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We consider the problem of finite mass corrections in deep inelastic electron (muon) 
and neutrino scattering. Using a non-perturbative approach, we are able to predict the 
minimal mass corrections to scaling. It is found that they already account for most of the 
scaling violations displayed by the electron (muon) scattering data except, perhaps, at very 
largex where we cannot make any statement. The ratio aL/O T as well as the antineutrino 
cross section are also well reproduced while the neutrino cross section leaves some room for 
further scaling corrections. The significance of various scaling variables is critically dis- 
cussed. From a theoretical point of view most of them are inferior to the plain variable x, 
and none of them correctly accommodate finite target and threshold mass effects. A brief 
discussion of the analytic structure of the moments is included. 

1. Introduction 

The violation of Bjorken scaling as being displayed by the recent data on deep 
inelastic e,/a, p and ~ scattering [ 1 -4 ]  has attracted a lot of interest from the theoret. 
ical point of view. Within the framework of renormalizable field theories strict Bjor- 
ken scaling cannot hold. Violation of scaling arises as a consequence of the renormal- 
ization procedure. Asymptotically free gauge theories [5,6], which come nearest to 
scaling [7] and currently provide the most promising theoretical framework in 
hadron physics, display in leading-order perturbation theory a characteristic pattern 
of logarithmic deviations from scaling at large enough Q2 [8 -14] .  Alternatively, it 
is quite possible that most of the violation of Bjorken scaling seen in the data is due 
to other causes [15]. The spectacular rise in F2 with Q2 at small x, for example, 
may well be attributed to the excitation of the new hadronic degrees of freedom 
[16]. 

So far no clear picture as to the origin of the scaling violations has arisen. Com- 
parison of asymptotic freedom corrections to scaling with experiment is aggravated 
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by finite m2/Q 2 corrections which are inevitable in the present-day regime of exper- 
iments [17]. Here m is some characteristic hadron mass which may be as large as, 
e.g., the ~b mass. The importance of such corrections is underlined by the empirical 
fact that (already) at SLAC energies scaling is strongly improved if the data is plotted 
versus the Bloom-Gilman variable [18] x '  = Q2/(2mNv +M2). 

The question arises whether asymptotically free gauge theories or the more 
straightforward (but closely related) parton model can say anything about correc- 
tions at the level of m2/Q 2. It has been argued that these corrections are adequately 
represented through the variable * [19] 

1 + (m 2 - m2)/Q 2 + x/[1 + (m~ - m2)/Q2] 2 + 4m2/Q 2 
= x  (1.1) 

1 + X/1 + 4m~x2/Q 2 

which is based on perturbation theory applied to the twist-2 Wilson coefficients. 
However, as we shall see, the ~ variable does not correctly accommodate finite target 
and threshold mass effects. This is what we must demand the true scaling variable to 
arrange, in particular, considering the high charm threshold. For certain mi, mf we 
even find the variable x superior to ~. This issue has also been criticized by other 
authors [17,20,21]. 

Consider, e.g., charm production off charmed sea quarks. The threshold for this 
process involves either the ~ mass or the D and the charmed baryon mass. Neither 
of them can be represented through the masses of the struck and produced partons 
alone, the only masses appearing in the twist-2 operators, but require twist greater 
than two operators [ 17]. Since the calculation of the relative weight of matrix ele- 
ments for twist-2 to higher-twist operators involves knowledge of the target wave 
function, it seems impossible that finite mass corrections can be calculated by per- 
turbation methods. 

We shall offer a vastly model-independent discussion of non-perturbative mass 
corrections to Bjorken scaling. Our primary mathematical tool will be the DGS 
representation [22] which has proven itself very useful for investigating certain 
features of forward current-hadron amplitudes [23]. The DGS representation can 
be understood as a generalization of the light-cone representation [24,25] arising 
from the Wilson expansion [26], in the sense that it incorporates the full analytic 
structure of the forward Compton amplitude. Scaling is not automatically a property 
of the DGS representation but is provided for by requiring that asymptotically it 
merges into the light-cone representation. 

In sect. 2 we shall outline what we understand by minimal mass corrections. In 
sect. 3 earlier attempts of casting the finite mass corrections into some scaling vari- 
able are critically discussed. Furthermore, we derive the analytic structure of the 
moments. In sect. 4 we give a comparison with experiment. Finally, some conclud- 
ing remarks are presented in sect. 5. 

Here m i and mf are the initial and final parton masses, respectively. 
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2. Preliminaries and the concept of minimal mass corrections 

We begin with recapitulating the basic properties of the DGS representation of 
the forward Compton amplitude: 

TI~ v = i : d 4 x  e - i q x ( p l T ( f u ( X ) j v ( O ) ) [ p )  

=(Pu Pq:qu)(Pv P-q: qv)T2 

2 ", m N / )  + (quqv - q guy) ~ TI (2.1) 

(mN being the target mass). The DGS representation for 7"2, and similarly for T1, is 
given by 

+ 1 G2 (a, a) 
T2(q,p) = do f da-q~+2mNvc~+~a2_ ° (2 ,2) 

0 --1 

The support of G2(a, o) is drawn in fig. 1 *. It is important to note that it does not 
extend down to a = 0. If, despite this, all mass terms in the denominator of eq. (2.2) 
(i.e., o and m~a  2) are disregarded and the dependence of G2(~, o) on cr is integrated 
out, eq. (2.2) reduces to the light-cone representation [24] 

+1 ~2(~) T2 (q, P) d a - -  02(~) = j do G2(a, o).  (2.3) d q2 + 2mNvc~ , 
--1 0 

The DGS representation has originally been derived on grounds of causality 
Later, Nakanishi [22] has shown from an independent point of view that it holds in 
every order in perturbation theory. 

The structure functions are given by 

F2(x, q2) = 2mN_~ v Im T2(q,P) 

[ " 
= 2mNv. do f d~ ~(q~ + 2rnNva +rn~a 2 -- o) a2(a, o) 

0 - 1  

= do G2(ot o, a , (2.4) 
o + o  

See, e.g., ref. [27].  The suppor t  may  be smaller, bu t  G 2 is definitely zero outside the  boun- 
daries drawn in fig. 1. 
Ref. [22],  first reference. 
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Fig. 1. Suppor t  o f  the  spectral funct ion  
G2(a, a), m S being the  lowest s-channel  
threshold.  Here we have chosen m S = 
m N + mp. 
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Fig. 2. Line o f  support  of  the  scaling variable 
a a for various x and Q2. 

and similarly for F 1 ,  where 

aa = x + = (2.5) 
1 + VII + 4m~lx 2 (Q2 + o)/Q4 ' 

In order to guarantee Bjorken scaling (within logarithms) the spectral function 
G2(a, cr) must essentially behave for large a like o - x  with X/> 1. In field theory we 
only can have X = 1 (plus logarithms). The case X > 1 which corresponds to "exact" 
asymptotic scaling is not possible in four dimensions within the framework of  renor- 
malizable field theory [5,6]. 

The integral (2.4) describes a path a = aa in the (a, o) plane. Clearly, the inte- 
grand is non-zero only on that section of  the path which intersects with the support 
of G2(a, a) as has been indicated in fig. 2. At the upper end the integration is cut 
off at a o = 1 which corresponds to 

Omax - 1 - x  Q2 + m ~  , (2.6) 
x 

while the lower limit of  integration is implicitly given by the boundary 

o = (m s - mN(1 - ao)) 2 (2.7) 

(cf. fig. 1). F o r x  = 0 the path is along the o axis (a = 0) and extends to infinity. For 
the upper (threshold) value of  x,  given by 

Q2 

Xmax Q2 + m ~ _  m~ ' (2.8) 
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the path shrinks to the single point 

o = rn~, oea = oern ~ = 1.  (2.9) 

This is to say that the upper and lower limit of  integration, i.e., (2.6) and (2.7), 
coincide for x = Xma x arid,  what is important to remember, that a a has the unique 
threshold one.  

Let us now imagine that the spectral function G2(a, o) is smooth and positive * 
and sufficiently damped for large o. More precisely, let us assume that G2(c~, a) 
0 - x  with X > 1. This brings us close to the parton model, inasmuch as it leads to 
asymptotic scaling. Field-theoretically X > 1 cannot be realized. But remember that, 
primarily, we are interested in finite mass corrections rather than scaling violations 
o f  intrinsic field-theoretical origin **. Under these conditions the structure functions 
F 2 can then be rewritten in the form 

v (2.10) 
F2(x ,  0 2 )  = ~,. F~(aa i) x/~- ~ + 02  + oi , 

where we have divided the path of integration (eq. (2.4)) into small subsections and 
applied the mean-value theorem. The lowest and highest value of oi can be read off 
from eqs. (2.7) and (2.6) respectively. In practice, eq. (2.10) means that F 2 depends 
on x and Q2 only through the various aoi (being given by eq. (2.5) with o replaced 
by oi) and through the boundaries being imposed on o i (eqs. (2.6) and (2.7)). 

The latter dependence is rather annoying since our goal is, like that of  many out- 
riders, to case the finite mass corrections to Bjorken scaling into a single scaling 
variable. Therefore, let us make the change of  variables 

o + ~ = o - rn~a  2 - 2mN (ms - rnN)lal  (2.11) 

in eq. (2.2) and subsequent equations. In terms of  9 and a, the support of  G2 has 
then the simple rectangular shape as shown in fig. 3, so that at least the x, Q2 depen- 
dence via the lower boundary is eliminated. 

Eq. (2.4) becomes, in terms of  the new variable 9, 

o.  1 

F2(x ,  02)  = f d~ G2(rT~, 9) 1 - 2mN(m s - rnN)X/Q 2 ' (2.12) 
(ms-mN) 2 

where G2(a, 6) = G2(a,  o) and 

1 + ~/Q2 
rl~ = x  1 - 2mrq(ms - m N ) x / Q  2 " (2.13) 

l t t  . This excludes non-scaling contributions of the sort being discussed later. There is also no first 
principle which forbids G2(c~ , o) to become negative. 

• * For X = 1, the structure functions will display logarithmic deviations from scaling of the sort 
found in (perturbative) asymptotically free gauge theories due to the fact that (2.4) becomes 
logarithmically divergent and the upper limit of integration being given by (2.6). 
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Fig. 3. S u p p o r t  o f  t he  spec t r a l  f u n c t i o n  G 2 ( a ,  6) fo r  m S = m N + m O. 

The integral (2.12) is cut off at 

Omax - 1 - x  Q2 _ 2 m N ( m S -  mN) .  (2.14) 
x 

The variable r~o can also be directly obtained from (2.5) by inserting 

o = ~ + m~a~ + 2mN (ms -- m y )  a a 

(and resolving the resulting expression with respect to c%). In other words 

TI 5 = Ot a=~+m2 a2o + 2 m N ( m S _ m N ) a o  , (2.15) 

or, what amounts to the same, 

O~(i = ~ O = o _ m 2  r12_ 2mN(mS_mN)r15  . (2.16) 

Let us now, starting from eq. (2.12), repeat the steps which led to (2.10). Similar 
to (2.10) we can write 

N 

F2(x, Q2) = 1 - 2mN(m s - mN)X/Q 2 i= l  Fz(rl°i) (2.17) 

where now 

o1 ~ ((ms - -mN)  2, (ms - m y )  ~ + ~ n 2 ) ,  

o i E  ((ms - mN) 2 + ( / - -  1)Am 2, (ms - raN) 2 + iAm=) • (2.18) 
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F2(x ' Q2) = F~O?) 

where 

The upper value of cri, i.e., o N (being given by (2.14)), is still x and Q2 dependent.  
Since, by fiat, the series (2.17) is sufficiently convergent, the main contr ibution will, 
however, come from low and medium oi, so that the dependence on this boundary 
can be neglected at least for smallerx and/or larger Q2. This brings us close to our 
goal. The finite mass corrections to scaling are now entirely cast into a functional 
dependence on the scaling variables rTai. 

The higher o i is, the larger are the scaling violations induced by r/ai. Since we do 
not know the various F~,  it is impossible to take full account of the mass correc- 
tions. But we can easily estimate the minimal corrections to Bjorken scaling by 
putt ing all oi in (2.17) equal to their lowest value ( m s -  mN) 2. This leads us to 

1 
1 - 2mN(m s - mN)X/Q = ' (2.19) 

1 + (m s - mN)2/Q = 
?7 = ' q ( m s _ r n N ) 2  = X 1 -- 2mN(m s -  m N ) x / Q  2 " (2.20) 

The variable r7 has the desired threshold properties,  i.e., 77 + 1 for x -+ Xma x (cf. (2.8)). 
This is to be contrasted with the many other scaling variables being around whose 
threshold value depends on Q= and only asymptotical ly reaches 1 (see also the dis- 
cussion of  ref. [17]). 

3. Significance of ancient scaling variables and the structure of moments 

Before we now estimate the mass corrections numerically, let us discuss earlier 
at tempts of  incorporating hadronic mass corrections, i.e., other scaling variables, and 
the structure of  moments  in this new light. 

Each scaling variable can be cast into the form (2.13) where e is some function of  
~3 and the mass parameters. To give some concrete examples, the variable x corre- 
sponds to 

= --2mN (m s - mN)~7~. (3.1) 

The Bloom-Gilman variable, 

x '  - x ( 3 . 2 )  
1 + MZx/Q 2 ' 

is equivalent to setting 

~ =  - [ 2 m N ( m s  - mN) +M2]r/~ , (3.3) 

and the variable ~ (eq. (2.2)) with mi = mf = 0 (the original Nachtmann variable [28] ) 

is recovered by * 

• It should be noted that the Nachtmann variable follows (more straightforwardly) from (2.5) 
by setting o ~ 0, i.e. ~ = ao--: O while x corresponds to o = mN~ o . 2  2 
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p; q'p'i;.;~: ; /; o'~d//~ " S ; ;  ";'F'~ ;fi~..; ( m s - m,).2~ 

Fig. 4. Equivalent support of various scaling variables: x' as given by eq. (3.2) with M 2 = 1 GeV2; 
~ is the Nachtmann variable (eq. (1.1) with m i = mf = 0); ~f = x(1 + (m~- m~x2)[Q 2) as an 
approximation [20] to (1.1) with m i = mf (here mf = 0.5 (m S - raN)). 

2 2 2mN(m S -  mN)r/5 (3.4) U = -mNr /~  -- 

This means that the variables x, x ' ,  ~, etc., correspond to a path in the (a,  ~) plane 
which is to be interpreted as the support,  or some approximation of it (following 
the discussion of  the last paragraph), of  the spectral function G2. 

Clearly, this line of  support should lie within the actual support of  G2 as drawn 
in fig. 3. Any line of  support falling outside this region would be in conflict with 
causality and stability of  the target which are the essential ingredients going into the 
DGS representation and fig. 3. In fig. 4 we have drawn the (equivalent) support of  
various scaling variables being discussed in the literature together with the support 
of  G2. It is seen that all scaling variables fall outside the support of  G2 and, what is 
most surprising, that most of  them are worse (in the sense described above) than the 
plain variable x *. The variable ~ (eq. (1.1)) is for, e.g., mi = mf = mc ** somewhat 
closer to reality than x ,  but the improvement is very small as compared to the boun- 
dary of  the support of  G2 (i.e., the variable (2.20), cf. fig. 4) which is lying much 
higher up. The fact that the scaling variables being mentioned are in disagreement 
with the stability of  the proton has also been pointed out by previous authors [17, 
20,21]. 

The failure of  especially the ~ variable underlines the importance of  higher-twist 
operators and of  non-perturbative elements as discussed in sect. 1. The finding that 

~' Cf. eqs. (3.1), (3.3) and (3.4). 
Here m c means the mass of the charmed quark. 
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also the phenomenologically motivated scaling variables like, e.g., the Bloom-Gilman 
variable, which fit the deviations from scaling in some limited x, Q2 regime, have no 
theoretical basis signals a rather complex origin of scale braking at large x. We will 
come back to this point in sect. 5. 

Let us now discuss the moments. We shall be interested in the Nachtmann mo- 
ments [28] 

f - "F2 (x, /a. , (3.5) 0 2 ) 

where the quark masses are set equal to zero. For the conclusions we like to draw 
later on, the actual value of the quark masses is vastly irrelevant. We could have also 
taken the moments over x n since ~ is, from the above point of view, not really 
favoured over x. If we insert (2.12) into (3.5) we obtain 

1 dr/__~ ( Q2 

d~ f r~ r~n[ Q + O+ 2mN(ms-  mN)rle 
( m s _ m N ) 2  0 

2 2o.~_] ) n G2 (r/e, o) = 
X 1 +x/1 + 4m2N~n2"2"n2'te/~.u + e + 2 m N ( m s  - raN)r/ 

/an. 

(3.6) 

For the "minimal" approximation (2.19) this reduces to 

' { e f dr/ . 
0 ~-r~n Q2 + (ms_  mN)2 + 2mN(mS-  mN)r/ 

2  mN3 }n F2(r/) =/a n, 
X 1 +X/1 + 4m~Q2~72/(Q 2 + ( m s - m N )  2 + 2mN(ms 

(3.7) 

It is seen that/an (Q2) has, except for n = 0, a zero at Q2 = 0 and a cut * from 
q2 = _Q2 = (m s _ raN)2 to +oo (for (3.7) only up to q2 = m~ - m~) while for large 
positive Q2 it tends to a constant. This means that/an (Q2) will be strongly Q2 
dependent in the region I Q21 = 0 ((ms - mN)2). For the old physics (m s -  raN) 2 = 
m~ and ( m s -  mN) 2 = (ma +inK-- mN) 2 ~-" 0.45 GeV 2, respectively which are small 
numbers. But for, e.g., charm production **, (m s - raN) 2 ~ 9 GeV 2 , which is well 
above the Q2 of most of the existing data. Since charm production is substantial as 
we shall see, the Q2 dependence of the moments (3.5) induced by the physical thresh- 
old cannot be neglected, especially, compared to the logarithmic dependences pre- 
dicted by asymptotic freedom. After fig. 4 it is needless to say that this situation will 

• This has also been found in ref. [29]. 
• * Not necessarily from the sea. 
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not change very much if the quark masses are taken into account, i.e., if the full 
(eq. (1.1); mi, mf 4: 0) is considered. 

If the scaling variable (1.1) were to reproduce the finite mass corrections correctly, 
the right-hand side of eq. (3.5) should be independent o fQ 2 (not mentioning asymp- 
totic freedom corrections). But since ~ (eq. (1.1)) only reproduces the free-field 
approximation for the twist-2 Wilson coefficients, our result is not really surprising. 
As has been pointed out in sect. 1 and elsewhere [17], operators as high as twist-six 
are needed in order to accommodate the correct threshold behaviour. 

The free field twist-2 approximation is particularly poor for production of heavy 
particles like charm Since charm production causes strong scaling violations as we 
shall see, this source of finite mass corrections must be carefully considered before 
searching for logarithmic deviations from scaling. 

Therefore, we suggest analyzing the data in terms of the moments 

j ~ d ~  ~/nF20/)= Un, (3.8) 
o 77 

with asymptotic freedom corrections superimposed on the right-hand side of (3.8). 
This requires us, of course, to disentangle the various contributions to F 2 since, e.g., 
charm production from the sea needs a different ~/than production of strange par- 
ticles. 

The moments (3.8) reflect the minimal mass corrections needed on grounds of 
causality and stability of the target. We think that this should be the criterion for 
handling finite mass corrections. Again, we like to emphasize that this cannot be 
achieved by any kind of perturbation calculation (on the quark level). 

4. Comparison with experiment 

We shall now evaluate the minimal mass corrections as given by (2.19) for F~ p, 
oL/ow, o v, o ~ and o~/o u. The various structure functions will be phrased in terms 
of the quark-parton distribution functions as, e.g., listed in ref. [30]. There are six 
quark distributions (for us) for the proton: Vu(x), Va(x), Su(x), Sd(x), Ss(x) and 
So(x). In line with SU(4) we shall assume that the sea distributions are the same, 
i.e., Su(x ) --- Sd(x ) = Ss(x ) = Se(x ) = S(x). 

4.1. F~ p 

In the minimal mass correction approximation the structure function can then be 
written 

1 
F~p(x, Q2) = (~r/vVu(r/v) + ~r/vVd(r/v)) 1 -- 2mNmrrx/Q 2 
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1 
+ ~ r/sS(r/s) 1 - 4mNm~rx/Q 2 + ~ r/ssS(r/ss) 1 - 4 m N m K X / Q  2 

1 
+ 8r/scS(r/sc) 1 - 2 m N m ~ X / Q  2 ' (4.1) 

where r/v, r/s, r/ss and r/sc are obtained from (2.20) by setting ms =mN + m,r, 
mN + 2mTr, mN + 2mK and mN + m~,  respectively, corresponding to the lowest 
possible s-channel thresholds *. Throughout this paper the valence-quark distribution 
will be parametrized according to ref. [13], while the sea contribution is parametrized 
in the form ** 

S(x)  = 0.124(1 - x ) 7 / x .  (4.2) 

In fig. 5 we have drawn F~ p as a function of  Q2 for various x together with existing 
data. It is found that the scaling violations seen in the data are quantitatively 
accounted for already by the minimal mass corrections. As to the source of  the 
scaling violations, at co = 20 and Q2 5 4 GeV 2 they divide up into 60% u and d 
quarks and 40% s quarks whereas charm is not excited. Beyond Q2 ~ 4 GeV 2 the 
scaling violations are mostly due to charm production. At co = 60 charm production 
becomes effective only at Q2 > 2 GeV 2 while for 6o 7> 160 the scaling violations 
due to u, d and s quarks are < 20%. As was to be expected, charm production adds 
a great deal to the scaling violations. But there are finite mass corrections coming 
from other sources which are as important, depending on the co, Q2 range. For the 
co, Q2 regime considered there is no need for any further Q2 dependence. Most of  
the authors attribute the Q2 dependence entirely to the logarithmic corrections to 
scaling predicted by asymptotic freedom. In the light of  our analysis this interpreta- 
tion must, however, be rejected. 

We cannot say very much for large x since here the upper boundary of  the support 
of  G2 (i.e., (2.14)) comes into play and, moreover, G2 cannot be assumed to be 
smooth. The reason is that this region is obscured by higher-twist effects (el. ref. 
[ 17]), especially, quasi-elastic contributions which do not survive in the scaling 
limit and (eventually) correspond to G2 being singular *** at c~ = 1. 

In ref. [33] the large-x scaling violations could be explained in terms of  such 
(twist-6 and higher) contributions. This interpretation receives strong support from 
our analysis. Since, as we have seen, there is not much room for asymptotic freedom 
corrections at small x, they must also be small at large x. This means that the effect 
of asymptotic freedom corrections has certainly been overestimated. 

We will continue the discussion on the large-x region in sect. 5. 

On the level of planar quark diagrams. 
'~* In agreement with dimensional counting [31]. 

*'~'* Cornwall, Corrigan and Norton, ref. [23]. 
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Fig. 5. The proton structure function F2(x, Q) as a function of Q2 for various to together with 
the minimal mass corrections predicted. The data are from refs. [1] (=) and [32] (e). 

4.2. O'L/O T 

As we have the quark-par ton  mode l  in the back  of  our mind,  we will fred for  
large Q2 

xF1 (x, 02)  = F2 (x, 0 2 ) .  (4.3) 

In our  way of  wri t ing this ex tends  down to smaller Q2 in the fo rm 

~7F1 (r/) = F 2 ( r / ) ,  (4.4) 

which is obvious f rom (2.19) and the same express ion for F1 and (4.3).  If  there is 
only  one threshold  mass involved,  this leads to * 

* The 0 function reflects the support properties Of F l ,  2. 
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Fig. 6. The ratio OL/a T versusx. The data are from ref. [1]. Our prediction is shown for u = 10 
GeV. Other v within the SLAC energy range give a similar picture. 

o L _ 2mN F2 1 + - 1 

oT u F1 

- 2 m N r / 0 ( r / )  1 +  -- 1 .  
/ )  

(4.5) 

As can easily be checked,  (4.5) ex tends  consis tent ly down to Q2 = 0 where it gives 

OL/O T = 0. 
In fig. 6 we have drawn our predic t ion for OL/O T together  wi th  existing data. 

Though the agreement  is no t  perfect ,  the  shape of  the curve fits very well to the 

data. It should,  however ,  be no ted  that  OL/OT depends sensitively on the parametri-  

zat ion o f  the structure func t ion  * which we have no t  touched  in this paper.  

4.3. a v, o v and o~/o v 

The neut r ino  and ant ineut r ino  structure funct ions  are now straightforward.  For  

example ,  we find 

1 
F~P(x, Q2) = cos20cVd(I-/v) 1 -- 2mNmTrx/Q 2 

1 
+ sin20cVd(r/c) 1 -- 2mNmDX/Q 2 ' 

where r/v and r~ c are obta ined  f rom (2.20)  by setting m s = m N + mTr and m s = m N +  
roD, respectively.  The Cabibbo angle is taken to be cos20c  = 0.94. It is to be no ted  

* Note that in reality this does not drop out from (4.5). 
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that the cos20c and sin20c factors do not simply add to one because of  the differ- 
ent thresholds being involved. In figs. 7, 8 and 9 we have shown our predictions for 

o~/o", o" = ~(~"p + a~"), ~ =  ~(a ~p + ~"), 
respectively. Let us first look at the ratio oF/~ v where we have the best experimental 
information. Our predictions are in very good agreement with the data and there is 
no need for any other corrections. The antineutrino cross section o ~ is also very well 
reproduced as is seen in fig. 9. The neutrino cross section is consistent with the data 
at lower energies while at higher energies it lies somewhat higher than the BEBC [35] 
and CALT [36] data points (fig. 8), but it should be said that there is some inconsis- 
tency in the data. The BEBC and CALT neutrino and/or antineutrino data are not 
consistent with a~/a v quoted by the CDHS [34] group. Furthermore, we like to 
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Fig. 9. The antineutrino 
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remind the reader that the quark-parton model without any mass corrections gives 
ou/E ~. 0.9 ° 10 -38 cm2/GeV at E = 220 GeV which lies 40% above the mass- 
corrected cross section (fig. 9). This is to say that the remaining discrepancy is small 
as compared to the free quark-parton model we started with, which is completely 
off. We believe that this discrepancy can be fitted by also incorporating large-x 
effects fi la ref. [33] (see sect. 5); but the asymptotic freedom interpretation [14] is 
also welcome, only this effect must be much smaller than originally claimed. 

5. Discussions 

The fact that most of  the scaling violations (at medium and smaller x)  are already 
accounted for by the minimal mass corrections proves that G 2 ( ~ ,  o) (cf. eq. (2.12)) is 
indeed dominated by ~ ~ (m s - mN) 2 which means that scaling sets in as rapidly as 
possible. It should, however, be said that the picture might slightly change for still higher 
energy data. Here our calculations are also incomplete since we did not include the 
very recently discovered new hadronic degrees of  freedom [37] T,  T ' ,  etc. 

We would like to stress that we have not at tempted to fit the valence-quark distri- 
butions to the data but rely on the parametrization of ref. [13] which, together with 
our idea of scaling violation, is probably not the best fit. We have also done the calcu- 
lations using Barger and Phillips' parametrization [30] of  the valence-quark distribu- 
tion. This gives a slightly poorer fit. 

For larger x,  the approximation (2.19) does not make much sense and, hence, 
should not be confronted with the data. To give an example, let us consider those 
type of  diagrams where at least one vector meson (say a p) is produced. This comes 
close to reality as it is well-known that the multihadron final states are resonance 
mediated to a very large extent [38]. For e .g. ,x = 0.7 and Q2 = 5 GeV 2 we then 
find O'min = 0.6 GeV 2 and Omax = 0.7 GeV 2 (cf. eqs. (2.12) and (2.14)) which is 
very close, and even for Q2 = 10 GeV 2 we only get °max = 2.85 GeV 2. So, the x 
and Q2 dependence via Omax can definitely not be neglected. In order to estimate 
the effect of  this extra x, Q2 dependence we need to know the spectral function 
G2(a, ~) explicitly for large a which is hopeless. But even if we know G2 (a, ~ expli- 
citly, we do not believe that the finite mass corrections near x = 1 can be cast into 
some theoretical scaling variable. 

On top of  this difficulty the large-x region suffers from higher-twist contribu- 
tions as, e.g., discussed in ref. [33]. These contributions correspond to the spectral 
function * 

1 ~3(1 _ ~) tS,,[~ ~ _  a~mi n 

o 

(5.1) 

* Eqs. (2), (3) in ref. [33] with x replaced by n (eq. (2.20)). 
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which falls outside the class of  spectral functions considered in our discussion. They 
are a priori restricted to large x and can at best be parametrized according to our 
ideas on the bound-state dynamics of the nucleon [31 ]. 

Ref. [33] fits the scaling violations at large x extremely well. By adding a piece 
like (5.1) to the spectral function in (2.12) it is obvious that we also can account 
for the large-x scaling violations. 

As far as probing the field-theoretic structure is concerned, it is fair to say that 
the physics of the large-x region is too involved that it can be appropriately described 
by perturbation theory. So, if we want to trace out the kind of  underlying field 
theory it must be done at small x. But here, we are afraid to say, there is no clear 
signal yet which points at scaling violations of  the sort predicted by renormalizable 
field theory, much less can one distinguish between conventional renormalizable 
field theories and QCD. 

It is well-known that the scaling violations at large x can be well-described (for 
SLAC energies) by several phenomenological scaling variables (like the Bloom-Gilman 
variable [18]). As we have seen, these variables fall outside the support o f G  2 so that 
they have really no theoretical basis. We believe that they reflect in some sense the 
effect of  higher-twist operators/quasi-elastic contributions which drop out asymp- 
totically. It is clear that any meaningful scaling variable must be a superposition of  
(2.13) (in g). 

At energies far above SLAC energies the average OL/Cr T will be much smaller. For, 
e.g., u = 150 GeV we find aL/OT ~< 0.1 which has to be checked experimentally. We 
don' t  see any contradiction to the naive parton model [39] here. Only the naive 
parton model is not  applicable for very small and large x since here the initial parton 
cannot be on (near) its mass-shell [20,21,40]. So the formula * 

OL/CrT = 4(k~ + m~)/Q 2 (5.2) 

should only be taken seriously near the quasi-elastic peak where it is well-consistent 
with k± ~ 500 MeV (fig. 6). 
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