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Abstract. We discuss the process 

e--e- ~ Q ( ~ 3  gluons~3 jets 

with attention to the kinematics and observability of 
the jets. We also show how to check the gluon spin 
through jet or hadron angular distributions. Gluon 
flavor can be checked by looking for quantum number 
correlations between opposite jets. We predict that 
correlations exist off resonance for e+e - ~q~, but not 
on resonance for QO~3g. 

1. Introduction 

Quantum chromodynamics (QCD) is the local color 
gauge theory of the strong interactions [1]. It has two 
sorts of elementary colored quanta. These are spin 1/2 
quarks with mass and flavor and vector gluons with- 
out mass and flavor. These quanta are bound in 
colorless physical hadrons. Such is the dogma. While 
there is evidence for confined quarks, the same cannot 
be said for gluons. We need to know if gluons really 
exist, have spin 1 and have no mass and flavor. The 
quarkonium decay [2, 3] 

e+e - ~ Q ( ~ 3  gluons--,3 jets (1) 

is a good way to find this out. (Q is a heavy quark and 
Q(~ the lowest 3S 1 bound state.) 
The I1(9.46) resonance found in pN collisions [4] has 
now been seen in e+e - collisions at DORIS [5]. Its 
properties are consistent with quarkonium expec- 
tations if [eel = 1/3 [5]. Off resonance there is clear 
evidence for e+e--- ,2 jet structure. The mean sphe- 
ricity is small. On the Y resonance events are not two- 
jet like. The mean sphericity is large [6]. This is 
qualitatively what is expected for the 3 jet decay (1). 
However no dramatic evidence for three jets is seen 
(with rather limited statistics) [6]. We have been 

motivated by the Y discovery to work out the present 
Q(?~3g guide for experimentalists. 

We expect 3 jets to be found at Y or the next heavier 
resonance. Once this happens, process (1) becomes a 
laboratory to study QCD. This paper contains Born 
approximation [7] phenomenology for (1) (see Fig. 1). 
Once it is clear that our lowest order predictions 
describe quarkonium decay in broad outline, it will be 
interesting to look for corrections. These should be 
small, O(c@~), except possibly near the boundary of 
the 3g phase space in (1). 

We do not think that the lowest order QQ~3g decay 
mechanism will be disturbed dramatically by the emis- 
sion of soft gtuons. (These could in principle have large 
couplings, unlike hard gluons whose coupling to 

quarks is ~gs  = ~ ,  C~s/~ < 0.1, at distances 
~ M ~  1.) This is because a quarkonium state is small 
and colorless. For large Q mass the Q(? S state radius 
approaches the chromodynamic Bohr radius, 
ro =(2c~sMQ)-1. Since color cannot be smeared over 
radii much larger than %, there is no virtual emission 
and absorption of long wavelength gluons. We thus 
expect no important soft gluon contribution to the 
QQ--'3g annihilation amplitude. (The initial state is a 
colorless Q(~ and not QQ + soft gluon.) However this 
intuitive argument suggests that a gluon of wavelength 
near r o in (1) could either come from the initial state or 
from the decay. The two cannot really be separated so 
far as we can see. This is what we meant in saying that 
the Born approximation may be corrected by > C~s/~ in 
some regions of phase space [in this case for 
p(gluon) < O(1/ro) ]. A caveat also applies to the region 
where two of the three gluons in (1) are separated by 
small transverse momenta. They interact, changing 
distributions compared to the lowest order expec- 
tations. (Note that we expect these corrections near the 
boundary of the 3g Dalitz plot. This is where momenta 
become parallel or small.) 
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Fig. 1. QO_~3g annihilation and the 3g kinematics 
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Fig. 2. a The normalized distribution of 3g events versus thrust, as 
described in the text. b The mean (cos 023)r of the two less energetic 
gluons as a function of thrust. Dashed lines show the kinematic 
limits, c The mean (x)r in Fig. 1 as a function of thrust. Dashed lines 
show the kinematic limits 

We also believe in gluon jets of bounded p• (up to 
corrections of order c@n). A simple minded argument 
follows. Imagine a single colored quantum (quark or 
gluon) with large momentum. This quantum has an 
associated color current. The probability for such a 
current to create a hadron with very large p]aa (relative 
to the current direction) is negligible. This is because a 
hadrons' color is compensated over a distance 
R~O(m~ 1) in space or (pa),,~l/R in transverse mo- 
mentum. Ifp~_ aa >> (Pi)  ~ 1/R then the color current flux 
will not overlap the region in momentum space where 
the color density of the high Pl hadron is nonzero. No 
high p• hadrons will emerge. A hadron with large p• 
can be produced, but only if the original colored 
quantum does not remain intact but fragments (e.g. 
q-~gq), giving a gluon or quark which itself has large 
p• relative to the original quantum's momentum. One 
of these quanta can have a flux of color overlapping 
the wavefunction of a high p• hadron (ifp h"d is parallel 
to pq or pg). In QCD this is a multijet process and is 
suppressed by the small QCD coupling C~s(p• 
From this discussion it is clear that we consider any 
broadening of a jet distribution as due to the nascent 
birth of a new jet (or fission of an old one)*. We see no 
reason why this argument does not apply to the hard 
hadrons in (1), which then lie in 3 jets. It is less clear 
how low momentum hadrons are made in a multijet 
process like (1)**. We will ignore > 4jet processes in 3S 1 
quarkonium decay since they are O(c@n) of the lowest 
order rate. 
In our discussion of QO~3g, it will be useful to have a 
global variable describing the hadron final state and 
calculable in QCD. The most useful variable seems to 
be "thrust" [10,11] (other variables appear less useful 
[12]). For Q(~ ~ 3 9 the definition of thrust for the 3 jets 
and its perturbative value are 1-11] 

Thad = max ~ lyliil, [ 
2_,~Pl 

Tpertmax (x 1, x 2, x 3 ). (2) 

Where Pll is defined as the projection of pl of hadron i 
on the thrust axis, and the scaled gluon momenta in (1) 
are 

x,,  = 2pnglu~  , x.---- Ix"l. 

Note that the value of Tis x 1 if we order x 1 >=x a or x3, 
and the T axis is parallel to x 1. In the limit where all 
hadrons in a jet are parallel, Thad=Tpert. At low 
energies Tha d is smeared by finite p• in the jets***. The 

* We view recent QCD calculations as suggesting that  there is no 
important  perturbative jet broadening apart  from the hard multijet 
processes [8] 
** For this reason it is important  to look at simpler processes like 
[9] QO.(23S1)~y+QO_.(aPz)---,7+2 gluon jets 
*** Compare footnote ** on p. 4 
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exact smearing depends on the quarkonium mass, on 
the jet multiplicity and on the question whether all 
particles or only charged particles are seen. We leave 
this smearing to the reader and present here distri- 
butions in T= Tpert. In our discussion of single particle 
distributions we will, however, include px smearing. 
We first discuss QQ--,3g kinematics and the resolv- 
ability of jets, turning then to angular distributions as a 
test of gluon spin. Finally we show how quantum 
number correlations can check that gluons have no 
flavour. 

II. Jet  Kinematics;  Resolvability of  Jets  

To judge the resolvability of 3 jets in 3S 1 or the 
quarkonium decay we need to know the distribution of 
the 3 quanta and also the angular size of a gluon jet. 
The former question can be answered by calculation of 
the perturbation diagram in Fig. l. The latter question 
cannot yet be answered theoretically. 
Kinematics and notation are shown on Fig. 1. We 
order the scaled gluon energies by x~ > x  2 >x3(some- 
times for convenience we also allow Xl~X3~X2). 
Note that x l + x 2 + x 3 = 2 .  Thus Tpert=X~ for the 39 
state. It is easy to calculate the perturbative thrust 
distribution, xl,xa,  x 3 label one of six sectors of a 
Dalitz plot. The density on this Dalitz plot is 

W(x~, x~, x~) 
= X2( 1 - - y l )  2 + X 2 ( 1  - - X 2 )  2 -}- X2(1 - - X 3 )  2 

x2.2.2 (3) 
1~2-'v3 

and we integrate over x2, x 3 at fixed x 1 = Tto  get [11]  

1 da 3 r 
-- f dx2W(T,x 2) 

dT 7~2--9 2(1a- T) 

3 I~ (37"-- 2) (2-- r2) 4 0 - r )  
- rc 2 -  9 z +r2(2-r), 

.(5T2-12T+ 8)ln ~7~T2T } (4) 

shown on Fig. 2a. 
It is instructive to calculate the opening angle between 
gluons 2 and 3 in the hemisphere opposite x,. We will 
also calculate the momentum of gluons 2 and. 3 
transverse to the perturbative thrust axis x,. Define the 
thrust of the second most energetic quantum by 
T 2 = x 2 and the opening angle of 2 and 3 by cos 02a(T2), 
where for x 2 > x  3, 

1 - T  
cos 023(T2)= 1 - 2  T2(2_ T -  T2)" (5) 

The range of (5) is fixed by 2(1 - T) < T 2 < T. 

Its average as a function of T, (cos0z3)r , is given by 

r , 2(1 - T) 
I dx2W(T, X2)x2(-~z~-_2) (6) 

(COS023)T=l+ 2(1 -- T) T 

dx2W(Zx2) 
2(1 - T) 

where we integrate over 2 ( 1 - 7 ) < x 2 < T ,  including 
x 2 < x  3 (T2 =x3) and Xz>X 3 (T2=x2). 
The result for (cos023)r is shown on Fig. 2b. 
In the same way we calculate (x• in Fig. 1 by noting 
that 

X2 ~X 2 sin0jet = ~_2 [(1 --Xl)(1 --X2)(1 - - X 3 ) ]  1/2 (7) 
Xl 

and weighting as for (cos023}r. This is shown in 
Fig. 2c. 
From Fig. 2 we see that the "collinear" configuration 
T~I ,  cos023=1 is the most probable, and that the 
"star" configuration T= 2/3 (012 = 023 = 031 = 120 ~ is 
the least probable. However, it is important to realize 
that many events have a large opening angle between 
gluons 2 and 3. For T<0.85 (about 30% of all events), 

(023) = 90~ / 
(x=) >__ 0.35/T=< 0.85. (8) 

Note that jet (p• }=(X• (measured in the 39 
plane). 
It is clear that as M e increases a larger and larger 
fraction of all events show 3 recognizible jets. For low 
quarkonium mass the fraction of Q ( ~ 3 g  events with 3 
clear jets will be small. This is because jets with small 
opening angle will not be resolved due to the finite p• 
of the jet fragments. In order to estimate the fraction of 
resolved 3 jet events at a resonance like Y(9.46) we 
need to know the opening angle of a gluon jet. A 
simple criterion for resolvability can be adapted from 
optics. Two jets nearby in angle are at the border of 
resolvability if half the energy of one jet lies inside a 
cone of half angle 6 ~et (it depends on the jet energy of 
course) and the angle between the two jets is at least 

jet jet 61 +62 (the two half angles). Clearly resolved jets 
require 0 ~,~j~t~_,~jet, (Our criterion is optimistic in ~23 ~" Vl - - v 2  " 
that it ignores fluctuations in 0.) 
We will assume that for 2.5-3 GeV jets 6~t~30 ~ for 
both quarks and gluons. Then for the Y "star" con- 
figuration, 0ij~120 ~ each jet axis is ~46 jet from 
another. Thus a subset of I1(9.46) decays around 
T=2/3 should show 3 jets. Note that the average 

* we urge experimentalists to plot the fraction of hadronic energy 
outside a cone of variable angle 6 around the thrust axis. This fixes 

jet C~quar k from e+e----,q~. 6jetg,,o, depends on (n)~ ~ (the number of 
particles in a gluon jet) and on (pz)g in the jet. (Pa)o can be found by 
fitting a plane through QQ~39 events. The mean momentum 
perpendicular to the plane determines (P*)o" Data (5) indicates that 
(n)~ ~ is not very much larger than (n)~ "~ for Y(9.46). 



74 K. Koller et al. : The 3 Gluon Decay of Quarkonium 

023 = 75~ 23 jet (Fig. 2), so that an "average" event at Y 
will not show a resolved 3 jet structure**. At a 
resonance with at least twice the Y mass 6 jet will be 
smaller (because 3jet ~ <n)jet/pjet) SO that even an aver- 
age event will show 3 jets. 
We emphasize that it is important to look for the 
energy pattern of jets rather than at the event as a 
whole. This is because low momentum particles are 
poorly correlated with jet axes. Weighting particle 
tracks with their energies will make jet structure 
clearer. 
It may prove useful to study nearly planar events with 
T=2/3 (stars), as these show the most dramatic jet 
structure. A cut selecting low multiplicity (1 < n < 3  
particles per jet) should also be effective in producing a 
clean jet structure. This is because mean momenta are 
high and the correlation of particles with the jet axes is 
better than for large nh~ a. 
From this discussion, we do not expect obvious 3 jet 
structure is the average Y~ 3g decay. Can anything be 
done to distinguish Y decays from 2 jet or phase space 
structure ? We have already mentioned the search for 
"star" events. We give two further examples: 
(i) Two particle correlations. Suppose we look at 
events where the two leading particles have momenta 
satisfying Pl > P 2  >Pmin" Take the larger momentum as 
z axis and plot the angular distribution of P2 for 
different values of the thrust, 

1 da(T) (9) 
a dcos012 

where T characterizes the event as a whole, and cos012 
=(Pl'P2/]PlI'IPz])" Provided Pmin>>(px)~300MeV 
this distribution will show striking changes with T. For 
large T (2 jets) it peaks at cos012 = + 1 and cos012 = 
- 1 .  For T=2/3  (star events) (9) will peak at 
cos 012 = + 1 and cos ~1 z = 1/2; (9) now has a minimum 
at cosg~2 = - 1 between the two jets opposite p~. The 
width of the peaks in 012 is of order AO~(pa)/p 2 and 
decreases rapidly as P2 increases. We do not expect this 
behavior from two jets off resonance nor do we expect 
it from a phase space model. 
(ii) Front-back asymmetry. Suppose we divide each 
event into 2 hemispheres by a plane perpendicular to 
the jet or thrust axis. Gluon 1 defines the thrust axis by 
x~ = T  and gives fragments with mean transverse 
momentum (P• relative to the thrust axis. The mean 
pz of hadrons in the opposite hemisphere will be 
larger. This is because we must now add the p• of 
gluons 2 and 3 (recall xl>x2>x3)  to the p• of their 
fragments. A bit of spherical trigonometry shows that 

** We can exploit this estimate of 3 jet to estimate the mean <Th.d) 
for Y~3g--+hadrons including the smearing of the gluon jets, We 
find <T~a) ~ <Tpert ) COS6 ~0.77 

we must use <p~). Defining <p2)o as the m e a n  p2• in a 
gluon jet and (p2)bac k as the average <p2) in the 
hemisphere opposite gluon 1 we have 

(pax)front=<pax)o jet [I to x 1 
3 2 i - 2 0  \ <i01)bac k ----. <p2) ~ + <p2 sin 2 0jet_ gP• s ,  jet/ 

<p2)o + (sin z 0jet ) [(p2)__~ (p2)o ] (10) 

where < p 2 )  is the average particle momentum squared 
in a jet, and (sin z 0jet) is the average angle of jet 2 or 3 
relative to the thrust axis. Note that <pax)fron t is 
constant while <Pax)back decreases with T. We estimate 
for Y (9.46) that <p2) ~0.8 GeV2 ' <pi>front = 2  <pL)2 
= 0.2 GeV 2, and <sin 20jet) = 0.38*, giving 

(pax)front,~O.2GeV 2 , (pax)back ,~ 0 .4  G e V  2 �9 

It might be worth pointing out that the overall (pax) 
relative to the thrust axis is roughly 

(p2>tot ~ (Pax>o +2<sin20jet) [ ( p2 )  _ 23_(e2>g] (11) 

where we weighted with the expected back to front 2 : 1 
ratio of particles. Since (11) is easily measured, it can 
give a first indication of <p2> o relative to <p2)q. This is 
done by comparing (11) for Y~3g decays and off 
resonance for e§ (11) indicates that they 
should not differ much if 

<p2)g,~ <p2)q. 

It is also possible to look for a difference in the two jet 
hemispheres by defining the thrust in the front and 
back hemispheres, 

Tfront =max  ~]Pl. II (12) 
zl0'l 

where the sum in numerator and denumerator is over 
particles in one hemisphere. Tfro, t chooses the hemi- 
sphere with the larger sum of parallel momenta. Tback is 
defined the same way using particles in the hemisphere 
opposite that which maximizes (12). In perturbation 
theory T = x  1 and T f r o n t = l  whereas Tback=(X2COS012 
-t- X 3 COS 013)/(X2 -}- X3) < 1. 
Observation of an asymmetry of the kind we have 
discussed here is a signal for unresolved 3 jet structure. 
It is probably easiest to compare 2 2 <P• <PX)back, 
and Trront, Thick for Q ( ~ 3 g  and off resonance for 
e§ - ~q~. Unfortunately our estimates for Y(9.46) do 
not indicate that a large effect is to be expected. 
The examples we have given are not meant to be 
exhaustive. They indicate a methodology for checking 
gauge theory predictions for Q(~ decay. Many other 
ways can be imagined of looking for multi jet structure 
[11, 12]. 

* <sin20jot), is computed in the same way as <x• [Eq. (7)]. 
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IlL Angular Distributions; Quantum Numbers 

In this section we take up gluon jet angular distri- 
butions in 

e + e-  --+ Q 0 ~ g(xa) + g(x2) + g(x2) (13) 

This will provide evidence that gluons are massless 
vector particles. We also comment on quantum num- 
ber correlations as a test for gluon flavor. Our calcu- 
lations are, as before, in Born approximation. 
The cross section for (13) is [3] 

1 do 27 
a dxldx2d cos Od)~ = 32~z(rc 2 - 9) {(1 + cos 20)(TU(X1, X2) 

+ 2 sin 20oL(xl, x2) (14) 

+ 2 sin 20 cos 2Zar(x 1, x 2) 

- 4 1 ~  cos 0 sin 0 cos)~oi(Xl, x2) } 

The notation is as follows. We choose x I to be the 
most energetic gluon (jet); 0 is the polar angle of xa 
=2p~/MQc ) and Z is an azimuthal angle measured 
around xa as axis; it is the angle between the plane of 
x I abd x 2 and the plane containing xt and the e+e - 
beam in (13). We have zero beam polarization, so there 
is no azimuthal dependence of x~ around the e+e - 
beam axis. 
We now identify x~ = T as before and integrate over 
x 2, x~ to compute the angular distribution of the thrust 
axis and the azimuthal distribution of the 39 plane 
about the thrust axis from [3]. 

r 8 ( 3 T - 2 )  
av(T ) = ~ dxzav(T,x2) = ~ TS(2-  T) 2 

2 - 2 T  

.[2 +4T-11T2 + 9 T 3 - 3 T  4] 

32 ( T -  t) 
+ - -  . [ - 6 + 1 2 T - 1 3 T Z  + 9T 3 

3 T4(2 -  T) 3 

- 3 T 4]  In 2 - 2 T 
T 

T 8(3T-- 2 ) ( T -  1) 
oL(T)= ~" dxzoL(T, x2)= 3TS(2_T)2 

2 - 2 T  

�9 [2+  6 T -  7T 2 + 2 T  31 

16 ( T - I )  [12_24T+18T2 6T3+T4] 
+ 3 T '*(2-T)  3 

.ln 2 - 2 T  
T 

O.T(T ) = 2aL(T) ; 0"z(T ) = 0. (15) 

The meaning of o v and oL is clear, o T describes the 
tendency of the 3 gluon plane to lie near the plane 
defined by the e+e - axis and the thrust axis (because 

or  >0). We find o,x(T)=0 because we integrated over 
x2>x 3 and x2 <x 3. 01(x 1, x2, x3) is antisymmetric 
under the interchange x2~x  3 [3]. Had we ordered 
xl>x2>x3,  identifying x 2 as the second most en- 
ergetic jet (or the second largest thrust T 2 as in Sect. I) 
we would find just the or(x 1, x2) of [3]*. a~ then 
describes the tendency of the second most energetic jet 
to lie on one side or the other of xl relative to the beam 
axis ~,* . 
On Fig. 3 we have plotted the perturbative thrust axis 
angular distribution. We define 

do(T) 
dcos0 l+c~(T)cos20 

a(T) = ~  2~ (16) 
av(T) + 2O'L(T )" 

Because of its possible experimental interest we have 
also calculated a somewhat different quantity, 

1 

[. dT(au(T)-2aL(T)) 
r~,in (17) 

< ~ > ~ r a i o  = 1 

~. dT(ov(T)+ 2O'L(T)) 
Train 

which is useful if there is a cut on data with T>= Tmin. 
(a)T~in is then the angular distribution of the thrust 
axis for all events with T=> Tmin. (o(T_>--Tmi~)/a is also 
plotted in Fig. 3). 
Note that c~(T=I)=I.  This is because gluons are 
massless vector particles. For 7 '= 1 all gluon momenta 
are collinear and helicity requires c~ = 1. This gives an 
easy way to exclude spinless gluons, for which e(1)-- 
- 1 by helicity. 
We note in passing that the a v e r a g e  ~O~>.-~-<O~>Tmin=2/3 
=0.39 (Fig. 3c) is not affected by p• smearing, but 
only by the uncertainty with which the thrust axis 
direction is determined, do./dT is affected by p• smear- 
ing (it even vanishes at T ~  1 due to this). 
An interesting quantity in perturbation theory is the 
angular energy pattern [13, 14]. We consider the total 
energy deposited by gluons in the polar angle interval 
from 0 o to Oh+dOg relative to the e+e - beam 

dE 
d cos 0 o ~ (1 + c~ E cos 2 00) (18) 

e~ is a number, calculated as follows. First we find the 
inclusive energy and angle distribution of a gluon, 

* With the ordering x 1 > x 2 > _ x  3 the G's defined in (14) are to be 
taken over 1/6 of the 3 9 Dalitz plot. In [3] we allowed for all 
orderings ; The transcription to x 1 > x 2 _-> x 3 is trivial. 
** Integrating this over x 2 > x  3 will lead to a nonvanishing a1(T ). Of 
course, the half plane containing the second most energetic jet has to 
be identified experimentally in order to use this. 



76 K, Koller et al. : The 3 Gluon Decay of Quarkon ium 

117 

~(r) 
Q8 

Q6 

0.4 

Q2 

0 , h 

/3 0.7 
I I I 

, l 

(a) 

T 
i I ~ I Q i  9 i , , i 

O.8 

).0 

).e, 

16 

)/-, 

),2 

�9 , , , , , , , , 

' Tmi n 
0 , i L , ) , I , , , L I L , , , 

2/3 0.7 OB 0.9 

.I dO" ( b )  / 

2-/3 0.7 OB Cfl 

1.0 

0.B 

0.6 

0A 

0.2 

, , , , , , , , , , . . . .  

~ O. (T > Tmin) ( d ) 

| I i i J t I i i I ~ i I l I 

2/3 0.7 Q8 09 1 

Fig. 3. a The angular distribution parameter c4T), defined in Eq. (16) of the text. b The distribution of 3g events versus thrust, c The parameter 
<~>rm,,, describing the polar angle distribution of the thrust axis for event with T~= Tmi n. d The fraction of all 3 9 events having ~ T 

x = 2po /Meo*  

1 do 3 
o dx  cos 0 o - 4(~ 2 - 9) [~176 + ~ c~ 0~ 

This was done in [3]. The result is 

Oo(X ) = F(x)  + 2G(x) 

o l (x ) = F ( x ) -  6G(x) 

F(x)= x ( 1 - x )  2 - x  , , , ( l - x )  2, 1 
( 2 - x )  ~ +  x + z ( 2 - ~ @ m l - x  

- 2  1 - X l n l  
x 2 1 - -x  " 

1 - - x  J_2x(l_-x)  4(1 --x),  1 
G(x) = x4 [ ( 2 - x )  2 2 x -  (~- -~5  m 1 - x  

2 4 - 3 x  1 
+ ~ l n  l~-~x - x l n  1 _ ~ } .  

* Notice that we no longer require that  x be the most  energetic 
gluon. As a result, a o and a 1 are unrelated to av(T), aL(T). 

[In Fig. 4 we show o0(x ) and ol(x). ] The quantity eE is 
just the ratio of the energy weighted integrals of the 
coefficients of cos 2 0g and unity 

1 

,txxo l (x) 
0 =0.35 (19) ~ E - -  1 

I dxxoo(x) 
0 

Note that c~ E does not take the p• smearing of gluon 
jets into account. Measurements of the polar angle 
dependence of the energy deposition may be a useful 
way to test the 3g decay mechanism of quarkonium. 
So far we have calculated quantities in perturbation 
theory, unsmeared by the finite p• of gluon jet frag- 
ments. We will not expatiate here on the details of this 
smearing. It depends on the details of gluon jets and on 
the quarkonium mass. It turns out that we can cal- 
culate a quantity which depends in a minimal way on 
these details. This is the angular distribution of a single 
detected hadron in the inclusive process 

e+ e - - - Q O - o  3 g - - h ( p ) +  .. .  (20) 
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Fig. 4. The energy distribution functions of a single gluon in 
QQ-+39. The joint energy and angular distribution is proportional 
to ,ro(x ) + %(x) cos 20 a 

where we have integrated over the energy and angle 
of the jet (x and Oo)" Now p• relative to the jet axis is 
psin0. Using the law of cosines we can convert the 
integral over dQ 0 to one over 0. The result is 

da 
d~-X ao(x)D lo(P ) 

dap/E ~ x 

+ - -  a 1 (x)D {~I 2(p) 
z X 

+ [lo(P)- ~I2(P)] c~ �9 (23) 

1 
I ,(p) = ~ d cos Oe- b~,~ sin~ 0. sin" O. 

o 

We find for e(z) in (21), z -  

. . . .  Io(P)-}I2(P) 
MoO - ' 

(24) 

(25) 

where ~(p) describes the angular smearing due to finite 
@• and is the same quantity found for qg/jets, 

y~(p) = 1 - 312(p)/21o(P ) 
1 + I2(p)/2Ii(p)  (26) 

whereas co(z) depends only on the scaling variable z and 
reads z / x  = z', 

and the deposited energy, analogous to (19). The polar 
angle distribution in (20) is 

do- 
(1 + c~(z) cos 20~) (21) 

dzd cos O h 

where z = 2lpf/MeC ) and O h is the angle of p relative to 
the beam axis. In order to calculate ~(z), we assume 
that the probability for a gluon to yield a hadron with 
transverse momentum p• and fraction z' of the gluon 
momentum is D(z')exp(- bp2s). We then fold the angular 
and energy distribution of the gluon with the z' and p• 
distribution of the detected ha&on relative to the gluon 
jet. This has already been done for quark jets [15]. The 
procedure is as follows. 
The inclusive cos 0 and energy dependence of a single 
hadron with momentum and energy p, E and fractional 
momentum 0_< z_< 1 is 

d3P/E l z  x 

+ 5 d x a l ( x ) D ( Z - ] e - b P e  COS20g (22) 
= x \ x /  

j dx~(x)~D 
z 

o ( z )  = z(z) _dx~o(x)-D 
z X 

(27) 

For numerical purposes we set b = 5 and chose z'D(z') 
= ( 1 -  z')" with h = 1, 2, 3. The result for O(z) and c~(z) is 
shown in Fig. 5. e(z) vanishes at low z because the finite 
(Ps)  in a gluon jet gives an isotropic distribution of 
particles with low p < @ , ) .  Note that ce(z)--+l as z ~ l .  
For spinless gluons c~(z)--+-I as z ~ l .  We already 
pointed this out for c~(T). 
We want to emphasize the weak model dependence of 
c~(z). For z>  1.5 G e V / ( M a o / 2 ) ~  [0.3 for Y(9.46)], e(z) 
depends hardly at all on either @2) for a gluon jet 
or the gluon fragmentation function, e(z) for 
z < 1.5 GeV/(MQo_/2 ) measures the mean @2) in a jet, 
but is not otherwise model dependent. 
Our calculation of c~(z) can be easily generalized to a 
calculation of ~E including the effect of finite jet p,. We 
do this by weighting the measured inclusive hadron 
with its energy (assuming that all particles have small 
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Fig. 5. The quantity ~(z) defined in the text, shown for three different 
choices of the gluon-to-hadron fragmentation function z'D(z') 
=(1-z ' )" .  Also shown is e(z), defined by Eq. (21) of the text. This 
describes the polar angle dependence of a single inclusive hadron 
with z = 2p/M r 

mass). We find for (p~> = 0.2 GeV 2 

(O~E>p• smeared 
1 

dz z.ft(z) [ I0(p)-  (3/2)I2(P)] 
= ~ 0 =0.23 

dz[zfo(z ) Io(p) + (1/2 )z f t (z)12(p) ] 
o 

(28) 

The reader may wonder whether the decay 
QQ-~IT~q?I~2 jets does not interfere with the 
QQ~3g  test we have presented. For  distributions it 
does not. This is because once BR(QQ-~#+# -) is 
known, so is the absolute size of QO~17~q?l (it is R 
times Q(2-~g+#-). Then using off-resonance data it is 
easy to subtract QQ~IT~q~I in distributions. An 
event-by-event subtraction is, of course, not possible. 
But QQ~I?~q?I does not disturb a 3 jet search in 
small thrust events because it is negligible there even 

event-by-event. (Such Q Q ~ 2  jet events have large 
7:.) 
We have been discussing single particle distributions 
so far. Two particle distributions, 

e + e-  --* QQ ~ 39 ~ h ( p l ) +  h(p2)+...  (29) 

where h(pt), h(p2) a re  detected hadrons of momentum 
Pt, P2, contain more physics than (20). But they are also 
more model dependent. We have already drawn atten- 
tion to (20) as a way of looking indirectly for 3 jet 
structure. Now we want to point out how two particle 
distributions can be used to study 39 decay 
dynamics. 
The differential rate for (29) is given by Eq. (14) with 
some simple changes. 0, Z are the polar and azimuthal 
angles of Pl relative to the beam (we order IP~[ >[P2[) 
and the pt, P2 plane relative to the plane of Pt and the 
beam. The variables xt and x 2 are replaced by 

zl =2[PtI/MQ~, z2=2[Pzl/M(20_ 

and the missing mass against z t and z 2 is no longer 
zero.  

The structure functions in (14) are now 

ariz,,z2), GL(q,z2), or(zt, z2), o,(zl,z2) 

interpreted as two particle structure functions for the 
process (29). Choosing LPa[ >[P21 >Pmin as before one 
can look for azimuthal asymmetries proportional to 
cosz, cos2z in (14). These are more model dependent 
than the azimuthal asymmetries we discussed earlier, 
and we won't embark on a detailed discussion. 
However we want to point out that the average value 
of cos 2Z 

(cos2x> > 0  (30) 

due to the positivity of o r. 
Two particle distributions are also very useful in 
checking the QCD prediction that gluons have no 
flavor. We do this as follows. Consider high thrust 
events which have a clear jet axis. These are collinear 
Q 0 ~ 3 9 ~ 2  jet events. Since these are gluon jets, they 
carry no net flavor. In particular, knowing the flavor of 
a hadron in one jet does not determine the flavor of a 
hadron in the opposite jet. There are no correlations. 
By contrast, if one goes off the quarkonium resonance 
the 2 jet process is e+e-~lT~q?l. The quanta have 
flavor, and if one sees a hadron of definite flavor (a ~ + 
say) in one jet this increases the probability to see a 
hadron of the opposite flavor in the other jet 1-16]. 
Thus we see how to test the flavor of gluon jets : look 
for a correlation off resonance from q~ jet and check 
that there is no correlation on resonance. The com- 
parison on and off resonance provides a standard for 
judging whether the absence of correlation on re- 
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sonance is significant or not. In carrying out this check 
it is important to take events with the same range of 
thrust on and off resonance. This way we look at 
events which are globally similar. 
To be quantitative, take the cross section for a particle 
of flavor F 1 with fractional momentum z 1 in one jet 
and F2, z 2 in the opposite jet. We integrate this two 
particle distribution over the tips of the two jets, 1 >Zl, 

Z 2 =~Z O, 

1 1 1 d a ( F a , F 2 )  
C(F,,F2)= f dzt [, dz2 (31) 

zo zo Cr dz  1 d z  2 

On resonance C(Ft, F2) is just a product of single 
particle distribution. As one specific example out of 
many, 

Cr(rc + rc +) = Cr(rc+~r-). (32) 

We can calculate Ce+e-(rc+n +) and Ce+~_(Tr+Tr -) from 
the parton model off resonance [-16]. This indicates 
what sort of correlations we except to see. For  z o 
sufficiently large we expect pions to come from 
e+e - ~u~, e+e - ~dd.  (Final states from ss, cc should 
not have high momentum pions.) We find 

1 l 
eq.D, (zl)D q (Z2). (33) 

zo zo q = u,d, ~,d 

After some algebra, 

Ce+e_(Tc+Tc-) __ ( / ) + / / ) - ) 2 +  1 (34) 

Ce+~_(rc+n +) 2(p+/p -) 
1 

where p + = ~ ~ ~ ~ ~ dzO, (z). We use the O, (z) from Sehgal 
20 

[-17] and find the resulting ratio (34) shown in Fig. 6 as 
a function of z 0. It is large for large z 0 because it is very 
improbable to find a fast ~ + from a u quark in one jet 
an a ~z + from ~ in the other 0z- is favored). (The same 
exercise can be carried through for other flavors, kaons 
for example.) C(rc+rc-)/C(rc+rc +) should show a strik- 
ing change when going on the ~'resonance. It will drop 
from a large value to nearly unity. (The contribution 
from QQ~7~q~ is small, and can be subtracted as we 
have already discussed.*) 
In this section we have discussed many experimental 
QCD tests. Most of them appear to us viable even at a 
resonance like 1P(9.46) where 3 jet structure is not 
expected to be dramatic. 

IV. Conclusions 

This paper is intended as an aid to experimentalists 
looking for gluon jets and desiring to test QCD in 

* We caution against choosing z o so large that the multiplicity in the 
final state is small. Then C(~+n +) is artifially suppressed 

Ce+e- (lI:*rr) ] 
% -  

I I I [ 1 6 t 

Q2 0.4 .6 0.8 

Fig. 6. The ratio of the probabilities to find ~+ and ~ -  or g+ and ~+ 
in opposite e+e - ~q~/jets, as a function of the minimum fractional 
momentum of a pion, zo = 2p=iffs 

0 g 

Fig. 7. Two higher order QCD diagrams containing gluon self- 
interactions 

Q(~-' 39. We have concentrated on three jet kinematics 
and on the probabilities of different jet configurations. 
We have also shown how to check experimentally that 
gluons are really massless vector particles with no 
flavor. 
All the calculations in this paper are carried out in 
Born approximation. We think that this is the essential 
first step. Eventually we expect gluon jets to be found 
and their distributions measured. Then it will become 
interesting to look for deviations from our lowest 
order QCD predictions. We have already mentioned 
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this in the in t roduct ion .  A deta i led  theore t ica l  s tudy of  
h igher  o rde r  Q C D  effects is cer tain to be qui te  com- 
pl icated.  However ,  the issues can be apprec ia ted  f rom 
the fol lowing naive observat ion .  W e  a l ready  po in ted  
out  tha t  apprec iab le  devia t ions  f rom the Born  approx i -  
m a t i o n  are  l ikely to appea r  only for events near  the 
b o u n d a r y  of  the QQ~39 je t  Da l i t z  plot .  This is where 
two of  the three jets  are near ly  paral lel .  The  2g 
invar ian t  mass  is small  c o m p a r e d  to 2MQ. If  we 
cons ider  no t  jus t  the 3g process  Q ( ~ 3 g  bu t  also the 
radia t ive  process  QQ~729 for modes t  2g mass,  then 
the two gluons  nea rby  in phase  space might  in teract  
accord ing  to Fig. 7. (Of course,  there  are  m a n y  dia-  
g rams  of  the same o rde r  as those in Fig. 7;  we focus 
a t t en t ion  on these here.) But we see tha t  the  color  
combina t ions  of gg in QQ-~g+gg and  7+gg are 
different. In  the rad ia t ive  process  the gg are in a co lor  
singlet state. They "a t t rac t"  one another .  In  the 3g 
decay process  the gg must  be in a net  co lor  octet  s tate ; 
they repel. If  it  is poss ible  to s tudy d is t r ibu t ions  for this 
k inemat ic  conf igurat ion,  we will s t and  to learn  a b o u t  
the  non-abe l ian  self coupl ing  of gluons. Then QO~3g 
and  QQ~Tgg [3]  become a l a b o r a t o r y  for the s tudy of 
Q C D .  
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