O('r) • 0 (~)T = 11 (8) 

Here, the symbol 7 denotes a complex constant parameter different from zero. 1 a, 
a = 1,2,  3 stand for the antihermitian infinitesimal generators of the rotat ion group 
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0(3)  *. ©(7)T is identical with the rotation matrix c~(7)(. ,  q) of  ref. [2]. 
For the spin -1 representatives U (7) of  the space-time dependent rotations 0 (7), 

eqs. (8) become 

f a 0 a 

c 7) (1 q X u q  ' 
O77 

U (7)" U (7.)+ = U (7.)+ " U (7) = ~,  (9) 

where o a, a = 1, 2, 3 denote the three Pauli matrices. The compatibility of  these 
linear equations for two values of  the eigenvalue parameter 7 different from one 
(and the initial data for the field vector q) imply the equations of  mot ion (2) and 
vice verscL Hence, the above set of  equations constitutes the desired family of  
linear eigenvalue problems closely related to the equations of  motion. 

In space and time coordinates (x, t), eqs. (9) read 

f w 
- - U =  - - - -  {(qx × q)a _ w(ct X q)a)  i u a u  (lOa) 
fit 1 - w 2 

f W 
U= 1 - w ~ {([7 X q)a _ W(qx X q)a)  i o a u ,  

where (for later convenience) we have set 

7 - 1  f f 
w = -  , it = q qx = q ' ' 

and the dependence of  U on 7 and on w has been suppressed. 
In the following, we shall restrict our attention tO situations for which 

(10b) 

- F ~  

f dx ((italia) 1/2 + ( q a q a ) l / z }  < o o .  (11) 
_ c o  

I f  this condition is met at one time, then, due to eq. (6), it holds at all times. It 
implies the time independence of  U(t, +,~) and q (t, +of) _- q(_+oo). We may therefore 
normalize U(t,  -co)  to 1[, the 2 X 2 unit matrix. Having thus fixed the integration 
constants in eq. (10), U(V)( t , x )  becomes a uniquely defined functional of  q. It is 
then easy to prove that 

det U(7) ( t ,x )=  1 , 

U(-7) ( t ,  x )  = q( t ,  x )  U(7)(t, x ) # ( - o o ) ,  

The symbols T, +, *, the latter ones to be used later, indicate transposition, hermitian conju- 
gation and complex conjugation, respectively. 
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U(1) (/-, x) = ~,  u(-l)q,x):flq, X)~l(-~), (12) 

where ~7 : qaoa. The last relation allows the reconstruction of q, the solution vector 
of the equations of motion, from the special unitary matrix U ( - t )  (and q ( - ~ ) ) .  

From the matrices U (~) we can obtain two families of  new solutions of  the field 
equations (2) by simple algebraic manipulations. The first of  these families is defined 
by [2] 

q('r) = O ( ' Y ) T  . q ,  (13) 

i°eo 

t/('r) : (U('Y)U(03")) - '  q(U('Y)U(0~')), (14) 

where U(0~) is a constant SU(2) matrix. 
The second family consists of  the B~cklund transforms q(~)'  o f q  ('y). Up to an 

integration constant (which can be fixed by specifying q(~)'(t, _oo) =_ q(~)'(_oo), 
q(-r)'(_oo) / q(~r)(_oo)), q('y)' is determined by [2] 

~ (q('r)' +q( ' r))  II (q('r)' q('y)) 

O (q(,y), _ q(,y)) II (q('Y)' + q('Y)) , 
O~ 

(q("/)'aq('y)a) : 0 ,  (q('y)'aq('y)'a) = 1 . (15) 

q(~)' can then be constructed from U (~) and U(-+i~): 

#( 'r) '  = W(7)p(~)(_oo) 14X~)-1 , (16) 

with 

u ( j )  -1  , 

- -  

= l(u(i"{) + u(-i"t))p('Y)(-~o) _ ~ / (U( iT)  _ V('y) (17) 

Thus we see that the eigenvalue problems (9) provide a linearization of the B~icklund 
transformation (15) * 

Let us now turn to the general case n >/3.  As before, we start from the set of  com- 
patible equations 

---~ 0 (7) = (1 - T-1)qa ~qblabO(~) 
~ 

* For the expert, we note that eq. (9) could have been obtained from the B~icklund transforma- 
tion (17) via a pair of matrix Riccati equations. 
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qb/ab 0(7) Or? ~ 0(7) = (1 - 7) qa ~ 

0 ( 7 ) T 0 ( 7 )  = O(3")O(Y)T --- ~ ,  (18) 

where/at, = _iba (a, b = 1 .... , n) denote the infinitesimal generators of the group 
O(n) for rotations in the (a, b) plane. Again, O (7)T coincides with the rotation 
matrix Qe(7)(., q) of ref. [2]. 

Let pa, a = 1, ..., n, stand for the lowest-dimensional matrix representation of the 
basis elements of the Clifford algebra [4] 

{P a, Vb)+ = 26 ab , (19) 

and let the symbol [ ,  ] denote the commutator. The Lie algebra with basis jar, 
- l[Fa, pb] is a representation of the Lie algebra of the group O(n). The corre- 
sponding representatives U (y) of the space-time dependent rotations 0 (7) satisfy 
the following equations: 

L U(') ' )  = (1 - -  7 - 1  ) qa ~_~ qbjaau(7) 
0f 

--0~7 ~) 0"(7) = (1 - T) qa~--~qbjabu (7) 

v(7*) + u(v)= tAT)u(v*)+ = n. (20) 

As in the 0(3) case, these equations constitute a family of linear eigenvalue problems 
closely associated with the equations of motion. Imposing the condition (11) we 
may require that U(7)(t, _oo) = 11, the 2 In/2] X 2 In/2] unit matrix ([k] denotes the 
largest integer less than or equal to k). 

With the appropriate changes, in particular 

e] = qaFa , (21) 

eqs. (12)-(17) remain valid. Thus, the solution vectors q, q(7), q(7)' can be con- 
structed from the matrices U (-+7), U (-+i7) (and q~oo), q(7)(_oo) and q(7)'(_oo), 
respectively). 

4. Derivation of  an infinite  set o f  constants  of  mot ion  

For simplicity we again concentrate on the 0(3) case. Also, q(t, x) will always 
be assumed to fulfill condition (11). 

At any given fixed time t, the "scattering problem", eq. (10b) and the boundary 
condition U(t, _oo) = 1 define U(t, x) uniquely for any given Cauchy data qa(t, x), 
gla(t, x). Especially, for any value of the "spectral" parameter w, w 4: +1, 

Q(w) = U(t, oo) (22) 
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is a well defined functional ofq a, il a, which, by eq. (11), is time-independent. Fur- 
thermore, it can be expanded in a power series in w, thus leading to an infinite set 

of  conserved charges: 

oo 
d 

Q(w) = ~ wnQn , -~Qn : 0 .  (23) 
n=O 

Recall that Q(w) is a 2 × 2 matrix, i.e. 

Qn : Q°n + Qa iaa . (24) 

Under 0(3)  rotations Qn ° behaves as a scalar and ~n as a vector. 
A more explicit representation of  the charges is obtained by rewriting the defin- 

ing differential equation as an integral equation: 

U(t, x) : ~ + - -  
x 

W 
1 - w 2 f dy ((it × q)a(t,Y) - W(qy × q)a(t,y)} ioau(t,y). (25) 

Inserting the expansion 

oo 

v(t, x): ~ w" v.  (t, x), 
n=O 

(26) 

we get the recurrence relation 

x 

Un(t,x) = f dy{ (qXq)  a(t 'y)i°a ~ Un-2k-l( t ,Y)  
o<k<(n-1)]2 

_ o o  

_ ( q y X q ) a ( t , y ) i o  a ~ Un_2l(t,y)} (n~> 1), 
l~ l~n/2  

U 0 (t, x) : ~.  (27) 

Thus, we can calculate the coefficients Un (t, x), and hence the charges Qn, recur- 
sively. They are a sum of  k-fold (k ~< n) ordered integrals. For example, we find 

f 
Q ° = O ,  Q~l = dy( i tXq)a( t ,y ) ,  (28) 

QO_ 1 a (29) - - ~ Q 1  2 

~2 = - y d Y l  072 00"1 - 72)  eabc ( ~l × q)b (t, Y l )(q × q)C ( t, Y2) 

- f dy (qy × q)a(t, y) .  (30) 
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Q~ is just the generator of  0(3)  rotations, whereas Q~ generates a non-local sym- 

metry. 
The fact that QO 2 can be expressed through the vector charges is not accidental. 

Indeed, by eq. (12), det U(t,x) = 1, and therefore 

det Q(w) = (Q°(w))2 + Qa(w)Qa(w) = 1 . 

In other words, we have 

aO (w) = (1 - aa (w) Qa (w))l/2 , (31) 

which, upon expansion in w, yields Qn ° as a polynomial of Q a ,  m ~< n - 1. 
Our charges Qn (n >~ 2) cannot be written as an integral over a local charge den- 

sity. To illustrate this fact, let us consider a spin string qa(t, X), which, at some time 
to, is composed of  two.separated substrings la(t, x) and ra(t, x), i.e. 

la(to, X) (x <~ a) 
qa(t°'x)= ra(to, X) (x >~a), 

[?(to, X) (x <o0 
qa(to, X) :  ( i ~ (to, x) (x >i ~), 

where  (a~zla)(to, x )  = 0 (x > ~) and (~ura)(to, x) = 0 (x < a). Due to the non- 
locality of  Qn we then find that, in general, 

Qn [q] :# Qn [l] + Qn Jr] . (32) 

Here, Qn Is] denotes the nth charge evaluated for the spin string sa(t, x). 
Nevertheless, we still have an addition law; for, as is easily seen from eq. (10b), 

the respective generating functionals Q[q](w), Q[l](w) and Q[r](w) satisfy: 

Q[q](w) = Q[r](w)" Q[l](w) (33) 

Expanding in powers of  w we get, for example, 

Q~l [q] = Q~ Jr] + a~ [ l ] ,  

[q] = Q~ [r] + 09 [l] - e abe'nb rrl'qc ~21 L a ~ l  [l]. (34) 

In view of  the non-Abelian composition law (33) it is sensible to look more 
closely at the charges carried by special spin strings qa(t, x). Let us for example 
consider a massless lump moving to the right (sect. 2). Eq. (10b) then reduces to 

w 
--~ U(t ,x) -  1 - w (qx X q)a(t ,x)ioau(t ,x).  (35) 

For lumps, Q(w) has a simple geometric interpretation. Namely, eq. (35) tells us 
that Q(w) is the product of  all the infinitesimal rotations (t is fixed) 

w 
R(x) = ~ -- - -  wa(x) io a , 

1 - w  
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60 a (X) : (qx X q)a (t, X) dx : (dq X q)a (t, x)  . 

From this picture it is obvious that there exist non-trivial lumps with Q(w) = 1 for 
all w. Indeed, this happens always if qa (t, x)  runs back the same curve when x goes 
f r o m x  o to +~,  as it moved along whenx  increased from ~ to x 0. We therefore 
conclude that we cannot construct a complete set of  integrals of  motion in involu- 
tion (i.e. the invariant manifold in the phase space for qa) from the charges Qa and 
the energy-momentum tensor ®uv alone. 

The statement above suggests that there are more constants of  motion.  One 
might speculate that these can be obtained by forming Poisson brackets among the 
old charges. Unfortunately,  due to non-vanishing boundary terms, the Poisson 
bracket between say Qan and Qb, b m is not unambiguously defined through the funda- 
mental brackets.  

In order to get a safe definition of  a Poisson bracket (Qa, Qb m } let us introduce 
L,a volume cutoff  charges Qn . These are the same as Qan where, however, the multiple 

integrals involved range only from - L  to +L. Then the limit 

{oa,  Ohm} lim ( lim (O Ll'a L 2 b = , Q m '  }) (36) 
L 2---~ o~ L 1 - -+~  

is well-defined. Had we first taken the L 2 ~ oo limit,  the outcome would differ 
from the above by a polynomial  in Q~, l ~< n + m - 2, and q(_+oo). 

By a rather lenghty argument (it will be omit ted here) one can show that 
(Qa, Qbm} is a polynomial  in Q~, l ~< n + m - 1 and q(_+oo). For  example,  we found 

that 

{Qa2, Qb m } = _6abc~c~,Lm+ 1 + p~b  , (37) 

where P~i b is a combinat ion of  Q~, l <~ m,  and q(+_oo). Thus, we cannot produce new 

constants of  motion this way. 
We remark finally that a simple interpretat ion (such as particle-number conserva- 

tion etc.) of  our charges is lacking so far. Of course, this is due to the fact that clas- 
sical spinwaves do not  decay into a superposition of Abelian waves for large times. 

One of  us (K.P.) would like to thank the staff of  the II. Insti tut  fiir Theoretische 
Physik der Universit~it Hamburg for their kind hospital i ty.  M.L. thanks H. Lehmann 

for discussions. 
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