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By explicit construction of solutions in gauges satisfying the Lorentz condition we give an operator realization of the dy- 
namically broken Patrascioiu phase in QCD(N)2 for massless quarks. The SU(N) colour gauge group is reduced to its maxi- 
mal abelian subgroup. The N - 1 diagonal gluons become massive and there is a massless free U(1) current. The contrast 
with the 't Hooft phase, established by the 1/N method, supports the idea of two distinct phases. 

Are there two distinct phases [1] in QCD(N)2  (i.e., SU(N)  quan tum chromodynamics  in two-dinlensional  space- 

t ime [2] ) depending on the value o f  the bare gauge coupling g? The 1/N expansion m e t h o d  [3] ,  p ioneered by 

' t  Hoof t  [4] ,  has established a nontr ivial  dynamics in the l imit  when g-+  0 p ropor t iona l  to N - 1 / 2  as N ~ 0% This 

scheme in which gluons remain massless (and hence are no t  independen t  degrees o f  f reedom # 1 ).while colour  is com- 

pletely conf ined  - we shall call the ' t  Hoof t  phase. It is fairly #2 well-defined in the weak coupl ing domain  

g(N/rr) 1/2 < M the mechanical  quark mass in the QCD lagrangian. For  g(N/rr) 1/2 > M, the validity o f  the 

' t  Hoof t  phase is dubious.  Gauge invariance difficulties with the ' t  Hoof t  solut ion for M tending to zero were 

found some time ago [5] .  It  now appears [6] that  in a general axial gauge there is t rouble in solving the quark self- 

energy equa t ion  as soon as M is put  lower  than g(N/rr) 1/2. It  is quite l ikely that  a di f ferent  physical  picture holds  

in the s trong coupling regime g(N/rr) 1/2 > M. This intriguing possibil i ty has already been considered by Patrascioiu 

[7] .  He proposed  a new phase by working out  a different  solut ion to QCD(N)  2 for M = 0 and conjec tured  the val- 

idity of  its propert ies  for nonzero  M up to g(N/Tr) 1/2. 
In Patrascioiu 's  phase the colour  SU(N)  group spontaneously  breaks down to its m a x i m u m  abelian subgroup 

S (U(1 )  × U ( 1 ) ×  ..., N factors).  The dynamics  is given by an underlying free field theory  in terms o f N -  1 col- 

1 Permanent address. 
,1 Since there are no transverse directions in one spatial dimension, massless gluons cannot represent independent degrees of free- 

dom. This may also be seen by counting the dynamical degrees of freedom from the time-evolution parts and the constraint 
parts of the QCD equations of motion [7]. 

#2 There is some controversy with the proponents of the alternative infrared regularization procedure advocated by Wu [ 12]. We 
merely note that even in this procedure the branch-cuts in the poleless quark propagator are along the imaginary axis for 
(g2N/n)l/2 < M but are spacelike for (g2N/n)l/2 > M again suggesting two distinct phases. For spacelike branch cuts there can- 
not be an indefinitely rising 't Hooft bound-state spectrum since in a general axial gauge the Bethe-Salpeter equation cannot be 
once integrated to give a Schr6dinger-like equation as done in [2] and the singularities of the quark propagator show up in the 
B-S amplitude [ 13]. In fact, for the M = 0 case the bound-state equation has been considered in Wu's approach [ 14] and, as in 
the Patriascioiu phase, only massless colour-singlet bound states have been found. 
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our diagonal gluons, all massive and expressible as curls of free massive pseudoscalar fields. However, as admitted 
by Patrascioiu himself, his deduction of these results was not very reliable since he did not fully take into account 
the operator nature of various fields. His procedure involved naive manipulations of operator products as well as 
the treatment of quark fields as c-number functions. Thus his argument for the existence of the new phase has not 
seemed very compelling so far. It is clear nevertheless that a more rigorous construction of Patrascioiu's solution 
will support the idea of two distinct phases in QCD(N)2. 

We have found an operator realization of Patrascioiu's picture (for massless quarks and any positive integral N 
> I) as described here in essence. Our results are not a priori surprising since many massless fermionic field theo- 
ries in (1 + 1) dimensions are known to be explicitly solvable. The method used by us is a generalization of that of 
Lowenstein and Swieca [8], employed for Schwinger electrodynamics, to which the reader is referred for procedu- 
ral introduction. We first give an operator definition o fM = 0 QCD(N)2 as an SU(N)-invariant theory in terms of 
equations of motion involving ordered products and regularized fermionic source currents introduced as immediate 
nonabelian generalizations of that in ref. [8]. Then, in gauges obeying the Lorentz-condition, we construct quark 
and gluon field solutions in terms of free massless fermions and free massive and massless scalar bosons. (This last 
set of objects are defined with indefinite metric.) We believe that our construction makes Patrascioiu's solution 
much more acceptable. 

It is in the constructed solutions (and not in the operator definition of  the theory) that SU(N) is dynamically 
broken down to S({U(1)) N). Diagonal gluons become realizable physical states as free massive vector fields and 
represent longitudinal degrees of freedom. Nondiagonal ones remain massless, do not * ~ represent independent de- 
grees of freedom, are not canonical quantum operators and can be chosen to vanish. One may compare with 
abelian Schwinger electrodynamics which possesses only one independent longitudinal degree of freedom mani- 
fested through the photon acquiring a mass. In the present case, despite one U(1) and N 2 - 1 SU(N) currents, they 
have between them only N independent degrees of freedom coming in fact from N quarks (see also the construc- 
tion of nondiagonal SU(2) currents in terms of diagonal U(2) currents in ref. [9] ). One of these is the U(1) current 
and the N 1 others are mutually commuting SU(N) currents which may be chosen to be diagonal. When the 
SU(N) interaction is switched on, a dynamical Higgs mechanism operates so that the N - 1 massless fields existing 
in the form of SU(N) currents get devoured by N - 1 gauge gluons and provide mass as well as physical existence * 1 
to the latter. This mechanism is essentially abelian and breaks down the nonabehan group to its maximum abelian 
subgroup (cf. [10] ). 

From our construction, the quark equation of motion is satisfied by straight differentiation. Further, from the 
regularization of quark source currents, it is automatic that finiteness for colour-diagonal members must mean van- 
ishing for colour nondiagonal components of the current multiplet. Gluon equations of motion are then satisfied 
modulo certain zero-norm vector operators. In analogy with the Gupta-Bleuler formalism, an explicit construction 
of a physical subspace is given where these zero-norm vectors vanish between any two physical states. The theory 
then is well-defined, and may be seen to manifestly contain the features that Patrascioiu had. Consider first our 
operator definition of QCD(N) 2. The equations of motion in a transparent notation are 

- i~q(x)  =g½Xi:~iq:(x) ,  (VVFuv)i(x) =gj i (x )"  ( I ,  2) 

The double dots mean some well-defined normal ordered product. The nonlinear term in the gauge-covariant deriv- 
ative V, if present, must also be defined with appropriate normal-ordering. As generalized from ref. [8], the quark 
source currents are stipulated to have the regularized form * 3 

1 X/ 1 kiq(x)[O)]. (3) Jiu(x ) = lira f - l ( e ) [ q ( x  + e)7 u ½ kiq(x) - v.e.v. + igeVA~(x)(O[?l(X + e)7 u -~ -~ 
e--~" 0 

In eq. (3)f(e)  is a Lorentz and SU(N)-invariant c-number function which makes the square-bracketed quantity 

*3 This is the regularised infinitesimal form of the gauge-covariant path-ordered bilinear [q(x + e)'y#P exp[ig 17~kfX+edzlaAk(z)] 
× ~xiq(x)]. 
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regular as e -~ 0. This being a superrenormalizable theory, in some special gauges the latter object may be expected 
to be regular as e ~ 0 in which case f - I ( 0 )  would be a finite wave-function renormalization constant. But this is 
untrue in general gauges and specifically in those we are interested in. There the quark-bilinear in question has a di- 
vergence in the limit of  vanishing e that is multiplicatively removed from the source current by the right choice of  
f(e) which is also singular in the same limit. 

To construct our solution, we start with the massless free fermionic field ~a(x) obeying - i ~  J/a(x) = 0. These 
belong to the fundamental SU(N) representation, the superscript a being usually not displayed. Let ~d be N - 1 

free pseudoscalar fields of  mass rn (a parameter to be specified later) and ~'d be N 1 massless (quantized with in- 
definite metric) [8] pseudoscalar fields. Throughout, we use the superscripts i, d and n respectively to denote N 2 
- 1 operators in the adjoint representation typified by the matrices h i, N - 1 operators corresponding to the ele- 
ment set D comprising the diagonal X's and N 2 - N operators corresponding to the nondiagonal X's respectively. 
Double dots will indicate Klaiber ordering, i.e. :AB: A(+)B + BA(-) for a field A canonically decomposable into 
positive and negative frequency parts, A = A (+) + A(- ) ,  A(-)[0> = 0. The interacting quark field is constructed as 

q(x) = "exp[i X/r~ 75 ½X d (~'~d(x) + ~'d(x)}] •(x):, ~2 > 1, (4a, b) 

where ~ is a real parameter obeying eq. (4b). The gluons are chosen as 

Adu(x)=--g 1 V r ~ e u v ~ V { ~ d ( x ) + ~ d ( x ) )  , A~(x) = 0, (5a, b) 

i.e. the diagonal ones obey the equation ([3 + m 2) Aud = 0, nondiagonal ones are absent and OuAi~ = 0. In such 
gauges the field tensors Fiuv are 

Fffv(X ) = -g - l rn2  V / ~  ~etw'~d(x), F~v(X ) = 0. (6a, b) 

Among the equations of  motion, eq. (1) is automatically satisfied. The lhs of  eq. (2) is OvFduv and zero respectively 
"for i = d and n. To obtain the quark source current, consider the quark bilinear YArq~ra(x + e)qrb(x) where r is a 
spinor index and 2; impfies no summation despite repetition. The bilinear is factorizable as a c-number times an 
operator if all exponentials involving (+, - )  frequency parts are moved to the (left, right)/t la Klaiber. Thus [8] 

~aq?ra(x + e)qb(x) = :exp[-- i (--1)rx/~ ((?~d/2)aa(~d(x + e) + ~d(x + e)) 
r (7) 

-- (~d/2)bb(~'~d(x) + ~'d(x))} l qJ~ra(x + e)frb(X): exp[zr(6 ab - N - 1 ) - I  i{~2A(-)(e) - D(- ) (e ) ) ] .  

Here A and D are the two-point functions for massive and massless pseudoscalar bosons respectively and we have 
used the relation (~.d)aa(xd)bb = 2(6 ab - N - l ) .  Since ~2 > 1 by construction, i -1 {~2A(-)(e) -- D(-)(e)) blows 
up as e -+ 0. Hence the only divergence in the rhs of  eq. (7) in that limit is for the colour diagonal case a = b and is 
multiplicatively removed as in eq. (3) only by the choice 

f(e) = exp [ - i  zr(1 - N -  1 ) (~2A(-)(e) _ D(-)(e)}] (S) 

at the expense of  making J~ vanish. Eq. (7) now reduces via the vacuum expectation value 

<01 d/~a(x + e)*bs (x)[ 0> = -- i(27r) -1 [e 0 - ( - 1 ) r  e I ] -16rs~ab 

to 

Jdu(x ) = jd(x) -- (2~r)-l/28urld(x) - (2zr)-l/2~euv8V'~d(x), J~(x) = 0. (9a, b) 

Here r/d are massless scalar fields associated with ~'d, 8u~d = eurasia and jd(x) = n[~3,u -~ xdqJ] (x) are the Wick- 
ordered free fermionic SU(n) currents. 

The choice ,4 

~:4 The nonabelian legacy lingers in the form o f the factor 2n related to [Jdo(x 0, x 1 ), j 0  d ' (X 0, y 1 )] = i(2n)-I 6 dd'o 16 (X 1 _ y 1 ). 
The corresponding factor is 7r in the abelian case [8]. 

471 



Volume 79B, number 4,5 PHYSICS LETTERS 4 December 1978 

m2 = g2(27r) 1 (10) 

and the substitution of eqs. (5) reduce the nontrivial gluon equations of  motion to 

(VVF#v)d _ g j d  = g[jd  u _ (2~)-1/20~17d]. (11) 

Thus Maxwell's equations are not satisfied in strict operator form, but the culprit operators in the rhs of  eq. (11) 
are of  zero norm 

(0l [/'d(x) -- (27r)-1/2~17d(x)] [ jd(y)  _ (2~r)-l/23v17d(y)]lO) = 0. (12) 

In fact, this is a posteriori the rationale for the choice of  v/2-~ as the factor to the left of 75 in eq. (4a). The zero 
norm operator can be rendered physically irrelevant by choosing a subspace ~ p h  of physical states obeying the 
condition 

[fd(x) -- (27r)-l/2ols17d(x)] (-)l ~)  = 0, ]qJ) E C~(ph. (13) 

d .d (27r)-l/23X17d and :exp[i(Tr/2)l/23.d17d]q: (all c'a~ph can be generated by polynomials of  the operators Fvx,  lx - 
of which commute wi th /u  d - (27r)-1/23u17d ) operating on the vacuum. 

We can make the following additional comments. 1) The U(1) source current is obtainable as a generalization 
of eqs. (3) and (9): 

J~(x) = lira f - 1  (e)[cT(x + e)"/gq(x) - v.e.v. + igeVAiv(o]77(x + c)')' u ½)~i q(x)[0)] =]u(x), (14) 
e---~ 0 

where/u(x) = Q( [ ~ ' u  ~] (x) is the Wick-ordered massless * s free fermionic U(I)  current. This is in agreement with 
the conclusion of refs. [7] and [10]. 2) All the quark Wightman functions can be evaluated readily as generaliza- 
tions of  the abelian expression given by Lowenstein and Swieca [8] and need not be reproduced here. 3) The solu- 
tion is a covariant one in that q has the same Lorentz spin (i.e. 1/2) and the same statistics (i.e. Fermi) as the free 
field. 4) The vanishing of A~ is symptomatic of  the dynamical breakdown of SU(N). Nondiagonal SU(N) charges 
do not exist, otherwise they would have to satisfy the impossible relation [Qi, A 1] = i f i / kAk .  Diagonal SU(N) 
charges do exist and are Qd = f ~  dx 1 jd (x ) ,  the gluon-contribution vanishing in the absence of nondiagonal 
gluons. 5) The quark source currents J~ do not obey the SU(N) current-algebra contrary to the expectation from 
a naive extension of the classical Noether argument. This is because in this operator field theory with dynamical 
symmetry breakdown, the naive argument is invalidated [ 11 ].  The conserved free fermionic currents/']z do obey 
SU(N) current algebra and can be rewritten as appropriately gluon-regulated SU(N) currents of  the interacting 
quark field. However, these currents are a priori gauge-noncovariant and hence uninteresting. 6) Our solution may 
be compared with the previous work [ 15] of  Bhattacharya and one of us (P.R.). There the SU(N) Thirring model 
without abelian coupling was given a gauge interpretation as a massless QCD in (1 + 1) dimensions. However, that 
required identifying the fermionic SU(N) Thirring currents as gluons. The latter then are Lie fields and invariance 
under c-number gauge transformations is necessarily lost; only that under a specific operator colour transforma- 
tion is preserved. Such is not the case in the present approach where the N 1 diagonal gluons are ordinary mas- 
sive vector fields and not Lie fields. 

We have not touched upon the question of  a fully positive metric solution in this brief communication. In fact, 
as in [81, a new set of  such solutions can be obtained by the operator gauge transformation q(x) -+ q '(x)  = : exp 
× [(i7r2/) 1/2)kd17 dx(  )] q ( x ) . ' a n d A d - + A d ' ( x ) - A d ( x ) + g - l ( 2 ~ r )  1 / 2 e È  ~ - r , u,v 3v'~d(x)" However, this is at the expense o f .  . . 
cluster decomposition and covariance; the Lorentz spin of  q is (2N) -~ and it obeys a mixed statistics. The struc- 
ture of  the vacuum is correspondingly complicated but admits of a classification in terms of sectors labelled by a 
set of 0-phases. Another interesting point is the evaluation of gauge-invariant quantities and the comparison to the 
lowest nontrivial order in g with perturbative results. Also, the effects of the insertion of a mass term in the quark 

t5 Presumably, if there is a small quark mass, this becomes a solitonic degree of freedom. 
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equat ion  of  mo t ion  can be studied by the me thods  employed  recent ly in analyzing the Schwinger model .  We shall 

address ourselves to these issues in a future lengthier  publ icat ion.  

One of  us (P.R.) acknowledges the hospi ta l i ty  o f  the DESY theory  group. He is indebted  to G. Mack and 

C. Schierholz for their valuable remarks and thanks the former  for a critical reading of  the manuscript .  
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