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The Bianchi identities for gauge theories in an extended flat superspace are evaluated. 
They permit better understanding of possible constraint equations, and can serve as a 
starting point for further constructions of gauge theories with extended supersymmetry. 

1. Introduction 

Supersymmetric gauge theories have been developed for Abelian [1 ] and non- 
Abelian [2] gauge groups, starting from the multiplet structure of  the simplest 
supersymmetric field theories [3]. Gauge theories with N supersymmetries 
(extended supersymmetry) have been constructed by the authors of  ref. [2] and by 
Fayet [4] f o r N =  2, and by Gliozzi, Scherk and Olive f o r N =  4 [5]. The latter 
authors used a dimensional reduction technique which allowed interpretation of  
the (simpler) non-extended theory in 10 dimensions as extended supersymmetry in 
4 dimensions. However, they do not reach, or attempt to reach, an off-shell super- 
symmetric theory with all its auxiliary fields. 

Wess and Zumino suggested the use of  differential geometry in superspace to 
reach a better understanding of  both supergravity and supersymmetric gauge 
theories [6,7]. These techniques are displayed once more in sect. 2 of  this paper. 
They have been used to derive the fully supercovariant gauge theory f o r N  = 2 [8]. 
In any case, the most difficult task left in the construction of  new theories is to 
guess gauge and supercovariant constraint conditions on the basic fields which are 
compatible with the identities, i.e. which do not lead to equations of  motion or a 
pure-gauge theory. Therefore the Bianchi identity in superspace is examined 
closely in this paper. In the appendix, we calculate which of  its components are 
algebraically independent for the different N; the results of  this calculation are 
presented in sect. 3. In sects. 4 and 5, we briefly indicate the connection with the 
known theories of  refs. [1,2,8]. Sect. 6 indicates some of  the problems left for 
N > 2, sect. 7 shows how the scheme connects with the results of  ref. [5] f o r N  = 4, 
without, however, featuring any factual results beyond those of  refs. [5,9]. Con- 
cluding remarks are contained in sect. 8. 
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462 M.F. Sohnius / Supersymmetric gauge theories 

2. Yang-Mills superfields 

Our superspace is spanned by the space-time variables x u and the 4N anticom- 
muting variables 0 A, 0 A. The capital indices A and A stand for double indices 
and ai, respectively (c~, a = 1, 2 are SL(2, C) spinor indices; i, j = 1, ..., N number 
the internal degrees of  freedom of  the extended supersymmetry).  Lower indices 
A and .,i denote index pairs ~i and ai. 

On this space we represent the algebra of N-extended supersymmetry 
u.  i (1 6) is a set of  Pauli matrices), (o~.a = a s  ~/, o u - , 

(QA, Qa) = 2a~.ie . ,  

(QA , QB } = (QA, Qh ) = [Pu,Pv] = 0 ,  

[Qx ,Pu] = [QA,Pu] = 0 , (1) 

as differential operators (~AA - o~4A ~u) 

Pu = iau , 

a ~a 
QA = - ~ Y  - i~AA , 

QA = - a O  + iO a~aA • (2) 

A superfield 4~(x, O, 0-) transforms under supertransformations as 

6~b = ( •QA + QA ~A)~ • (3) 

Under a gauge transformation, a gauge-covariant superfield is supposed to transform 
according to 

0 ~ e - i A ¢ ,  (4) 

where A is a generating matrix of  the Lie algebra and depends on the point in super- 
space: 

A = ~ T~Xt(x, O, ~).  (5) 
l 

The generating matrices of  the gauge group T l act  on the (unwritten) gauge group 
indices of  ~b. 

While au¢ is still a superfield, we know that we have to replace a z by the (gauge-) 
covariant derivative 

~u =- au + is~u , (6) 

so that ~ u ¢  is again a gauge-eovariant superfield. The Yang-Mills potential ~ u  is a 
Lie-algebra valued superfield 

~ u  = ~ Tl Mut( x' O, 0-), (7) 
I 
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whose gauge transformation properties are 

~ -~ e - i A ( ~ ' ~  -- iaU) e iA . (8) 

In the same sense, the "covariant" spinor derivatives 

a 
DA -- - ~  + i~AA-O A , 

0 ioa ~AA (9) /).4---- a~ A 

must be augmented by Yang-Mills spinor potentials to yield gauge-covariant quan- 
tities 

:/),4 =DA + i M A ,  

~ A  = D A  + i R A  • (10) 

The Lie-algebra valued spinor superfields S~A, -~.4 transform under gauge transfor- 
mations very similarly to s~u : 

5~ A --~ e- iA(  5~ A -- iD A ) e iA , 

-~.,~ -+ e-iA(-~.4 -- i [ ) j )  eiA • (1 1) 

The commutators  of  two covariant derivatives yield the six Yang-Mills f ield strengths 
(or curvatures): 

{ CDA, (-D B = iFAB , 

{C--l).4, ~i3 = iFai~ , 

{ cDA, ~i~ = iFai~ - 2io~i~ cD~, 

[Cl) u, CDA ] = iF~a , 

[%,  ~A ] = iP~a , 

[%,  %] = iF,~,  (12) 

which are again Lie-algebra valued superfields: 

FAB = DA "~B + DB~A +i{ -°~a, ~B) , 

PAa=DA~ ~ +Dalai +i(~A, ~i~) , 

FAi~=DAgTi~ +DB ~tA +i{-~A, H~) + 2i~B-~., 
F~,A = ~tz S~A -- DA-~ t, +i[~*, S~A] , 

F~v = a~a~v - a v ~ ,  + i [ s ~ , ,  s~v] , (13) 
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and, o f  course, gauge-covariant fields in the adjoint representation: 

F ~  e - i A F  e iA . (14) 

From the six eqs. (12), which we may call "Ricci identities", we can derive, by 
means of  generalized Jacobi identities, the following set of  ten Bianchi identities: 

CDAFBc + C-DBFCA + c-DcFAB = 0 ,  (15.1) 

'7)AFBd + Cl)BFdd + ~dFdi~ = O, (15.2) 

U-1)AFBc + @BFcA + @cFBA + 2io~AFuc + 2io~AFuB = 0 ,  (15.3) 

c-DAFI} d + (~-DhFAd + C~dFAB + 2 i ~ h F u d  + 2io~dFu[ ~ = O, (15.4) 

Q)~FAB -- C-DAF.B -- C-DBFvA = 0 ,  (15.5) 

~uT',iB - ~A Fui~ - cDi~FuA = 0 ,  (15.6) 

CDuFAB -- CDAF#B -- ~--DBFuA -- 2io~BFuv = 0 ,  (15.7) 

~D.FvA -- CDvFuA + c-l)AFuv = 0 ,  (15.8) 

~'~uT'vA -C l ) vFu j  + ~AFuv = O, (15.9) 

@uFoo + COoFou + ~ a F . o  = 0 ,  (15.10) 

which are indeed identities, given the solution (13) for the F 's .  

3. Independent identities 

One of  the main tasks in finding supersymmetric gauge theories is to get rid o f  
superfluous fields by imposing suitable covariant conditions on the field strengths. 
These conditions should neither lead to equations of  motion nor render the theory 
flat (i.e. Fur = 0). The all-important tool to find out whether or not this is the case 
is the set of  generalized Bianchi identities (15). These are, however, not all indepen- 
dent, and it seems important to know the truly independent subset. 

The evaluation of  (15) for the independent identities is done in the appendix, 
and we want to summarize the results here. 

Eq~ (15.1, 2). They are independent for a0. y N. 
- (1, Eqs. (15.3, 4). We get for any N (~ AA =- ~ ~i, v 

4i(N + 1)FuA -- 2i(ovov)ABFvB 

= - (   e.)BFAB -- q> Y F A ;  - % F=B, 

4i(N+ 1)ff uA - 2iff uh(oV ou:.4 

(15.3a) 

(15.4a) 
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These equations determine FuA and Fu.,i completely in terms of  the other F ' s  for 
N > 1, but only the spin -3 components in the case o f N  = I. F o r N  > 1, a further.  
consequence of  eqs. (15.3, 4) is * 

(eou~)~'r [ - i k  k i i 1, ¢-bdiFh7 + CD vF:ja~ + ¢'J) 3,F#di] 

1 6[(eouy,y [ - -  l k  k I l k - c-DalF'o, r + c D v F ~  t + c-D.rF~t] 
N + I  

+ (/, k interchanged), (15.3b) 

- ~+ i - .  - .  i - .  i (ouue) [CD aF~/+~ + Cl)t~/F~,~k + q)~kF~+/] 

_ 1 i -  ~ - ~  l - -  - -  1 "1- - -  l 
N +  1 5](auve) (~aF~t;rk  + Cl)~tF~+k ~ k F ~ ; d )  

+ (j, k interchanged). 

For N > 2, yet another consequence of  eqs. (15.3,4)  is 

(15.4b) 

k j j k 

1 6 [ e ~ , r c ~  l ~ l k  k l 1 k 
• - cb,rFfi~l] N - 1 L 61--[3")" + ( ' 1 )  ~ F ~ l  

- (j, k interchanged), 

e ~ ' ; [ @ i - .  - .  i - .  i 

(15.3c) 

1 • ° "  

N -  1 6]e~v t " - -  - -  l - -  l 

- -  (], k interchanged). (15.4c) 

For any N, eqs. (15.3a-c)  and (15.4a-c)  are equivalent to eqs. (15.3) and (15.4), 
respectively. 

Eqs. (15.5, 6). They are independent only for N = 1. 
Eq. (15. 7).~ For any N, it gives Fur in terms of other F ' s :  

8iNFuL , = ~v ha ( ~ u F A h  - c~Affuh - C-DBFuA ) 

- -  ~ ,  V interchanged). (15.7a) 

1 . ~ ~ - _ 1 .  - - 
Ot~v =-- ~t(ol~ov - ovoid) ,  o~u = ~ ffal~av - o v a l )  , 

c a~ = -e  ~a = -ea/3 , e 12 = 1 ; 

same for dotted indices. 
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For N = 1, an additional consequence of eq. (15.7) is 

0 = 6uOa(c-OuFa{ 3 - ~ a P u {  s - W1)~Fua), 

while for N -  2, we get 

0 = 6 u ~ a ( ~ u F i ~ i  i - . - .  i (15.7c) 
- c'1) a Y u # / -  ~ # / F u a  )traceless in i , / '  

The eqs. (15.7a-c) are equivalent to eq. (15.7) for any N. 
E q z  ( 1 5 . 8 - 1 0 ) .  They are dependent for any N. 
The following table indicates whether an identity is independent (+), dependent 

( - ) ,  trivially fulfilled (o), or not deducible (x): 

(1) (2) (3a) (3b) (3c) (4a) (4b) (4c) (5) (6) (7a) (7b) (7c) (8) (9) (10) 

+ + + x x + x x + + + + o 

+ + + + 0 + + 0 + - -  + 

+ + + + + + + + + 

(15.7b) 

4. Non-extended supersymmetry 

Since for N = 1 we can set 

Fa~ = P&d = Fad = 0 (16) 

without getting a flat theory (since Fuc, may still contain an undetermined spin-~ 
contribution), the theory is reasonably simple: the constraint equations (16) for the 
potentials have simple solutions, which correspond to a theory "flat in the Grass- 
mann directions": 

~c ,  = e -VD¢ ,  e v , 

g L  = e U , 

s~ u = ~ia-~u '~ (D,~ _~  +D~ -~¢a +i{-~ a, - ~ } ) ,  (17) 

where V and U are arbitrary superfields. The identities (15.1,2) are then trivial, 
eqs. (15.3a) and (15.4a)have the solutions 

Fu,~ = _lff ioue, fj fffi3 , 

F u k  = ~ iauo & W ~ , (18) 

where the W's are functions of the ~ ' s  which can be calculated from eqs. (13). W a 
is particularly simple for the (supersymmetric) gauge where ~ a  = O: 

W a = eaaD& e&hDt~#,  (19) 

while W& would be simple in the gauge where ~ , ,  = 0. It differs from (W~) ? only 
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by a gauge transformation. With a little algebra, the remaining identities now take 
the forms 

~ O h = 0 , 

~ w  ~ = o ,  (20) 

from (15.5, 6), and 

~,~Wa _ @&~a = 0 ,  (21) 

from eq. 05.7b).  Fur is given through (15.7a) as 

= ~ t ( ~ o u ~  ~ + Fuv I • c~ W¢ ¢~uu& b ffJ~) (22) 

With the abovementioned supersymmetric choice of gauge, this is the theory first 
developed by Ferrara and Zumino, and Salam and Strathdee [2] (see Wess [7] for 
details of the correspondence). 

5. The case N = 2 

While a constraint similar to eq. (16) would render the theory fiat, we can impose 
the weaker conditions 

F ~  + Fffa = 0 ,  (23a) 

f f  ai~j + F'~iaj = 0 , (23b) 

F / - .  = 0 .  (23c) 
¢l 

A consequence of eqs. (23a, b) is that we can express FaB and ffJi~ through (gO 
stands for the e symbol in the SU(2) space) 

F//0 = e~og q W, 

if&i# = e&~gijW . (24) 

All curvatures can now be expressed in terms of the W's: 

Fua i = - l  igU(oue)J ~ / W  , 

f f  u&i = ~ igii(e°u)& fl '~iO W , 

Fur = ~i(¢-~eouvgCBW + ~ 6 u v e g ~ f f t ) ,  (25) 

and the remaining identities for the I~'s read 

'7 ) /~= ~ a i  W = 0 ,  (26) 

from (15.1,2), and (t  i / are the Pauli matrices in SU(2) space) 

C'l)etg~W - ~eg~ U/)~ = 0 ,  (27) 
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from (15.7c), while (I 5.3b) and (15.4b) are trivial due to eq. (23). This leads to the 
theory described in detail in ref. [8]. 

6. The case N > 2 

Here the constraints (23) appear to be too stringent. Assuming that they hold, 
we would get as the equivalent of  (24) 

F&i~j = eS~ Wq , Wq = -W/i  , (28) 

and (15.1) reads for I~ 

~ ] k  : _ o i ~ i k  , (29) 

while (15.3c) becomes 

C~iffcjk _ 1 (8i OSlf f  "~k -81[ cD8<l if/q). (30) 
N - 1  

For an Abelian gauge group, it is possible to use (29, 30) in order to get 

i - .  - " ,  (31) D~D~k ff~k/= - 2 i ( N -  1) ~la~ W '1 

while 

eaf3D&iD~jWii = 0 (32) 

is an obvious consequence of the algebra of  the D's. From here we can derive the 
following chain of  equations: 

--2i(~eDk),~ ~ki  i - .  = {De, OBj} (e/~k) ~ ~kj  

= (~.e)~DiD~k W~I = -2 i (N  - 1 )(~e_~k)~ I~ ki 

= 0 for N > 2 . (33) 

Differentiating again by D~ and using (31), one gets F)W = 0, i.e. an equation of 
motion. Thus the constraints (23) are unacceptable for N > 2. 

7. The particle spectrum for N -- 4 

As we have seen in sect. 6, the constraints (23) with their solutions (28) lead to 
equations of  motion for the field strengths. This indicates that the fully supersym- 
metric theory (with all auxiliary fields) should not obey all of  the constraints (23), 
but probably some of them, while the others are then the supercovariant equations 
of  motion. However, to study the physical content o f  the theory, i.e. the "particle" 
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spectrum, we may as well look at the theory with fields already governed by equa- 
tions of motion, and with all auxiliary fields removed. In the case o f N  = 4, we can 
then even impose an additional constraint beyond (23), namely 

Oi]= l eijglwkl , (34) 

as a consequence of which the two remaining identities for Wq (from eqs. (15.2) 
and (15.4c)), 

% ; N k  = - ® s i  W,.k, (35)  

~i 1 i t i l 5k@aWt]) (36) q) ~ wik = ~ S S  (sjcD ~ w~k - 

become equivalent to eqs. (30) and (29), respectively. 
Every component of a superfield can be used as the basic field (0 = 0 = 0) of 

another superfield, whose components are then determined by the transformation 
properties of the basic field. These components are functions of the components 
of the original superfield. The new superfield can always be expressed in terms of 
covariant derivatives on the old one (because those can be used to project out any 
component into the basic position). As a consequence of this property, we can 
derive the particle spectrum of the theory by asking which independent gauge- 
covariant superfields can be constructed from Wij. This is done by consecutively 
using more and more covariant derivatives on Wii. 

We find that the only independent ones are 

14]ij, (-~ ia W/i ; g S j  WIt , Fur .  

All others can be expressed through these and the space derivatives c8 u . The reality 
constraint (that .~ t u be related to -~u through a.gauge transformation, i.e., that Fur 
be real), relates the third of these to the complex conjugate of the second, and the 
spectrum becomes that of the SU(4)-invariant theory in ref. [5] : six scalars in the 
6_ of SU(4), a Weyl spinor in the 4_, its antiparticle in the 4_*, and the SU(4)-scalar 
Yang-Mills field. 

Let us check these statements. Clearly, eq. (36) indicates that i el) c, W/k has as its 
independent component only a 4_ of SU(4), namely ~ t  Wu. Eq. (35) says that 
~&iWjk is totally antisymmetric in ilk, and thus contains only a 4_*, namely 
e ijkt C'l)& i Wkt = --2 ~&/Oii.  Using (23c) and (28), we can derive from (15.3a) and 
(I 5.4a) the relations 

Fui  = i i(oue)afl ~ / f f / / i ,  (37a) 

f f  u~i = - h i (e°u)& fl Cl)~ W/i , (37b) 

respectively, and then from (15.7a) 

- i16 ( ~i°uve ~-~j~ji + cl)ieo#l)f-~jw]i)  " (37c) Fuv = 12 • 
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Clearly, eqs. (37) correspond to eqs. (25) which held f o r N  = 2. Reality o f  Fuu 
implies 

~[]ij = --( ~ tJ )  * = __(1 eijkl ~l]kl) * , (3 8) 

which says that Wij has indeed only 6 independent real components. Another con- 
sequence of (38) is 

(el)/a W/i) t = - c~&/ WI, , (39) 

which indeed relates the 4_* to the complex conjugate of the 4_. The last statement to 
be checked is that by using more derivatives on Wil, we do not get any other super- 
fields which cannot be expressed in terms of the above and their spatial derivatives. 
We use the technique to anticommute the c/)'s, use the identities (29, 30) and (35, 
36), commute the c'0's again, use the identities again, and finally collect terms to get 

c ~ i c ~ l  Wlj = l~icT~l c-~k,,, 3 icafl[ff/il  'Wl / ]  y4oj "L." a ' ~  {3rVkl + 

C'~& i Cl)fl I ~ l]  = 1 ~[ (~&l cl)~k ~ k l  + 3 ie&~ [Wil ' i f l j]  , 

c-l)i Ub~t i f t /  = - 6 i  cioad i f i j  . 

(40) 

(41) 

(42) 

The first two of these can be rewritten, using a completeness relation for a matrices 
and (37c), as 

t t = 6 i 6 } ( o ~ e ) c ~ F  uv +~  o~t , , c-l) ac-l) #Wlj  3 ie  r ~ i l  WIj] (43) 

(-l)ai C'~ t if/Z~ = 6i6[(eOuv)&~ F u r  + 3 ie&~ [Wit, ~t]] . (44) 

Thus, using any two c-/)'s on one of the W's, we only get functions of the W's, 
c-1) u W, and F u v .  Finally, a c-/) on F ~v yields, according to identity (15.8), only spatial 
derivatives on F~A , which in turn is given through c~&/ ~j i ,  see eq. (37a). Any higher 
number of ~ ' s  on W can be reduced out in a similar manner, using the above results 
as a starting point. We have thus proved our statement about the spectrum of the 
theory. 

By quite tedious calculations, using most of the above formulae for the W's and 
their derivatives, it can be shown that the gauge-invariant superfield 

i ~ a l ~ % S ~ [ ~ k i f  k/, Wq] i . ~ W . ~ [ c ~ W k / , i f  q] 
4" 144 4" 144 

' ) + [Wq,  Wgt] [if/i~, i fk t]  (45) 
4 • 16 " 16 

has the property that DiZ? and/SSiz? are divergences of four-vectors. Therefore, the 
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(0, 0)-independent component of Z?, for which the actions of the D's and of super- 
symmetry transformations coincide, is a supersymmetric Lagrangian. Denoting 

Guy =-- Furl o:o=o , 

± .  / . - - _.. 
L~i = 12t~c,W/i[o:o=o, ?'~ = ~ i~d /W/ ' [0 :~ :  o , 

Mi/= ~ il¢i/Io=6=o , Mi /= ~iWi/Io:ff= o , (46) 

this Lagrangian becomes 

= 1 c])tz M c1~ MiJ  L = ~  10=o:o Tr(-~-G~ vG~u - i ~ i ( ~ k i  + 2 . . . .  i J v #  ~'' 

+ ~ie[~/,Mi/] + Xie[k/,M i/]+ ~ [Mi/,Mkl] [Mi/,M kl] ), (47) 

which is, in slightly different notation, the Lagrangian given in ref. [9] for the SU(4)- 
invariant theory, and which reduces to the form given in ref. [5], if we take only the 
SO(4) subgroup and build four Majorana spinors from ?~i and ~ / .  

8. Concluding remarks 

Obviously, we have not yet presented a fully supersymmetric gauge theory for 
more than 2 supersymmetry charges (N > 2). The results indicated in sect. 7, how- 
ever, suggest the existence of such a theory. Investigations in that direction are in 
progress. 

The non-trivial internal symmetry group has never been fixed. Its only relevant 
property is the dimension N of those of its representations under which the super- 
symmetry charges transform. All results apply equally well to orthogonal or unitary 
groups. 

Apart from the relevance which the results of this paper may have for the study 
of supersymmetric gauge theories, it should be pointed out that no properties of the 
gauge group itself have been used. Thus local Lorentz transformations are allowed as 
the gauge group, and some of our results may be relevant to (extended) supergravity 
as well. 

Appendix 

The purpose of this appendix is to indicate the calculational steps which lead to 
the results summarized in sect. 3. We will use an Abelian gauge group here, where 
the Yang-Mills field strengths are invariants. It is left to the reader to work out the 
additional commutator terms which appear at intermediate steps for non-Abelian 
groups. 
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From (15.3) we get, after multiplication with ~i 'c  eq. (15.3a). If we differentiate 
this by DB and symmetrize in A and B we get, after commuting D's  and using 
(15.1-3)  (on the r.h.s.), 

0 = 2(N+ 2)Xi~]~, u - (au6v),~YX~iyv -(ou-6v)t3"rX~/,rv , 

with the abbreviation 

Xi~/~u = XABu - DAFuB + DBF~A - -  O . F A B  • 

If we contract this equation with 0 ua~ and ~ua~ we get two equations which 
possess a non-trivial solution only for N = 1. Thus the dependence of (15.5) for 
N > 1 has been shown. (15.6) is treated similarly. 

For N > 1, it is possible to give FuA as a function of other F 's ,  as a consequence 
of(15.3a): 

1 - -  • " 

4 i (N  + 1)Fud  = ~ [(Djue)ule~'rF~i~ - (eD)'Y'(~ue)Oc~F~& 

+ (eD)'ri(a~e)fJaF4{~, ] - (Dou)~lFi~ - (JuD) '~lFial  - D i ~ f f F ~ a , .  (A.1) 

This can be inserted into (15.3). and after a little algebra we get 

' -  + D*eF  , o = ~(Dc~iF'e. r + D.~F,ee,) 

1 k - -  oe8 l /  + N ~ - I  e'r08i(D~te Fg8 - ( e D ) ~ l F ~ t  + ( e D ) 8 i F ~ t )  

1 
• k interchanged). N +  1 8~(D~IF/~  + D t  Fi~'l + D ~ F l a l  ) + ( ~ and "r 

The symmetric and antisymmetric parts in/3 and 7 of this give eqs. (15.3b) and 
(15.3c), respectively. Eq. (15.3c) is identically fulfilled for N = 2, as can be shown 
by multiplying it with gik (the antisymmetric symbol), a procedure which does not 
lose any information for N = 2. Eq. (15.4) is treated in an analogous way, which 
results in eqs. (15.4a-c).  

Expressing a u through {D, D) and then using (15.8, 9), we get 

4iNauFoa = 6~ A ~o (DA Fod  + D A F o A )  -- (P, o interchanged) 

= - 4 i N a o F o u  + 4 iNaoFou  , 

i.e. eq. (15.10). For the last step we used (15.7). 
Differentiating (15.7) by D c  and using (15.3) on the first resulting term, (15.7) 

on the second and (15.5) on the third, after some algebra we get 

2ioy4h(DeFu,, + a u F w  - avFuc ) 

= - 2 i o ~ h  (DAFuv + OuFv A - OvFuA ) . 
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After contraction with 6~o c the r.h.s, is left antisymmetric in/a and O. For the 1.h.s., 
this is found to be the case only if the bracket vanishes, i.e. if (15.8) holds. Thus 
(15.8) is a consequence of  (15.3, 5, 7). Similarly, we show that (15.9) follows from 
(15.4, 6, 7). 

Eq. (15.7) can be split into three parts. If  we define the abbreviations 

Y~AB -- OuFAB -- D A f f  uh -- L )hF#A , 

= ;tJo~v i. Yuv -~ 6,Yuvi  i / --  ~'v,u;'i~AvAi3 
- -  u v 1 pc~3/ , 

then they are 

4iNFuv = l (Yuv - rvu)  , 

o = r . .  + r . u ,  (g .2 )  

0 Y~v~ [ traceless in i, ] "  
2 

(A.3) 

The first one of these is (15.7a). 
If, in the following expression: 

- .  - ~ c  - .  " - 
D s  o u ( D c F A c  + D c F A c  ) + D A oCC(DeFci~  + Dcffi3d. ) , 

we use (15.3) and (15.4) on the brackets, we get 

• - - ~ " C  p = -2 i (oV f fu ) ,4c I ) i~Fvc  + 2to u oAi~ ~ F c d  

but if we first anticommute the D's and then use (15.3, 4) only on the terms result- 
hag from the first bracket we get 

• - e c  v - 2 i ( f f u o v ) % ~ d F v A  = 2to  u o A B D c F u c  + 4iN'd u F  A£~ 

+ 2io@uuCo~i~Fvd + 2i(oU6u)A CDcPvi~ 

- 2i(oVou)A CauFch  - 2 i ( S u o V ) ~  a~FAd • 

Collecting terms, we find that this yields the following equation for Y u A h  : 

t )-B'~'O~';~ Y v A e  - ~ . ~ C . .  O= 2(N  + 2 ) Y u a h  - (ouJU)ACyvc[3 -- -~ OABUla I vCC • 
(A.4) 

After multiplication with ff-~o A, after only a little algebra we find 

o = ( N +  1Xruv + r v , )  - n ,  vrx  h . 

which implies (A.2) for N 4: 1. For N = 1, eq. (A.2) is reduced to Yu u = 0, i.e. 
eq. (15.7b). 
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The traceless part  in i, f of  eq. (A.4) is 

0 = [ (N+  1)yuvi/+ Yvu'j -~uvYxXij]  , 

which implies 

0 = [ (N+  2 ) Y u v  ~. - n u v Y x ~ / ]  , 

i.e. eq. (A.3) for N 4= 2. For  N - -  2, eq. (A.3) is reduced to 

0 = Y#Ut/Itraeeles s in i,/ ' 

i.e. eq. (15.7c).  

Helpful discussions with P. Brei tenlohner ,  R. Gr imm and J. Wess are gratefully 
acknowledged.  
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