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We discuss what can be learned from the 3S; quarkonium decay
Qé — 3 gluons,
QQ — v + 2 gluons .
The former is a way to find gluon jets and test QCD. The latter also allows us to measure
gluon + gluon — hadrons ,

and look for pure gluonic resonances (glueballs).

1. Introduction

Quantum chromodynamics (QCD) is the non-Abelian gauge theory of quarks with
flavor and color interacting with massless colored vector gluons {1]. Convincing evi-
dence for confined colored quarks comes from the spectroscopy of qq and qqq
hadrons and from lepton-hadron processes, particularly from quark jets in ¢'e” -
qq — 2 jets [2]. Similarly convincing evidence for gluons is lacking. The existence of
gluon jets [3] (in analogy to quark jets), and also of hadrons made solely out of
gluons [4] (called glueballs) would be objective evidence for QCD’s gluons. Since the
theory has quarks and gluons confined inside hadrons and not free, this is probably
the best and most direct evidence we can expect to find.

With the aim of finding gluons and checking the predictions of QCD, we examine
the processes [5]

3 gluons > 3 jets
ee” > QQ ~ (1)

photon + 2 gluons - v + hadrons ,
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where QQ stands for a heavy narrow ground state 3S, “quarkonium” state (e.g. T
(9.4), which we assume is QQ).

QQ — 3g is the direct decay mechanism of ortho-quarkonium in QCD [6] (QQ ~
ly - qq is also present, of course); QQ ~ 7y + 2g is particularly useful [7] as the rate
and the energy and angular distribution of the photon are predicted by the theory.

If the directly produced photon in QQ - v + 2g can be identified on an event-by-
event basis, this reaction offers a way to study gluon jets complementary to QQ —~ 3g.
More importantly, it offers a way to measure the process

g + g - hadrons (2)
for gluon-gluon invariant masses from zero to M. At low invariant masses *
QQ — v +2g~> v+ (C= + glueball) (3)

may lead to the discovery of such states. If we apply the Zweig [8] rule to gluons
just as to quarks, (3) is even the favored way to look for glueballs.

Most current evidence for QCD comes from comparison of predicted QCD radiative
corrections and deep inelastic experiments [9] **. Process (1) tests the theory to
lowest non-vanishing order in the Q? dependent QCD coupling gg = (4mag(Q?))!/?
(the Born approximation). For this reason we consider it to be especially important.

In sect. 2 we work out gluon and photon distributions in (1). The y distribution
in QQ — v + 2g can be directly compared to experiment. This is harder for QQ - 3g.
However, we point out that for sufficiently large Mg the total giuon jet three-mo-
mentum can be measured in principle, e.g. by calorimetry. This depends only on the
assumption of bounded py gluon jets carrying the total 3-momentum of the parent
gluon, not on the details of how gluons fragment to hadrons. The 3 jet momenta or
the relative angles between jets then parametrize a “jet Dalitz plot”, and these dis-
tributions are predicted by the theory.

In sect. 3 we take up phenomenology. We speculate on how a gluon fragments to
hadrons, and we discuss distributions in T (9.4) decay. We also remark on the 2-jet
background process QQ — 1 - qq = 2 jets, and also on the chances for finding gleu-
balls via (3). Sect. 4 is a summary.

2. Distributions

We assume non-relativistic quarkonium, and we calculate gluon and +y distributions
in (1), ignoring internal motion. We also use the Born approximation for QQ - 3g,
QQ - v + 2g (fig. 1). The ignored corrections due to internal motion are O(v?/c?),
and QCD radiative corrections are O(ag/7)(These corrections alter 3g distributions at
the ag/m level, and also lead to events with >3 jets.)

* of. S. Brodsky et al. [5].
** The search for gluon jets [ 3] was suggested originally vig e*e” — gqq, a QCD radiative correction
to e*e” = qq.
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Fig. 1. Feynman diagrams for QQ — 3g, QQ - v2g, €;, k; are gluon (photon) polarizations and
momenta.

The C'= —1 3g state is symmetric under interchange of color labels and we find
the QQ — g;gjg, matrix element (i, j, k = 1, ..., 8 are color labels)

1
M.., = 31 1g. 7 1), [ _
ijk = 88 4\/;dl]ku( s) | ¢, E“ ] _MQ

X ¢y ¢ + permutationsi‘ uP,3), 4)

1
P—Hs— My

where momenta and spins are as in fig. 1 (for yg;g;, replace
1gddx > 3gkedy) .

The gluons are exactly massless, and the above is just the ortho-positronium - 3y
amplitude [10] apart from obvious changes in scale.

It will be convenient to parametrize the Dalitz plot of the momenta in terms of
dimensionless variables x,,, = 2k,,/Mqg = km/Mq (m =1, 2, 3), where x,, = |x,,]
are the gluon energies and x; +x, +x3=2,x; +x, +x53=0. In order to describe
the spatial orientation of the coplanar 3g state we need a coordinate system [11].
This can be done two ways. We choose a lab frame with 2 | P,- in e'e” > QQ; the x
axis is normal to the e*e” ring plane and y lies in it (see the appendix). In the first
choice of system the Euler angles «, §, v describe the orientation of the normal to
the 3g plane, 2 Il k; X k4, 8 is the polar angle of the normal, %n — a is its azimuthal
angle measured from the ring plane, and v is a rotation angle between the momentum
x; and the plane containing the beam axis and the normal. (The last choice treats
the gluon momenta asymmetrically.) The second choice uses angles ¢, 8, x to describe
the orientation of one momentum x;; 8 and %71 — ¢ are the polar and azimuthal
angles of x,. The angle x is the rotation angle between x, and the plane containing
x; and the beam. This second system will be useful when we set particle 1 to be the
photon in (1).

The calculation of the differential decay rate does not need a specific form for the
Q,0Q spin vectors s, §,,. Then our resuits are valid for arbitrary beam polarization.
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Fig. 2. The two coordinate systems (afy) and (¢0x). The former is useful for QQ — 3g and the
latter for QQ — y2g.

In fact, however, we will only consider natural transverse polarization of e*e” here.
Then we will need *

Y-1-P) wp=v=x,
Suw = 3(5u5y +3usy) = (5)
=1+ P p=v=y,
and S, = 0 otherwise (P is the e* or e~ polarization). We will also need
Sij =x¢S Xy . (6)
This in hand, we calculate the differential rate
ar E |m12
dx;dx,dR 12873

160 W(x,,x,,Xx3)
= 100 M X X5) ()12 7
9 x3x3x3 WQQ(O) ’ @)

W/QQ(O)IZ

160 ad
81 M%)(j

where dR = dadcosfdy/8n? or dgdcosddx/8n? and ag is, of course, the Mg depen-
dent QCD coupling. In (7) we have

WQ(‘)(O)|2 s

W(x 1, X3, x3) = x7(1— x;)* +x3(1 —x,)* +x3(1 —x3)? (8)
3
+ E SiiFijx1, %9, X3) (®)
i<j=1

* This is easily derived viz e*e” —» QQ — p*u” .
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with
-1
F33(xy, X2, x3) = 3(x1 +x3) +xix, +x,x3 — %x1x2 ;
Fra(xy, xg, Xx3) = x5 +x1%,(1 — 2x3) , (8"

and their permutations.

The trace calculation involved was done using REDUCE. The expression for W
with §;; > 0 is originally due to Ore and Powell [10]. (8) and (8') explicitly show
the permutation symmetry in ky, k5, k3, and allow for arbitrary polarization. We
now express this in a more convenient form. In the text we present the formulae for
P? = 0; the case with P? 0 will be found in the appendix.

The general expression for the angular dependence of e*e™ - 123 can be written
analogously to the case of electroproduction reactions (e.g. eN — enN) *. The angu-
lar dependence can be factored out so that the five-fold differential decay rate is
(P =0)[11] **

1 dr 27

T3, ) {Ty(1 + cos®B) + 20 sing + 267 sinB cos 2
T3, dxydx,dR 8(z? —9) u(l + cos®B) + 26y sin’g + 20 sin?g cos 2y

— 26 sin?g sin 2y} 9

in the first system, and

1 dar 27

— = oy(1 + cos?8) + 20y sin20 + 20 sin26 cos 2
Iy GrdndR 8(7r2—9){ u( ) L T X

— 4/20; cos 8 sin B cos x} (10)

in the second. (Note that the « or ¢ dependence drops out for P? = 0.)
The @4, 0454 = U, L, T, I have the following interpretation. 5y(5y ) are cross sec-
tions for virtual photons polarized with spin +1 (0) along the normal &; o1(0)) are
the real (imaginary) parts of the interference between spin 1 and ¥1 photons.
oy(oy) are cross sections for virtual photon spin +1 (0) along x,; o4(07) are the inter-
ference of spin 1 and ¥1 amplitudes (the real part of spin *1 and spin-0 interference).
For the 6, and o, we find in the appendix that

Oy = oL = 501 —x1 ) +x3(1 —x2)* +x3(1 —x3)*1/xix3x]

Ql

T =%6U —%A sin2 912 ,
(—71*_-%[214 cos 012 +B] sin 012 5 (9,)
* We want to thank D. Schiller for unpublished material on e*e” — 123 kinematics.

** The normalization is such that integration over R and one of the six identical sectors of the
Dalitz plot gives unity.



454 K. Koller, T. Walsh | Gluons in quarkonium decay

oy=4x}(1 - x1)? +x3(1 = x2)* +x5(1 — x3)?]/x1x3x} — 34 sin 0,5,
oy = %A sin? 012 ,
ar = —16-A sin® 012 ,
=1/1124 cos 0, + B] sin 0, ; (10"
where
A= Axy, X2, x3) = 203 [(1 —x3)” + (1 —x,)*} /xix3xd
B = B(xy, X3, X3) = dx1x2(1 — x3)*/x{x3x3 ,
1—x
cosfy,=1-2 —=3

X1X2

where 04, is the angle between gluon momenta 1 and 2.

These expressions simplify a lot if we first carry out the integration over vy or x.
In the first case we find the distribution of the normal for a fixed configuration of
X1, X4, X3 but without information on the orientation within the 3g plane *

14 9
F3g dxldX2d COSﬁ 8(7T2 — 9)

[xT(1 —x1)* +x3(1 — x3)* +x3(1 — x3)°]

——5—3 (2 +sin? f). (11)

1X2X3
In the second case we find the angular distribution of x; (also with fixed x,, x,,

x3)- Rather than quoting this expression, we prefer to identify x, = x., = 2E, /Mqgp

in the process QQ >y + 2g, and then integrate (10) over x5, holding x,, fixed. The

result is the inclusive angular distribution of the v in e'e™ > QQ —» vy + 2g - v + hadrons:

1 dr 3
F—— dx.,d cos 6 4(-,, —9) [00(xy) +01(x,) cos? 0]
:E;_—g) 0o(xy)[1 +alx,) cos® 0] , (12)

for which we find

golx) = F(x) +2G(x) , 0,(x)

ax) = ,

01(x) = F(x) — 6G(x) , 0o (x)
_x(1 —x) 2wx (1 —x)* 1 1 —x i ,
F(x)—(2#x)2+ x (2—):)31 x_2 x? lnl—x (12)

* The resulting dependence on 8 is the same as for e*e” — qqg [3]; this was first noted by Brodsky
et al. [5]. Note that (11) tests the gluon spin; for three JP = 07(0*) particles in the final state,
oy = 0@ = 0).
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_1-x|2x(1 —x) 4(1 —x) 1
G&)= x* |l@-x T @-x) T x
4 — 3x 1 1
1 —x1 . "
(2—x)2n1—x xn1~x (127

In fig. 3 we plot the energy distribution of the 7y integrated over 8, (it is the same
as for unpolarized positronium decay) and the angular distribution function a(x,) *.
QCD predicts both of them. In addition the ratio ygg to ggg is predicted [7],

[(QQ~vee)_
(QQ - ggg)

We close this section with a discussion of the @,, 0, and some comments on exper-
imental issues. Gy; and @y, are both proportional to the positronium function of Ore
and Powell [10]. The only difference in our case is the angular dependence arising
from the QQ polarization. The functions G, G are new. They vanish at the symmetry
pointx; =x, =x3= % This is due to the threefold symmetry of this “star’” configu-
ration, and the 2-fold symmetry of the coefficients of G, 31. At the boundary, where
one of the x; is unity, ; vanishes and

3_6_e2i 1
5°Q s (13)

G (boundary) = 4Gy | (boundary) .

This is due to helicity. At the Dalitz boundary the gluon momenta are collinear. The
3 jets become 2 jets. As gluons are massless, and have j = 1, the net spin along this
collinear axis is +1 and this collinear configuration has an angular distribution for-
bidden for spinless gluons:

dar

— L a1 +cos? g 14
d cos 8ot 008" Vet (14)

(B¢t is the polar angle of the collinear configuration). This can be verified by direct
calculation in either system in the appendix, and it is why a(x,) > 1 as x, -> 1 in fig.
2. This 2-jet distribution is the same as for e'e” > QQ - 1y - qq - 2 jets. This is im-
portant, as it directly tests in a physically transparent way that the vector gluons have
no mass and no zero-helicity state.

As a visual aid we show in figs. 4 and 5 Dalitz plots of the ¢’s and also graphs of
the ¢’s along lines in the Dalitz plot. We remark that G,, o, are constant along the
boundary except for a non-uniform behavior near the corners (x; > 0)** As a result,
plots which average over a region of x; will not necessarily show the constant behav-
ior as the corners are approached. Also, there is an asymmetry of e.g. o, oy due to
our having extracted factors like cos x, cos 2x.

How are these distributions to be measured experimentally? Gluons do not emerge

* a(xy) = alxgluon) can be used to get the single-hadron angular distribution in QQ - 3g~
hadron + anything, given a model for gluon ~ hadrons.
** This is an artifact of infrared divergences which cancel in the total differential rate.
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Fig. 3. (a) Inclusive v energy distribution for QQ — 42g, (b) inclusive vy angular distribution
function a(xy) for QQ — y2g.

in the final state, but we expect jets, each carrying the total 3-momentum of the
parent gluon. This does not depend on the details of how gluons fragment to hadrons,
but only on the existence of finite-pt gluon jets *. We imagine that this total jet
momentum (or energy plus direction) is measured by a calorimeter. Then asymptoti-
cally the scaled jet momenta satisfy xjery = X1, Xjet2 = X2, Xjer3 = X3 and the distribu-
tions of these quantities are predicted here. (At finite energies it might be better to
plot distributions in relative jet angles 8,,, 0,3, 813. These also parametrize the
Dalitz plot, as cos 6;; = 1 — 2(1 — xg)/x;x;). Since the total gluon jet 3-momentum
does not depend on the number of gluon fragments, all this also works if one makes
an experimental cut on final state multiplicities (e.g. Mg <9 or one can study events
of fixed Nyp,q).

Even if the inclusive 7y in QQ ~ ygg cannot be identified on an event-by-event
basis, the rate, energy and angular distributions serve as tests of QCD. We expect

* That is, we assume that in a given order in gg, gluon and quark distributions can be interpreted
as jet distributions. The only non-perturbative effects are those given rise to jets having the
three momentum of the parent gluon or quark. It may even be possible to produce evidence for
gluon jets in QCD (for quark jets, see ref. {12]).
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Dalitz plot for o7. (¢) A view of the 3g Dalitz plot for o1. Note that
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Fig. 5. (a) Section across the Dalitz plot oy = o, from the middle of one side (left) to the
opposite corner (right). There is only one plot because of the symmetry of oyj. (b) Section
across the Dalitz plot oy or 207 from one side to the opposite corner for X1 =x4. Note the
sign change ofr x, = x3. If X5 = x3, o is zero. (c) Section across the Dalitz plot for o, as
before. Note the symmetry under x5 = x3. (d) Sections across the Dalitz plot for ayj, as before.
(e) Sections across the Dalitz plot for o, as before. Note that o, = 20T

little difficulty with backgrounds from photons from 7°, n decay because of the hard
v spectrum predicted for QQ - ygg.
3. Phenomenology

We concentrate here on hadron distributions and gluon jets at T (9.4). Except
for QQ — v + 2g, we will not have much to say about J/y decay; its mass is too
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small for our considerations to be useful. (Quark jets are only clean for Pyyark = 3
GeV [2]; we cannot expect the situation to be more favorable for gluon jets.)
The ratios of T decays in QCD are

T—ee+tuy : T->qq+77 : T->3g T2
5 R C10(n* -9)ad  8(n? -9) o
' " 8lmated ' Ir @
=2
2 . ~5 > .- QT3 15)
20 I eq=-1

for ag(M2) ~ 0.15 (ag scales as (In M2 Y1) [6]. The ratio I'(QQ - 3g)/T'yor decreases
somewhat at higher Mq. If eq = —, I'(QQ ~ 3g)/T';; = 0.7 for T and ~0.3 for the
next eq' = +3Q'Q’ state at ~30 GeV *.

In order to judge how hard it will be to find 3g jets at T, we need to know how a
gluon fragments. QCD is no help, and we must speculate. We adopt the following
simple picture. A colored quark can fragment into a string of qq pairs ordered uni-
formly in rapidity from O to ¥ ax = In Pgyqek. A colored gluon (e.g. with the color
index of red and blue quarks) cannot. However, it can fragment into two strings of
qq pairs, transferring the net color to y = 0. We assume that these strings of qq are
independent. The mode! is implemented by folding the g - qq distribution of the
leading q in each string into the fragmentation function of each q:

b dx z * dx z
h/y— 2 nh o] = ph o Wil
Dh(z) zf ; Dq(x)Dg(x) +Zf = D (x)Dg(x) (16)
(we assume scaling here and in what follows).

Notice that some of the time the gluon can fragment off its mass shell to a high
mass qq state. This will broaden the gluon jet and occasionally lead to gluon - 2 jet
events (QQ — 4 jets in all). That this plays no role for T can be seen by estimating
the related probability of a gluon to yield a heavy ¢C state J/y [13]:

P(C>3g>J/y+..) aMjy) PO/ >3g—>6+..) Ly (17
(T > 3g) o (M2) r(/y ~ 3g 7

(the scaled phase space is the same in both). We thus ignore multijet events (or cc
production vig QQ - 3g — ¢c + ...) at the T. At a very high mass QQ such processes
can be O(ag/m) of the 3-jet rate.

For practical estimates we ignore the gluons’ polarization and set D = const.**.

* The mass comes from My: Mypy:My:Mq~1:3: 32 .33,
** Summing over +1 helicitics of ¢ would give DJ(z) = 22+ (1 —2)? asin QED [14].
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Then
1
b= [ S oje e (E). ()

Independent of further details, this model implies that multiplicities in T decay are
large (we estimate [5] (V) =~ 10, compared to S off resonance). This is due to the
fact that asymptotically if a quark fragments into (n%,» ~ a In Py charged particles,
a gluon fragments to ~2a In %Pg. The momentum needed to see g jets is also large, about
twice the energy needed to see g jets. This indicates that it may be hard to see gluon
jets in individual events at T *. (A mass 2 20 GeV would be better.)

We can use (16), (18) to get D%} from Dg. However, we want to emphasize that
(16) can be explioted to extract Dg directly. This is simplest when we use the linear
approximation D% (y) = 6y, since then

i(i d'r(T—>3g—>h+...))

oz (19)

Di(z) = 22 . %
In fig. 6 we show Dl.}(y) using both the linear approximation and the exact D§.(y).

In each case we used (16), (18) and (153), Dg(z) =g+ b(1 — z)? with ¢ = 0.05,

b =1.05. Eq. (19) may be useful in extracting Dlg1 for use in other reactions involving
gluon jets.

We have discussed inclusive spectra in T decay elsewhere [5] (e.g. the preponder-
ance of 7= 0 fast hadrons like w, ¢ over e.g. p°), and have nothing to add here except
to encourage experimentalists to look particularly for T > ¢ + ..., and J/ + ...

Even if 3-jet structure is hard to see in random events it may be evident in low-
multiplicity final states. Of course, one looses events this way. As a guide to the
loss in events suffered by fixing Ny .4, we assume purely pionic final states (thus N
is odd for T — 3g, and we ignore NV, even) and use a Poisson distribution for N with
{(N,)=15.In order to ensure Pp,q = 1 GeV we need Np,q <9. This is 9% of the
total T - 3g - N, = odd.

Besides the T — 3g — 3 jet events, it will be interesting to look for the angular
distribution of T — 3g = 2 jet events (collinear 3g events). Once I'(T — e*e7) is known,
so is ['(T - qq - 2 jets), from data off resonance. Then one can try to study T —
3g - 2 jet distributions **.

If it is difficult to see 3 jets we can still imagine looking at T —ygg with £, not
too large (Ey, ~ 1 — 2 GeV, say), so as to get a large gluon energy ***.

The decay T — ygg — v + hadrons is interesting from another point of view. It

* A good tool for a 3-jet search would be a calorimeter measuring the energy in 212 solid angle
segments; we estimate that 20(5%) of T — 3g — hadrons will show 3 clear jets in such a calori-

meter.
** One might think that QQ — 1v — qq jets and QQ — 3g — 2 jets intefere. This is not so, as quark
jets carry flavor and gluon jets do not.
falalally (P 3P0,2(QQ) + 7, 3P0’2 — gg also delivers 2g jets [16], though it may be difficult to isolate
such events.



K. Koller, T. Walsh | Gluons in quarkonium decay 461

.02 Exact -Approx _|
L. o Exact i
+ t t +
-0 =
-02 4

Fig. 6. Distribution function ZDE(Z) for hadrons from T, together with the deviation between the
exact expression and our approximation (see text). The deviation is <1% for z < 0.8. Nonscaling
effects at small z are ignored.

combines a calculable short-distance contribution T — ygg and an unknown long-
distance non-perturbative piece. Namely, this decay allows us access to the color
singlet process

g + g ~ hadrons

as a function of the invariant 2g mass from 0 to M. (At high invariant mass we of
course expect gluon jets). At low invariant mass, the hadron spectrum consists of
qq resonances. We expect these to have small glue content, and for M 2 1 GeV the
Zweig rule [8] tells us that gg = qq is strongly suppressed, typically by a factor
ZY2 ~ 107!, where Z is of order o(nN - ¢N)/a(nN - wN) ~ 10~%(for C = —, but
we expect the same for C=+).

As an application of this observation, if we examine rates for J/y - v7, ',
v£(1250) (which have been seen [15]), we expect them to fall short of the inclusive
QCD process J/ - ygg by O(Z1/2) ~ 107!. We can check this inclusively as follows.
We form the integral (x = M% /M3y in J/Y -7 + My)

Xmax dr
r —f dx—, Tp =T/ =>7+..),

Xmax dx’ *max~

M%( =M?/w(] —X,y) y Xy F 2E’Y/MJ/\P . (20)
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Fig. 7. The integrated radiative decay rate as a function of scaled missing mass x = M%/M%/w in
the reaction J/y — v + X. The curve is the QCD prediction and the steps involve measured rates.

In fig. 7 we show Fxmax(J/xp - 7 + hadrons) from the inclusive QCD prediction
with ag = 0.2 and including recent measurements of J/y - yn, yn', yf(1250) [17].
The narrow resonances appear as steps in fig. 7. If gg — qq saturated unitarity we
would expect these steps to lie around the QCD curve. In fact, they are a factor ~5
lower. (Increasing ag would increase the QCD curve, and the effect would be more
dramatic). The ““discrepancy” is near what one would expect from the Zweig rule
for f°(1250); for n, " it shows that neither has a significant glue component in its
wavefunction. We expect that at larger M%, the probability for gg to evolve to
hadrons will increase to 100%. But how? This is what can be found out vig J/{ —
v + hadrons and T — v + hadrons. In our view, a graph of

_ (dF(Q§ - v +had)/dMx )expt
(dI'(QQ — v + 2g)/dMye)ocp

gives the probability directly. (See fig. 8 for some fantasy; note that C=+,/=0
glueballs cannot be too light, or they would already have been seen in J/y - yr'n
or YK*K™ vig their two-body decays [17].) * Just as one example, let us suppose that
hadronic states of gluons (glueballs [4]) really exist. Then we expect gg ~ glueballs
to average the QCD expectation (unlike gg - qq, which does not). Thus we estimate
from “gluonic duality” **

BR(J/¢ — v + glueball) = (5 — 10) X BR(J/Y = v + qq state) = 1%. 22)

Ry 1)

* it will be interesting to study the My and Mg dependence of (21) using J/y, T (e.g. ref. [18];
the discrepancy in fig. 7 has been found independently by M. Krammer).
** We assume that glueball and qq states are roughly equally spaced in M. If the glueball spectrum
were denser than qg one might see many narrow <y lines near the glueball threshold.
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Fig. 8. Fanciful plot of R g, showing the regions where gg —~ qq, gg — gluonic resonances, and
gg — gluon jets.

Evidently, J/\ and T — v + hadrons will be a good way to find glueballs if they
exist at all. They will be seen as spikes or bumps in the missing mass recoiling against
the v in QQ — 7y + hadrons.

4. Conclusions

In our view, quarkonium decays are an ideal place to verify or refute the basic
ideas of QCD. We can look for gluon jets, bound states of gluons, and can check the
Born approximation in the perturbation expansion in QCD in the running coupling
gs = (4mag)'/?. Some kinematic features in quarkonium decay will produce evidence
that gluons are really massless vector particles.

By contrast, quarkonium decays in Born approximation can offer no direct evi-
dence for the non-Abelian character of the theory (self-couplings of the gluons) *.
This evidence must be gained in other and probably more painful fashion.

We wish to thank R. Devenish, M. Krammer (particularly for discussions on J/y
radiative decays), H. Krasemann, H. Salecker and P. Zerwas.

Appendix

In this appendix we present more details on the derivation of the differential
cross sections G,, 6,4, a = U, L, T, I for the processes QQ — 3g, ygg. For details on
the kinematic structure of e*e” - 3 particles, we refer the reader to ref. [11].

As stated in the text, we use two coordinate systems (afy) and (¢6x) as in fig. 2.
The gluon momenta in the (afy) system (used to parametrize QQ - 3g) are given in

* Bound states of gluons would of course be indirect evidence for gluon self-couplings.



464 K. Koller, T. Walsh | Gluons in quarkonium decay

terms of the Euler angles by their x, y, z components,
Kix=kq[cos acos fcosy —sin asiny|,

K1y =k, [sin a cos B cos y + cos asin ] ,

ky;=—k;sinfcosy,

kpy =ky[cos 81,5(cos o cos B cos ¥ — sin @ sin ¥)
— sin 0 1,(cos « cos §sin y + sin a cos v)] ,
koy = ky[cos 0,(sin o cos f cos ¥ + cos & sin )
— sin 6 ;5(sin a cos B sin v — cos & cos )] ,
kp, = ky[—cos 8, sin B cosy +sin 6, sin Bsin ] , (A1)

where we set k3 = —k; — k; here and in the following. In the (¢6x) system (which we
use for QQ — ygg by identifying k| with k., in the text) the components are
kix=kysinf cos¢,
kyy=k, sinfsin¢,
ki; =k cost,
kox = ko [sin 8,,(cos ¢ cos § cos x — sin ¢ sin x) + cos 6, cos ¢ sin 8] ,
kyy = ko [sin 01,(sin ¢ cos 6 cos x + cos ¢ sin x) + cos 6, sin ¢ sin 0] ,

ko, = ky[—sin 8, sin 0 cos x + cos 6, cos 8] , (A2)

with the abbreviations
X(a)=—P?% cos 2a,
Y(a) = +P? sin 2a . (A.3)

The cross section for e*e”™ — 3 particles with transversely polarized e*¢” beams take
the following form for the (afy) system (3g case):

1 dr 27
[3g dx,dx,dR 8(n* —9)

+ 2[(sin? B+ X(a)(1 + cos? B)) cos 2y + 2Y(a) cos B sin 2y] Gy
—2[(sin? B+ X(@)(1 + cos? B))sin 2y — 2Y(a) cos B cos 2] Ty},  (A.4)

{By(1 + cos?B + X(a) sin?B) + 2(1 — X(a)) Gy, sin?B
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and in the (¢9) system (ygg case) *

1L dr 27
F3g dxldX2dR 8(7T2 *'9)

+2(1 — X(¢)) sin? fo
+2[(sin? 8 + X(@)(1 + cos? 8)) cos 2x + 2Y(¢) cos 0 sin 2x] o

{ (1 +cos? 0 + X(p)sin? ) oy

— 4/2[(1 — X(9)) cos 8 cos x — Y(¢) sin x] sin B0y} . (A.5)
In these expressions we have abbreviated
fa__,; iy U LTI
= o b T, 0 2 = b bl b kl
Deydre, 040 degdr, 0

and have chosen the conventional signs for the polarization. The general form (A.4),
(A.5) can be obtained from ref. [11]. In the event of longitudinal e*e” beam polariza-
tion there will be a fifth 0. The ¢’s are related to spin structure functions by {11]

Ty =R+ R, oL =cR%°,
Or = cReR ;= cImR' ; (A.6)
oy=c(Mt+T117), g =cT°°,
or=cT' !, o;=ReT"?; (A7)

where c is a coefficient of proportionality and in the first system the superscripts
refer to virtual photon (or QQ) polarization along the 3g normal; in the second sys-
tem they are spin projections along k.

The T"s and R’s are related to one another by [11]

R =4@+T%®° - T +23/2Im T'7),

RV =4 +T1° T _22ImT'9),

RO =711 il ,

RY¥U (T - 7% _ TV +i/IRe TY) (A8)

which we use to get the following identities among the o’s:

(—TU =%OU+OL_OT’
oL =joytor,

= =11

or _EQUU_OL—UT)’

61 = \/EOI , (A9)

on taking T'' = T7!7! into account (it follows from parity).

* We write this for 3g; for ygg there is a different statistics factor.
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We have verified the general structure (A.4), (A.5) and have derived the ¢’s explic-
itly in both the (affy) and (¢0x) systems. In this appendix we merely determine the
T’s; the ¢’s then follow from the relations (A.8).

In order to determine @, it is sufficient to put P? = 0 in (A.4) and integrate over
either y (to project out oy, o) or over 8 (to project out o1, 01) and compare the
results with corresponding formulas obtained from (7), (8). To do this we need the
explicit Euler angle dependence of

Sij Sx¥Swx?= —L xiexx + x5, + PP (RixXjx — XiyXj3)] s (A.10)
where the components of x; are given by (A.1) and x; = 2ki/Mgg. The « integration
is trivial, and integrating over v we obtain from (A.4) with P? = 0 on the one hand

1 dr B 27

T3g dx,dx,dcos B 16(x* — 9)
and from (7), (8) on the other hand

1 dr B 9

3 dx,dx,dcosf  8(n* —9)

[(1 + cos? B) oy +2sin® L], (A.1D)

H(x1, x4, x3)(2 +5sin? §), (A.12)

where H = H(x,, x4, x3) is the Ore-Powell function

H=[x3(1 = x)?* +x3(1 —x3)* +x3(1 —x3)*]/xix3x3 . (A.13)
Thus
Gy =0L =%H. (A.14)
In order to obtain G and Gy we integrate over 3, finding
1 ar 9
{2H + L(cos 207 — sin 2yay)} - (A.15)

T3, dxjdx,dy/2n 7% =9
We compare this with the p-integrated expression of (7),

1 a9 {3H+—C—[cos 29 cos 02
T3 dxidxpdy/2r @2 =9 3 12

—sin 2ysin 6,,] +$5(4" —A)cos 2y , (A.16)

where C, 4, A" are functions of the original F;’s in 8"):

C=Cxy, X9, X3)=24Acos 0,5, + B, (A.17)
A=Ay, Xa, x3) = 2X3(F33 + Faz — Fa3)/xix3x}

=2((1 —x3)* + (1 —x,)*)/xix3, (A.18)
A=A (xy, xg, x3) = 2x7(F33 + Fyy — Fi3)/xix3x}

=2((1 —x3)* + (1 —x1)?)/x3x3 , (A.19)

B=B(xy, X3, X3) = 2x1x,(F15 + 2F33 — Fi3 — Fy3)/xix3x}
= 4(1 = x3)*/xyx%3 (A.20)
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note that cos 8,, = 1 — 2(1 — x3)/x;x,. Comparison of (A.15) with (A.16) then gives
Gr=1Ccos b, +1(A' —A)=5(H — Asin* 6,,), (A2D)
6[ = éC sin 012

We have derived the g,, @ = U, L, T, [ in the same way, but here we simply use (A.9)
to obtain directly

oy =30y + o1,
oy =30y — 01 = 2071,
— 1=
o1 =3y . (A.22)

Their explicit forms on the Dalitz triangle can be found in the text, (10").
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