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The set-up of a relativistic constituent quark model in four dimensions is one of the outstanding problems in particle 
physics. For the time being this involves a great deal of model building which, very probably, will not change in the near 
future. In this paper we shall offer some general remarks which might help putting such models into shape. Most of the 
earlier attempts are found controversial. In particular, a convential quark constituent interpretation could not be recovered. 

The most or thodox tool tbr discussing the relativis- 
tic bound state problem in quantum field theory is the 
Bethe-Sa lpe te r  (BS) equation. The BS equation is the 
canonical relativistic, field theoretical counterpart  of  
the Schr6dinger equation. This is to say that it pro- 
vides a unique laboratory  for extending and incorpor- 
ating the nonrelativistic dynamical models, such as the 
charmonium picture, into a fully relativistic particle 
dynamics. 

Nowadays, in the age of QCD, the BS equation has, 
however, become a highly complex vehicle, though it 
still bears some great advantages over other approaches. 
It has been emphasized that the relativistic bound state 
problem being faced in QCD is afflicted with two 
coupled integral equations ¢1 [1,2] : 

AF1 (q)= Z(q  2 - m  2) - i f d4kK(q, k, 'P=O)AF(k ) , (1) 

1 Supported by Studienstiftung des Deutschen Volkes. 
,1 For simplicity we sha/1 assume spin-zero quarks and restrict 

to quark-antiquark bound states. We have omitted the in- 
homogeneous term from the BS equation as demanded by 
confinement. 

avl (~P + q) a{ l(~p_ q )%(q) 

= i f d 4 k K ( q ,  k," P)~bp(k), (2) 

rather than simply the BS equation in the ladder ap- 
proximation. It is to be expected that At., undergoes a 
drastic change from the free propagator in the presence 
of long-range (confining) forces. Eq. (1) is the so called 
Schwinger-Dyson (SD) equation which, in practice, 
may raise some difficulties as it is nonlinear. A possible 
confinement scheme is to demand that A F has no dis- 
continuity in the mass squared variable, i.e., is an en- '  
tire function. [3,4].  

Eq. (1) is derived from the BS equation for the ver- 
tex (see e.g. ref. [5])  

Fu(q, P) = zr~)(q, P) (3) 

-i  f d4kK(q, k,'P)~XF(½P +q) AF(½P- q)rU(k, t0, 
and the Ward identi ty 

ru(q, o) = (O/Oqu)Z~{1 (q). (4) 
As it stands eq. (1) holds for convolution-type BS 
kernels ,2. It can easily be generalized as to include 
any given BS kernel. 

,2 Including those ofref. [2]. 
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The main advantage of the BS scheme over other 
approaches, such as the bag models [6 -8 ] ,  lies in its 
predictivity. Once the solutions to eqs. (1) and (2) are 
known it is straightforward to calculate currents, struc- 
ture functions, etc., similar to two-dimensional QCD. 
In order to appreciate this it should be recalled that, 
e.g., the MIT bag meets with great difficulties already 
in the derivation of the form factor [9]. 

The BS approach has been realized in two-dimen- 
sional QCD [10,11 ] ,3. So far it has not been serious- 
ly attempted to build a constituent quark model along 
the lines of eqs. ( I )  and (2) which has some phenom- 
enological relevance. There exist, however, some prom- 
ising steps in that direction [2] which, together with 
two-dimensional QCD, oppose to the widespread pre- 
judice that a fully relativistic quark model cannot be 
accomodated within conventional field theory. 

In four dimensions it is generally believed that con- 
finement comes about because the quark-gluon cou- 
pling constant g(t) goes to infinity at large distances. 
This is equivalent to an assumption on the strong cou- 
pling behavior of the Callan-Symanzik function/3(g). 
In this spirit the BS kernel may eventually be approxi- 
mated by a few effective low-order gluon exchange 
diagrams. For the time being this leaves, of course, a 
great deal of freedom for model building since we do 
not know ~(g) explicitly but only have some gross idea 
of its functional behaviour. 

But it will soon become clear that not any BS ker- 
nel one might be led to is physically sensible. The SD 
equation proves here to be the real clue to the confine- 
ment problem. It not only confines the class of pos- 
sible BS kernels but brings in a new dimension into 
the search for a relativistic quark dynamics. Most of 
the "relativistic models" being proposed miss this 
point completely, and it seems to us that there is a lot 
of confusion in the literature of what really is a relativ- 
istic constituent quark model. 

For the purpose of illustration and for historical 
reasons [14,15] let us take the BS kernel to be of the 
form 

K(q, k;P) ~ g2(t)/t, 

g(t)-~-- ~/~/t, 
t-~ O 

t = ( ~  - k )  2 , 

(5) 

which we will regularize in the usual way: 

,3 Recently, this has been criticized in refs. [ 12,13]. 

K(q, k;P) = Res ~/t h = i~ [] •4(q _ k). (6) 
k=3 

This is the relativistic analogue of the harmonic oscil- 
lator potential. The SD equation has been solved for 
this interaction kernel in ref. [1 ]. 

Let us now assume, in close analogy to the non- 
relativistic Schr6dinger picture and following the main 
stream of relativistic approaches (such as the Dirac 
equation, the covariant patton model, bag models, etc.) 
which treat the quark as a real particle (independent 
coordinate), that the quark propagator be of the form 

1 1 
. . . .  + something. (7) 

AF(q) Z q 2 _ m  2 

In ref. [1] this type of solution has not been found 
possible. But, for the moment, we shall adopt a purely 
phenomenological point of view rather than going in 
for field theoretical consistency. After all, eqs. (6), (7) 
and (2) reflect that many authors understand by a rel- 
ativistic quark model. 

The question is, if such a heuristic picture is (in 
fact) good for a (relativistic) constituent quark model. 
It has been argued that the quark propagator should 
not have any singularities in the mass squared variable 
[1 -3 ] .  But in some sense this is also true for the 
Schr6dinger equation which we know does lead to con- 
finement for the oscillator potential [16]. The quark 
propagator may also not be of primary significance 
because of its gauge dependence. 

Therefore, let us investigate the bound state equa- 
tion. For the BS kernel (6) and propagator (7) this 
simplifies to 

[ ~q22o 3 2 2(1+1) 
Olql 2 Iql Olql 

2(q 2 - m2)(q 2 - - m2)] u(q0 ' [q I) = 0 ,  

(8) 

~P(qO, q) = Iqll Ylm (0,0)u(q0 ' Iq[), 

where q2 = (q0 +- ½M) 2 - q.2, M 2 = p2. We have only 
kept the pole term of the quark propagator which, 
however, will do the job. The normalization condition 
reads 
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fdqodlqNql2~ (qo' Iql)(q7 - m 2 ) u ( q o '  ]ql) < ~ ,  (9) 

which can be rewritten in the form 

f dqodiq[lq[2 g(qo' Iq]) 
q2 _ m 2 

(lO) 
3 

Xr  a 2 0 2 2(l + l ) 3Tql]U(qo, lql) < oo " 
k 3q2 31q12 ]q] 

Under no further assumption than that u(q O, Iql) be 
normalizable, eq. (10) can be partially integrated to 
give 

t [  02 32 3 2(1+1)~ 
fdqodlql [~, aq 2 Olql2 + ~ ]-ql Iq-~] 

X q2 Iql~2_ m 2 ff(qo, [q[) } U(qo, Jql) < ~ .  

(11) 

This tells us that u(qo, Iql) must vanish at q+2 =m 2 and 
q2_ = m 2. 

Let us now exainine the solutions of eq. (8) in the 
vicinity of  .4 q~ =m 2 and q2 =m 2. Since we are look- 
ing for a regular solution we may write 

U(qo,tql)= ~ arnn(q2+-m2)m(q2_--m2) n, (12) 
m , n  = 0 

where amn = anm. By comparison of coefficients it is 
then easy to show (but what we do not have space to 
carry out explicitly) that any regular solution must be 
nonvanishing for q+2 _~ m 2 and/or q2 .+ m 2. If  eq. (12) 
should vanish all coefficients must be zero. This is to 
say that any vanishing solution, and hence any normal- 
izable solution, must have branch points at q+2 = m 2 
and q2 = m 2 in complete accordance with convention- 
al field theory. 

Consequently, eq. (8) will not admit any bound 
states above M = 2m. Such states would be unstable as 
in the case of  conventional BS kernel, despite the long- 
range forces and in contrast to confinement. In other 
words, it is not true relativistically that the harmonic 
oscillator has a linear Regge spectrum. 

This result is not an artifact of  our somewhat spe- 
cial BS kernel but holds true quite generally, at least 

we could not find any counterexample among BS ker- 
nels which appeared to us realistic. The true BS kernel 
will probably be less singular such that the infrared 
singularities can be controlled uniquely (K ~ 1/t2). In 
this case our result will be all the more valid. Had we 
assumed that AE(q) has a cut starting at q2 = m 2, and 
if we think conventional there should be a cut associ- 
ated with the quark propagator (see also ref. [13] and 
our following discussion), this result would be immed- 

iate. 
It is to be noted that the situation is completely 

different in two-dimensional QCD [11 ]. Here the in- 
teraction is instantaneous and the BS equation reduces 
to a Schr6dinger-like equation which, as in the nonrel- 
ativistic case, may be consistent with confinement. But 
it is not clear if this has any relevance for the real 
world. 

Our conclusion is that there is really no basis for a 
relativistic constituent quark model with quasi-free 
constituent motion, *5,6 not mentioning its field theor- 
etical inconsistency. This also questions the use of  all 
the semi-relativistic derivatives of the BS equation 
such as, e.g., the Blankenbecler-Sugar equation. The 
Schr6dinger equation, which gives a rather successful 
account of  the spectroscopy of  the new particles, will 
no sooner have a simple interpretation in terms of  on- 
mass-shell quarks but must have a rather sophisticated 
dynamical origin. In general, we can say that the mean- 
ing of  the "quark mass" entering in most of  the ap- 
proaches is rather obscure. 

Let us now drop eq. (7) and consider the true quark 
propagator as being given by the SD equation. This leads 
to *7 

2~(q) = (1/V/~) X / ~  2 , (13) 

which is to be interpreted as a coherent quark-gluon 
state with zero quark mass. It is a simple exercise to 
show that the inhomogeneous term in the BS equation 
(cf. eq. (4.2) of ref. [2] ), which is connected with the 
continuum of free quark states, vanishes for the prop- 

•4 In order that both quarks can be "on-mass-shell" we must 
demand M ~ ~> 4 rn 2. 

,s It is to be stressed that it is the pole of the quark propagat- 
or which led to out result. 

,6 Including the covariant parton model [ 17]. 
,7 The constant propagator does not lead to an eigenvalue 

equation. Note that there is a misprint in eq. (3.15) of ref. 
[l ] which is corrected here. 
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agator (13), similar to the constant propagator and in 
contrast  to eq. (7). So free quark states are truly ab- 
sent from the spectrum. But this does not mean yet  
confinement.  

The BS equation for this, so to speak, " t rue"  relativ- 
istic harmonic oscillator has been discussed in great de- 
tail in ref. [ 18].  It is found that there exist no bound 
states at all. So the BS wave function will describe a 
cont inuum of coherent quark -g luon  states. 

The result is not  surprising anymore since the 
propagator (13) can be represented as a superposition 
of free propagators with mass (m) extending down to 
zero. In this light the result appears again not to be re- 
stricted to our special example so that,  quite generally, 
there will be no confinement for quark propagators 
having a Lehmann representation. 

So we have to demand that A F be an entire func- 
tion. This has been suggested a long time before,  but  
we have seen that  this is not only sufficient but  also 
necessary for confinement.  The most simple entire 
function we can imagine is AF(q) = const, which also 
has a nice physical interpretat ion:  

AF(X - z) "~ 54(x - z) .  (14) 

Another  choice would be a polynomial  (in q2). This 
has, however, to be discarded because it brings in an 
untolerable singularity in the electromagnetic vertex *8 
via the Ward ident i ty  (4). For the same reason we can- 
not  allow an essential singularity at infinity so that 
only the constant propagator remains *9. In the more 
realistic case of  spin-1/2 quarks this is not necessarily 
true. Here [20] a first-order polynomial  (inN0 is pos- 
sibly allowed because of  the traces to be taken. 

This reduces the number of possible BS kernels in 
two respects. First of all, the BS kernel has, of  course, 
to be consistent with (in case of spinless quarks) the 
constant propagator and, secondly the BS equation 
must give rise to an eigenvalue equation. The latter is 

~-8 And, hence, in the vacuum polarization, etc. 
~:9 That this is compatible with nonzero charges has been dem- 

onstrated in ref. [ 19]. Cf. also for its internal consistency. 

not automatical ly the case. The BS kernel (6), e.g., 
admits a constant propagator but does not lead to an 
eigenvalue equation. In this respect strict convolution- 
type BS kernels must be discarded. If the BS kernel 
is phrased in terms of  an effective one-gluon exchange 
the "gluon" must have spin one. But even this p2 
dependence is not sufficient for a reasonable spectrum 
as can be inferred from ref. [2].  What else can come up 
for any further p2 dependence? It seems to us that 
hadronic intermediate states may be the answer. These 
also might simulate the quark mass singularities appear- 
ing in the nonrelativistic Schr6dinger picture. 
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