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The observables at short distance in quantum chromodynamics defined through scaling viol;tions in the moments of the 

deep inelastic structure functions are determined here in tertns of the sin 
f -k 
le parameter A = A 

espansion in the form Mrv = [log(Q2/A2)jan E:k=u X$0 C$$ [log(Q2/A )] 

9 

[log(log(Q2/iz 

, g) to all orders in the loop 

))I’. The constants Ci,‘j in 

terms of the renormalization group functions and the coefficient functions define a set of observables and thus are invartant 

under such changes of renormalization conditions that induce, for example, the recently discussed mappings g 4 g’ of the 

coupling constant plane. The general procedure for deriving these coefficients to all orders is presented and their implications 

on the study of the g-plane mappings and on practical high order calculations of scaling violations at high Q2 are briefly dis- 

cussed. 

Though the short-distance behavior of quantum 

chromodynamics (QCD) is well understood [ 11, per- 
fectly manageable and in agreement with existing ex- 
perimental data, the study of its large-distance be- 
havior has known only a limited success. Disentangling 
the large-distance properties of the theory calls for an 
understanding of its nonperturbative properties. Thus, 
the analytic structure of the Green’s functions in the 
coupling constant plane are of major interest and re- 
cently were extensively studied. As a preliminary step 
‘t Hooft had suggested [2] using mappings g + g’ so 
that the description of the singularity structure of the 
Green’s function can be easily concluded already from 
the known low-order expansion of the renormalization 
group functions (e.g. in the case of zero-mass fermions). 
Though presently much more work is needed along 
these lines of formulating convergent resummation for 
perturbation expansion in various field theories [2], 
it is interesting to study the implications of such stud- 
ies on the well-understood regime of short distances. 
Obviously, the transformations g + g’ should not 
change the physics and thus observables are invariant 
under such mappings which reflect a change in the re- 
normalization conditions. 

r Permanent address. 
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Calculations in QCD, performed while using a cer- 
tain set of renormalization conditions, result in quan- 
tities whose numerical values are dependent on these 
conditions (see e.g. ref. [4]). Only certain combina- 
tions of these quantities are independent of the calcu- 
lational scheme and form the set of observables of the 
theory. The explicit formulation of these observables 
in QCD at short distances, their dependence on the re- 
normalization group functions and a single [3] param- 
eter A at high orders are presented here. It is shown 
that scaling violations in the moments of deep inelastic 
structure functions are uniquely given by series of the 
form 

where A is an explicit function of g and P (the coupling 
constant and its renormalization point). Transforma- 
tions of the type g + g’ relate different coefficients in 
the fl, y and the coefficient function to form the in- 
variant combinations C k,i(y, fl, c) which are con- 
structed below. Our low-order results reproduce known 
relations derived in the past [ 1,4]. Higher-order results 
present new invariant combinations and the scheme 
for deriving them at any order is given below. Their 
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implications on high-order calculations of scaling vio- 

lations at high Q2 and some practical approximations 
in such calculations are briefly discussed. 

The coefficient functions in Wilson’s operator prod- 
uct expansion [S] satisfy a renormalization group equa- 
tion whose solution is 

(1) 

where t = -$ log(-q2/p2), p is the renormalization 

point, g(t, g) is the effective coupling constant and 
g=g(t = 0). c/(y2/p2,g) are measured experimentally 
through the moments of deep inelastic structure func- 
tions 

= +/2/~2 g) (hlO’N’lh). _q2’” I > (2) 

Only the leading twist-two operators were usually [ 1, 
3,4] kept in eq. (2) and only a single such operator 
contributes to the flavor non-singlet part of the struc- 
ture functions. 

Eq. (2) offers the perfect clean test of QCD at short 
distances once cf’(q2/l.r2, g) are calculated. They have 
been calculated up to two-loop contributions in the re- 
normalization group functions [4] and compared with 
the existing data [6]. To that order 

M;(-q’ = Q*) = A; [log(Q2/A2)] -@/2@o (3) 

X [ 1 + log-‘(Q2/A2) @I’ + b; log(Iog(Q2/A2)))J. 

The parameter A can be defined in terms of flu2 and g 
and thus, as it should, QCD is determined in terms of 
a single parameter [3]. The constants ~1 and b:’ as- 
sociated with two different Q2 dependences are cer- 
tain known combinations [4] of the coefficients of 
the y and 13 functions and the first non-trivial coef- 
ficient of c;(l) g). These combinations were shown, 
explicitly, to be separately independent of the re- 
normalization conditions [4] t ’ . 

The general pattern started in eq. (3) can be ex- 
tended to all orders giving the Q2 dependence of 

Mj(Q”) and thus determining an infinite set of such 
invariants as ai and bi. For this to be done consistently 

and uniquely the single parameter A = A(g, cr2) has to 
be explicitly determined to all orders in terms of the 
coupling constant g and the renormalization point I_I 

(see e.g. ref. [3] for the first loop calculations). De- 
note 

k=O 
(cr?Jr = 1). (4b) 

As emphasized by ‘t Hooft [2 ] our only knowledge 
and the definition of quantities like those in eqs. (4a, 
4b) come from perturbation theory and its renormaliza. 
tion scheme. This, however, leaves us with much free- 
dom (e.g. to choose an appropriate set of renormaliza- 
tion conditions), Thus, only directly measurable quan- 
tities, like poles in gauge invariant Green’s functions 
and other observables, are independent of our re- 
normalization scheme whereas most of the numerical 
values for rj:), ok, cf’) k are entirely dependent on a 
particular definition of g. The certain combinations of 
#k) , P k, cyyk that form the observables-invariants of 
the theory are derived as follows: From eq. (1) one 
finds 

c”(Q3,2,g) =/f(&?~*~o c n,k 2k 
I 1 k=O Bi s ’ (5) 

The B;3k are given by 

where c!‘,’ are defined in eq. (4b) and 0; are given be- 
low in tgrms of the coefficients in eq. (4a) for k = 0, 

1,2,3,4 (listed here for up to S-loop contributions): 

Dz = 1, DA =a,/2Po, 

0: =(l/4flo) (a2 - b,a,) +.;/8$, 

(7) 

t1 This demonstration in ref. [4] uses a particular example of 

a theorem by Stueckelberg and Peterrnan [ 7). 
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Eq. (12) is the generalization +* to all orders of 
ey. (2.4) in ref. [3]. The solution of eq. (IO) for 
g@) is: 

g2(Q2/A2)=g; +g;b, logg; 

+ g; b; [los’g;‘, + log g; - fl lb: 1 

+g;b; [log go 3 2 t31og2g; 

+(I - 3fJb;)logg; -f,lb; -fJ2b;I (13) 

+ g;*b; [log4g; +f log3g; + (; - 6fJb;)log’g; 

+(l -7fJb; -2f;lb;)logg; 

- fJb; + 2f;lb; -.f2/2b; -fs/3b’:l + %;“I. 

When g(Q2/A2) is inserted in eq. (5) one has 

cI”(Q2h2,g) = $(Q21A2) 

where b, = flk/f10 and ak = yLk’ + bkyLo). The solution 
of dg/dt = /3(g) with the initial condition g(-q2 = p2) 
=g results in an implicit equation for g(t): 

-8, los(-42/P2) + &) 

1 --2 
=-zg -3 b, logg2 +F(g), (8) 

where E‘(g) = z:k= 1 cfk/2k) g2k is regular at g = 0 
and c(g) equals to the r.h.s. of eq. (8) at g = g. Denote 

g; = [PO loS(-92/A2)] -l, (9) 

then eq. (8) can be written in the form 

go -2 ~g--~ + b, logg2 _ c !@k, 
k=l k 

(10) 

where thefk are given by (up to 5-100~ contributions) 

fi =bf -b2> 
3 f2 =2blb2 -b, -b,, 

f3=2b,b3-bbq-3b;b2+b;+b;, 

2 3 f4 = 2b,b, - 3b,b, +4b,bz 

-3b,b;+2b2b3 -b; -b,, 

and A is then given by 

(11) 
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A2 =l12~2)-P,/& exp 1 

1 [ 
_’ + k&2k 

00 g2 Ii 
. 

(12) 

~‘4~(gp2Po c ;: 
k=O i=. q; gZk [log gil’. (14) 

Since cT(Q2/A2) is measured through the moments in 
eq. (2) and each C$!$ are associated with different Q2 
behavior they form a set of observables that are each 
independent of the specific scheme in which they had 
been calculated $ 3 

The first two orders in gi give the coefficients 

n,i _ 
Co,0 - l’ c;l:; = (ry?-B;)P,, (15) 

which only reproduce the known results 
5 
81 that fro, 

fll, $*’ and [4] (eq. (3)) I2 = (l/2&) # + c/>’ are 
invariants. Higher orders in ey. (14) produce new re- 
sults; but let us first note the structure of eq. (14) im- 
plied by eqs. (5) and (13). All Ci;i and C$:i _ 1 namely. 

** Note that the definition of A* in e (12) differs from the 
9 - A* defined in ref. [6] by A?61 = A (PO) h/p;. 

’ 3 Including p 

ofgo@ 
2 S’ 

which is by itself invariant, in the definition 

/A ) does not invalidate this statement as will be 

shown below. 
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the “leading” and “next to leading” logarithms of gi 
at a given order ofgik, are exactly determined by the 
calculations up to two loops in the renormalization 
group functions and are therefore known for all k. In 
general C[;i_,, for k > m > 1 is fully determined by 
contributions from up to m + 1 loops in /3(g), y(g) and 
cr(l , g). Thus, going from an m-loop to a! (nz + l)- 
loop calculation there is only one new Cz,> that has 
to be calcutated in the coefficient of gp in eq. (14). 
This is C;k\, whereas all Ci;\ with m > j > 0 are 

known alrlady from the m&op calculations. 
Thus, at each order in the lpop expansio? we find 

only one new invariant in CGitO and all C%,? with 
m > j > 0 are functions only bf the invariants of the 
lower-loop calculations 14. For example, at the three- 

loop level we have 

c ;,;i: =Bifl” -r; y;)/2flo, (16a) 

which determines a new invariant of the theory “. But 

JO) ,,(O) 

(16b) 

define no new invariant since PO, fll ,yk”’ and I2 
= c!‘,t + y~~1)/2/30 (eq. 15) have been known already to 

be fnvariants from the two-loop calculations. 
Similarly at the 4-100~ and S-loop level the new in- 

variants are contained in C;‘$ and Cf$ only. They are +6 

‘4 This confirms the remark in fo!,tnote 3. 

*’ As in the case of CnTz I,~ also C’,“jA contains pieces that are 
known to be invariant from the lower loop (2-100~s) result. 
When these pieces are subtracted off one finds the new in- 
variant 

t6 One can further subtract from 4 (and 15) pieces that de- 

pend only on po, pl, yi:), 12, I3 (and 14). 

(17b) 

It is easy to see now how to derive higher such combina- 
tions but the expressions become pretty long and we 
will stop here at the 5-100~ level. Indeed also here one 
finds that C3.3, C’,,, and C3,1 are functions only of 
PO, p1 , $)), r2 and Z3. Similarly all C4,i with 4 > j > 0 
are functions of these invariants and of 14. 

In detailed m-loop calculations, certain renormaliza- 
tion conditions can be shown to ease one piece of the 
calculation or other, but the existence of the invariants 
Ct$, which are independent of the scheme used, re- 
strict one’s ability to simplify the exact calculation. 

The two-loop calculations [4] are sufficient for ac- 
commodating [6] the presently available data while 
more accurate future experiments may test higher-loop 
corrections. The structure of eq. (14) enables one, as 
discussed above, to extract certain approximations for 
the m-loop results from the known M - 1 calculations. 
For example, from the already available two-loop cal- 
culations [4] one has the exact values for the “leading” 
pieces giJC’2,, log2gi + C2,1 log gi] (eq. (16b)) while 
only in g0C2,, there is a missing contribution that has 
to be evaluated by detailed three-loop calculations. An 
estimate of the 4-100~ contribution can be obtained 
once the 3-100~ calculations are done and so on. In view 
of the complexity of such calculations an approximate 
result is certainly of some use for a comparison with 
future data. 

I wish to thank A. De Rlijula and C. Sachrajda for 
several useful discussions and the theory group at 
DESY for its hospitality. 

Note added. The fact, discussed above, that the ob- 
servables Cl; are indeed independent of the gauge and 
the renormalization scheme had been also emphasized 
in a recent study, received after the completion of the 
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present work, by W.A. Bardeen, A.J. Buras, D.W. Duke 
and T. Muta (FNAL-78/42, May 78) who had recalcu- 
lated Cp,,$ and discussed its phenomenological implica- 
tions. ’ 
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