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Abstract. Based on the Kobayashi-Maskawa weak 
current model we investigate the properties of weak 
hadronic decays of the anticipated bottom mesons. 
Our main results concern twobody and quasi- 
twobody decays of bottom mesons into pseudoscalar 
and vector mesons. 

1. Introduction 

The discovery of Y(9.46) by Herb et al. [1] and its 
confirmation in e+e--annihilation by two groups 
working at DORIS [2] make it very likely that a 
new quark called bottom, b, with charge Q = - 1/3 
exists. If the usual interpretation of Y (9.46) as a 
bb bound state is correct, mesons with bottom 
quantum number B 5 a 0 should also exist. These 
would consist of bound states of the b quark with 
the known antiquarks ~, d, ~ and E. The lowest lying 
multiplet of these new bottom mesons must decay 
weakly. The anticipated discovery of the new mesons 
has at least two important implications. First, their 
confirmation would give us evidence that a new 
quantum number bottomness exists. Second, we 
would obtain information on the nature of the b 
quark and in particular on its weak interaction 
properties. 
The favoured model of weak interaction for the 
b quark is a simple extension of the standard 
Weinberg-Salam model [3]. To the well-known 
left-handed doublets one adds the doublet (t,b)L 
where the top quark t is the higher lying partner 
of the b with charge 2/3. This six quark model was 
first discussed by Kobayashi and Maskawa (KM) 
[4]. 

* Supported in part by the Bundesministerium ffir' Forschung 
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Several authors have already investigated some of 
the anticipated properties of the weak interactions 
associated with b and t quarks in the context of 
the KM model I-5,6]. In a recent paper we have 
studied the properties of quark jets originating from 
the decays of heavy mesons containing b quarks [7]. 
Unfortunately the masses of the bottom mesons, 
which are expected to lie in the range 5-7 GeV, are 
not high enough for the decays to exhibit clear 6 
quark-jet effects. The weak decays of the b quarks 
then result mainly in a jet broadening of the original 
(b + 5) 2 jet configuration, without the second stage 
jets from the weak decays becoming discernible. 
In order to see clear jets from weak decays one will 
probably have to wait for the production of the 
next heavy quark, the t-quark. It is, therefore, impor- 
tant to study the hadronic decays of the bottom 
mesons by looking at specific decay modes and 
estimate the inelasticity (multipionic and kaonic 
modes) using some statistical model description. 
As a first step towards describing the final hadronic 
states in the decay of bottom mesons, we evaluate 
the two body and quasi two body decay channels. 
Although the branching ratio into these two body 
channels is expected to be only a few percent these 
channels possess a unique structure due to the 
properties of the KM weak current which predicts 
that channels with at least one charmed particle 
or one c E state are dominant. This would provide 
a good signature for the detection of the B-meson. 
The measurement of these two body rates would 
also provide a test of the theoretical ideas that go 
into such a calculation of which the main ingredient 
is the behaviour of the KM current • current product 
at short distances. Measurement of the final states 
with definite quantum numbers in the decay of 
B-mesons would be  the cleanest way to determine 
the mixing angles 02 and 03 . 
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In Sect. 2 we briefly recapitulate the properties of 
the KM current and discuss the do~rfinant contri- 
butions in the current • current product. Short 
distance effects are incorporated as usual by hard 
gluon corrections [8]. The resulting effective Hamilto- 
nian is then applied to the calculation of two body 
decays of bottom mesons where the relevant transi- 
tion amplitudes are calculated with the help of the 
quark-parton model. The methods are similar to 
those used with some success in the calculation of 
two body decays of charmed mesons [9,10,11]. 
Since the relevant mass scale is even higher for B- 
meson decays, one expects the quark parton approach 
and the use of the renormalized effective bottom 
changing Hamiltonian to work even better in this case. 
Section 3 contains a short discussion of our results. 

2. Two-Body and Quasi-Two-Body Decays 

We begin with a short description of the KM weak 
Hamiltonian [4]. The non-leptonic Hamiltonian 
has the usual current • current form which results 
from the lowest order gauge theory diagrams in the 
limit m w -~ oo : 

G 
H..L = , _ ~ ( j  f l u+  + h.c.) (2,1) 

In the K M  model the current Ju has the form: 

J ,  = ~ , ( 1  - 9,s)d + ~7~(1 - ys)g+ ?yu(1 - ys)/~ (2.2) 

with color indices summed over. d, ~ and /~ are the 
eigenstates governing the weak interaction which 
are related to the strong interaction eigenstates 
d, s and b by a unitary matrix U which in the KM 
model has the special form 

U = 
s I - sl c3 - sl s3 \ 

\ 

l cz c l  c2 c3 - s2 s3 e i~ q c2 sa + s2 c3 eio 

\ s l  s2 cl  s2 c3 + c2 s3 e i~ c 1 s2 c3 - c 2 ca d~/] 
~ (2.3) 

The parameters q and s~ (i = 1, 2, 3) are connected 
with three Euler angles: q -= cos 0~, s~ = sin 0~. 6 is the 
CP violating phase. In the limit 02 = 03 = 0 the 
angle 0t = 0~ is the well-known Cabibbo angle. 
Unfortunately nothing definite is known about the 
other angles. Presumably semileptonic decays of 
B's will be the best source of information for the 
angle 02 relevant for the decay of the b quark [6]. 
Theoretical estimates for 02 have been discussed 
by Ellis et al. [123. Their estimate is based on the 
KL -- Ks mass difference. Taking mt = 15 GeV as the 
mass value for the t quark and m~ = 1.5 GeV one 
arrives at the upper limit s22 < 0.06. The limits for 
03 and 0 t from the Cabibbo universality are s~ < 0.06 
and s~ ~ 0.05 [12]. In the following we shall restrict 
ourselves to the terms in (2.1) which are dominant 
under the above assumptions. They induce the 
transitions b ~ cd?~ and b ~ csO with coefficients 
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b --* c dff, : c 1 (c 1 c 2 s 3 + s 2 c a e ia) ~-- S 3 + S 2 

b ~ c s 5 : (c 1 c2 c3 - s2 s3 e - ~ ) ( c  1 c 2 s 3 + s 2 c a e ia) 

~- s 3 + s 2 (2.4) 

We neglect the transitions b ~ u dr7 and b ~ u s 5 which 
are proportional to s i s  3. I n  this approximation 
the non-leptonic Hamiltonian responsible for b 
transition has the simple form 

G 
Hn.,. = ~-~#c(({b)L(dU)L + (Sb)L(gC)L + h.c.) (2.5) 

where 0c = s3 + s2 and (Cb)L = ~y,(1 -- 75)b etc. Colour 
summation is implicit in (2.5). The above bare 
Hamiltonian will be modified by strong interaction 
effects with the result that the Fierz odd and Fierz 
even components of the bare Hamiltonian are multi- 
plicatively renormalized with renormalization cons- 
tants f_ and f+ ,  respectively [8]. The corresponding 
operators transform as 75 and 2 0 0  in SU(5). The 
resulting effective Hamiltonian can then be written as 

G , 
= ~-~gc {~(f+ +f- ) ( (Cb)L(dU)L  + (Cb)L(SC)L) 

1 
+ ~( f+ - - f_ ) ( (SU)L  (db)L + (SC)L (gb)L) } (2.6) 

The renormalization coefficients can be estimated 
in an asymptotically free theory as in QCD by consi- 
dering hard gluon exchange effects [8, 13]. Since the 
effective mass scale set by the b-quark mass is higher 
than in the charmed quark case, the renormalization 
for b decays is weaker than for c decays [12]. We use 
the estimate of Ellis et al. [12] and take 

f_ = 1.4 

f+ = 0.85 (2.7) 

The above values for f_ and f+ are already close 
to their free quark values f+ = f _  = 1. As we shall 
see later on, meson decay amplitudes are propor- 
tional to either of the two linear combinations 
Z_+ =(2f+ + f _ ) / 3 .  Using the above numbers one 
has 

Z+ = 1.03 

Z- = 0.10 (2.8) 

compared to the free quark values Z+ = 1 and 
~_ = 1/3. This means that colour suppressed decays 
from colour connected diagrams are even more 
suppressed than in the free quark case, whereas 
contributions from colour disconnected diagrams 
are little affected by gluon renormalization. 
We shall now turn to the calculation of the two 
body decays of the bottom mesons. For  the four 
possible B =  1 pseudoscalar mesons we use the 
notation 

B~- = (bfi), B ~ --- (bd), B ~ = (b s-), B~- = (bc-) (2.9) 

Their mass values are computed by adding the masses 
of the constituent quarks for which we use 
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b c c b c $ 

( l  

(b~) (b~.) (b~) 

(c~-)~(s~} (cr:)~(s~) (cC-),~, c ,w,(s~) 

b c e b c s 

mb 
(b~) (b~) (b~) 

1(2f.- f_) �89 f-) ~(2f** f-) 

Fig. 1. Quark model decay diagrams. Diagrams are labelled 
for the specific decay B~ ~ (cfi) + (sfi) 

rn, = m e = 0.32 GeV, rn s = 0.48 GeV, m c = 1.55 GeV, 

m b = 4.7 GeV (2.10) 

Thus we shall use the following mass values 

Mn~ = Mn~ = 5.02 GeV 

MBo = 5.18 GeV 

Mn; = 6.25 GeV (2.11) 

Since gluon exchange effects are taken into account 
by the effective non-leptonic interaction (2.6) the 
non-leptonic decay of a heavy bottom meson B is 
fully described by the diagrams in Fig. 1. For the 
purpose of illustration we have chosen to label the 
diagrams for the specific channel B 5 --, (c~)+ (sc-) 
since this particular decay channel has contributions 
from all three types of diagrams. In all other cases 
the number of contributing diagrams is less (or even 
zero in a few cases). In the latter case one would 
call such a decay Zweig forbidden. 
The full decay amplitude is given by the sum of three 
factorizing contributions [9] corresponding to Ia, 
IIa and IIIa in Fig. 1. One has for the particular 
configuration in Fig. 1 

<~/~F- Heff'lB~- > . . .  

= G~'~gc(�89 -f_)<tlc[J~ 10> ( F -  IJ "~ IB? > 

+ �89 +f_)<F-[J; 10> <t/clJ "+ [B~- > 

+�89 +f_)<ncF-IJ210><OIJU+lBz>) (2.12) 

The colour connected diagrams lb, IIb and IIIb are 
related to the colour disconnected diagrams Ia, IIa 
and IIIa as usual by a Fierz transformation. Taking 
into account colour factors the net result of adding 
type(a) colour disconnected and type (b) colour con- 
nected diagrams is that in the neutral current contri- 
bution in (2.6) the factor 1/2(f+ - f _ )  is replaced by 
Z- = (2f+ - f_) /3 and in the charged current contri- 
bution in (2.6) the factor 1/2(f+ +f_)  is replaced by 
Z+ = (2f+ +f_)/3.  
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For the corresponding PV and VV final state we 
have the analogous sum of factorizing terms as in 
(2.12) involving current matrix elements containing 
P or V particles. 
Some of the current matrix elements in (2.12) appear 
also in leptonic and semileptonic decays of B c and 
F-, whereas the others can in principle be related 
to physical leptonic and semileptonic decays using 
some minimal theoretical input like SU(3) symmetry 
and crossing. The lack of data for these decays forces 
us to use theoretical models for them. 
Next, we discuss our assumption for the matrix 
elements ( P I J ~  I0 ) and ( V I J~ 10 ) ,  which have the 
form: 

( PIJ 2 IO > = ifep~, (2.13) 

= mvfve" (2.14) (vlJ210> z 

The vector meson decay constants are fixed according 
to the empirical rule that the leptonic widths (or 
equivalently (mv)~/2fv) show SU(4) invariance. We 
therefore take 

_ . / 2 m ~  "~1/2 

fv(qxq2)=Lm.i~-m.~) fo+ (2.15) 

where the dimensionless constant f ,  + = 0.24. 
Since the empirical massbreaking indicated in (2.15) 
manifests itself in the way the quark wavefunction 
at the origin is broken, we shall use a mass-breaking 
formula equivalent to (2.15) forfp (fp is determined by 
the same quark wave function at the origin). We shall 
therefore take 

(mq~+mq2) 1/2 
fP(q1{12) = \ 2mu ] f~+ (2.16) 

with s  = 0.13 GeV. This leads to fn ~ 0.4 GeV 
which is close to the value used by Ellis et al. [12]. 
Further, we need to specify the structure of the two 
particle current matrix elements in (2.12). The corres- 
ponding charm changing current transition D ~ K(K*) 
has been treated extensively in the literature [%11, 
14-20], although the choice of form factor invariants 
differs from author to author. We shall use the form 
factor invariants resulting from the use of U(2,2) 
quark model wave functions as has been done in 
the study of Craigie et al. [20]. The U (2, 2) approach 
has the advantage that the calculated amplitudes 
optimally reflect the helicity structure of the under- 
lying quark dynamics as will be discussed in detail 
in the following. 
We have found it advantageous to evaluate the two 
body decay amplitudes directly in the quark model 
from the diagrams in Fig. 1, since such a procedure 
allows one to handle relative phases of various 
contributions in a consistent manner. Using the 

* The mass denominators in (2.17)-(2.19) are written for nor- 
malization purposes and appear if one requires the diagonal vector 
current matrix elements to be properly normalized to the charge 
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U(2, 2) quark model wave functions [21], one obtains 
the following results for the two body decays of an 
0-  meson�9 

Case A" O- ~ 0 -  +O- 

rt = [(Pt  + Pa)u (M1 - M 3 )  (MI -+--~3) (r' - P3).]v 

�9 [ife2n2.JATr(1F3- 13F) 

(M 1 - ME) 
T" = [(P1 + P2)u (M 1--~2)(r l  - P2)u]v 

�9 [ife~n3.]a Tr(1 F2  - 12F) 

Tm= [(n2 - P3). ~ ( P 2  + na)u]v 
( 2 3) 

�9 [ifp~ Pt.]A Tr (2F 3 - 23 F) 

(2.17a) 

(2.17b) 

(2.17c) 

Case B " 0- ~ 0- +1-  

2 
TI=i[(Mt  + M3)g3u Ma + M 3Pt'g3Pa"]A 

�9 [ife= Pe.]A Tr (1 F 3 - 13 F) (2.18a) 

T" = [ - (P~ + P2). + Mt ~ (P, - P2).]v 

"[M~fv3 e3g]v Tr(1 F2 - 12F) (2.18b) 

2 
T Ill = i [  - (M 2 + Ma)e3~ M2 + M3 P2 "e3 P3tt]A 

�9 [ife~ P~,]A Tr (2 F 3 - 23 F) (2.18c) 

Case C" O- --* 1- + 1- 

= i [ ( M  1 + M3)eau T l 
L 

2 
Mt +M3 P1 e3P3u A 

"[M~fv2 e2u]v Tr(t F 3 - 13 F) 

[ 2 .euabc~aaPlbP2 c [M2fv2e2~t]v 
M1 + M3 v 

�9 Tr(1F3 + I~F) 

2 
T II-= i [ ( M l + M 2 ) ~ 2 g  M1 + M2PI"~2P2glA 

�9 [ M ~ f v 3 ~ 3 . q v T r ( l r 2 -  l ~ r )  

2 f3tabc~2aPlbPZv] v [M~fv3e3~] V 
+ [ M  1 + M 2 

(2.19a) 

�9 Tr(1 F2  + 1~/') (2.19b) 

T n ' = [ (  2 ) ( -  M2P3u + ~- M 3 

2(1 + @) (M2P3._ M3P2.~3e2.)J + M 2 + M 3 e2 e3~ - v 
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"[ifpi Plu]a Tr(2F3 + 23F) 
2M a + i M 2 + M3 eabuc~2a~abP2c 

2 M2 
-4 M2+M 3F~ab/.tc e2a e3b P3~ _IA 

"[ife~ Pau]A Tr(2r  3 -- 23 F) (2.19c) 

We have employed a short hand notation for the 
meson matrices in flavour space such that 1 and T 
denote mesons in the initial and fnal state, etc. F is 
the current structure in flavour space. The pseudos- 
calar and vector meson decay constants fe, and 
fv, have been defined in (2.13) and (2.14). They are 
proportional to the flavour traces Tr(FPi) and 
Tr(FVi), respectively, and are relatively positive 
for a given state i. In (2.19c) we have included the 
factor (1 + #a), where/~a = 1 87 is the anomalous mag- 

�9 P P �9 

netlc moment of the proton*. There are a number of 
remarks and comments we want to make about the 
amplitudes (2.17)-(2.19). 
We have written our results in a factorized form 
so as to make the connection with the representation 
in terms of current matrix elements (2.12) explicit. 
The factorized contributions have a subscript V or 
A depending on whether they result from the vector 
or axial vector part of the current. 
As described earlier the contributions of diagrams 
Ib, IIb and IIIb are related to Ia, IIa and IIIa via 
a Fierz transformation. The sum of the two diagrams 
in such a pair results in the explicit factors 
X+ = 1/3(2f+ +f_)  depending on whether the current 
transition in Ia, IIa, IIIa is charged ()~+) or neutral 
(Z-) (see Fig. 1). These factors as well as the explicit 
weak interaction factors #cG/x/2 have not been 
written out in (2.17)-(2.19). 
In Fig. 1 we have only drawn half of the 12 diagrams 
that would in general contribute to a given mesonic 
decay. The other 6 diagrams result from those in Fig. 1 
with the sense of quark line rotation reversed. The 
sums of two diagrams with opposite rotation sense 
result in the appearance of the two flavour traces 
in each amplitude in (2.17)-(2.19), which give the 
appropriate symmetric and antisymmetric D- and 
F-couplings in flavour space. Since the order of 
traces is important for the phase of the antisymmetric 
F-coupling Tr(iFj3 is to be evaluated in the order 
i ~ F ~ j with the direction given by the quark lines 
in the appropriate quark diagrams**. 
Next, we discuss the form factors entering the ampli- 
tudes (2.17)-(2.19). To incorporate the q2-dependence 
we use power behaved form factors ( 1 -  q2/m2)-". 
For the parameter m we assume the mass of the 

* The value #~.= 1.87 brings the magnetic moment value for the 
vector meson mto agreement with the value predicted by the 
SU(2)w scheme [22] 
**The amplitudes in (2,17)-(2.19) are explicitly Bose symmetric 
under exchanges in direct and crossed channels, where one has to 
remember to take P~ ~-P~ when crossing 
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mesons having the quantum numbers of the current- 
channel, with the bottom meson masses taken from 
(2.11).* For the form factor power n, we take the 
canonical values [24, 25] (see appendix). The diagrams 
III are substantially suppressed due to the form 
factor effects. This comes about because for these 
diagrams the scale of q2 is set by the bottom meson 
mass and that of m by ordinary or charmed mesons. 
On the other hand, for diagrams of type I and II, 
the mass-scale for m is typically that of the bottom 
mesons while q2 corresponds to either ordinary 
meson or charmed meson masses. Thus, for diagrams 
of type I and II the form factors' effect is to enhance 
the contribution of these diagrams, particularly 
when q2 ~_ rn~ etc. and n is large, as is the case involving 
vector mesons. 
Before turning to the quantitative results we would 
like to discuss some general qualitative features 
of the decay rates following from the amplitudes 
(2.17)-(2.19). The relevant large kinematical quantities 
in the decay process are the energies of the decay 
products which are proportional to M~, the mass 
of the decaying meson. Thus it is appropriate to 
expand the decay width formulae in powers of M 1 . 
To leading order one obtains**: 

PP " F ~ ~- Gz U~f1,Z'g~/32rc (2.20) 
P V . F  o 2 3 2 . 2  ~- G Mlf l ;  gc/321r diagram I (2.21a) 

2 3 2 2 .  2 F ~ ~-G M a M v f  v 9c/327z diagram II (2.21b) 
2 3 2 2 2 2 V V "  F ~ ~-G m ~ M v f v ' 9 c / 3  ~r (2.22a) 

F -  ~- 4GZMa Mvfv.4 z 92/32~ (2.22b) 
~.,  2 - 1  2 4 2 2 F + - 4 G  M t Mv,  Mvfv '9~ /32rc  (2.22c) 

where Gv = 1.02 x 10-Sm~ -2. F~ - and F + are 
longitudinal, transverse negative and transverse posi- 
tive helicity partial decay widths, respectively. My 
and M v are pseudoscalar meson and vector meson 
masses in the final state, and in the V V  case M v, 
denotes the mass of the vector meson occurring in 
the PVcurrent matrix element. 
The leading order structure of the various partial 
helicity widths in (2.20)-(2.22) is quite plausible if 
one turns to the helicity diagrams depicted in Fig. 2. 
All dominant longitudinal transitions occur via the 
contribution Fig. 2a and should thus be of the same 
order in M~. The transverse negative helicity transi- 
tion in the V V  case occurs through Fig. 2c. Since 
the heavy quark has to flip its helicity in the interaction 
one picks up a kinematical helicity flip suppression 

* Since mass differences of bottom mesons with different j v c  

quantum numbers are likely to be relatively small we have not 
written down separate form factors for form factor components 
with different on-shell j P c  quantum numbers as would be appro- 
priate for lighter meson systems [9] 

**We have not written down the leading order expressions for 
diagrams III since they are down by several orders in M 1 due to 
form factor effects discussed above 
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L. 
t 

Hoo 
(V -A) fay. 
�9 - no f l i p  

a) 

1 

H,o H__ H +. 
(V-A) suppr. (V -A )  fay. (V-A) suppr. 

no f l ip  f l ip  f l ip  
b) c) d) 

Fig. 2. Helicity diagrams. Initial 0 -  meson is at rest and appears 
at top left of helicity diagrams 

Table 1. Decays P ~ P P  with indication of the contributions of 
diagrams I, II and III in Fig. 1. Z+ are the colour-flavour factors (2.8) 

I II III I II III 

B ~  ~ D~ - 
D O F  - 

BO--> D+ x - 

D + F  - 
D O x  ~ 

D %  
D ~  r (  

rlcff( ~ 
rlcD~ 

D + K  - 

Z -  )~+ E 

m )~+ m 

Z -  

- -  Z +  Z -  

Z -  - -  Z -  

X -  - -  X -  

Z -  - -  Z -  

Z -  

Z- 

B ~  + x -  : - -  Z+ - -  

F +  F -  : - -  Z+ Z -  
D O K o : ~_  

rlctl : X -  
rldl' : Z -  

D + D -  : Z -  

D ~  ~ : ~_  

B ~ - ~ q o ~ c - :  - -  Z+ - -  

q c F -  : Z -  Z+ ~+ 
7z-re~ : Z -  - -  Z+ 

K ~  : Z+ 
K - /3~ : Z+ 
K ~  : Z+ 

t /F -  : X+ 
r/ 'F- : Z+ 
F-r/c : Z+ 

factor (2My~M1) 2. Finally, the transverse positive 
helicity transition occurs via Fig. 2d and involves 
in addition to the helicity flip suppression factor 
also the helicity suppression factor ( M v , / M y  since 
the final quark in the (V - A) interaction appears in 
the "wrong" helicity state. 
Note that the common power behaviour and the 
helicity pattern of the widths (2"20)-(2.22) come 
about by subtle cancellations among various contri- 
buting U(2,2) form factors. The reasonable final 
result strengthens our confidence in the use of the 
phenomenological U(2,2) quark model wavefunc- 
tions. Other form factors have been suggested in the 
literature [9,10,11,14] which do not always lead 
t o t h e  simple structure (2.20)-(2.22)*. For example, 
the approaches [6, 16, 18, 19] lead to higher powers 
of M z in the rate formulae which would result in 
unreasonably large rates, in particular for the V V  
channels. 
After this qualitative discussion we now turn to our 
quantitative predictions for single channel rates. 
In Table 1 we have listed all possible P P  final states 
that can be reached with the Hamiltonian (2.6). 

* The same structure is implicitly realized also in the approach 
of 1-15]. The suppression of F + is also present in 117, 18, 19] 
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Table 2. Prominent decay modes. Units are g~ x 10 xz s -~. Last column contains percentage of 
decay into longitudinal, negative and positive helicity states of V V  final state 

P P  P V  V V  (0; - ; +)  

B~ ~ D ~  - : 4.16 D~ - 
D O F- : 8.00 n -  0 *~ 

D O F* - 
F -  D*O 

7.34 D * ~  - : 9.72 (81;17;2) 
4.29 D * ~  * -  : 28.86 (45;45; 10) 
7.67 
4.54 

B ~ D + ~ z  : 2.72 D+p - 
D+ F - : 6.99 n -  D *+ 

D + F * -  

F - D * +  

B~ ~ F+ rc - : 3.03 F+ p - 
F + F  - : 7.36 n - F  *+ 

F+ F * -  
F -  F *+ 

5,48 D*+p - 
2.68 D * + F  * -  
6,59 
4.34 

5.95 F* + P - 
2.85 F* + F * -  
7.15 
4.35 

6.88 (87;11;2) 
25.28 (47;42;11) 

6.88 (87;11;2) 
26.38 (47; 41 ; 12) 

B~-*r lcrc-  : 4.47 r/c p -  : 8.97 ~tp- : 
q c F -  : 17.26 n -~ ,  : 3.79 ~kF*- : 

r/~F*- : 20.65 
F -  ~ : 7.32 

9.03 (88; 10;2) 
49.31 (46;42;12) 

For the P V and V V  case the corresponding final 
states can be written down accordingly by making 
the appropriate changes in notation. The number 
of P V final states is double the number of P P  states 
since either of the two pseudoscalar mesons could 
be the vector meson. For the t / -  ~/' complex we 
use the usual ( ~  - 10 ~ mixing angle [26] and, for 
co - q~ ideal mixing. 
According to our previous remarks we expect those 
single channel rates to be dominant which obtain a 
Z+-contribution from either diagrams I or II. These 
are made up of the two following classes of transitions 

Bq~ ~ (c~,) + (dfi) (2.23) 

and 

Bq, ~ (e~,) + (sO (2.24) 

The PP, P V and V V rates of these dominant modes 
are listed in Table 2. The remaining modes are 
suppressed wither by the small factor Z 2 _ (2.8) or by 
the fact that they occur via diagram III which are 
small due to form factor effects. In fact, by comparing 
with the total two body rates in Table 3 one sees 
that the remaining modes constitute only a small 
fraction of the total two body rate. Of the dominant 
modes in Table 2 one notes that thefinal states (2.24) 
involving two heavy charmed mesons are favoured 
despite their smaller phase space. This is in part due 
to the massbreaking pattern of the meson decay 
constants fv and fv  (2.15) and (2.16) which favours 
heavy final states. Further the heavy final states 
are favoured by the time-like form factor effects 
as discussed above. The most important modes are 
the final states with two heavy charmed vector mesons 
of type 

B~, --* (cqi) V + (sc-') v (2.25) 

Table 3. Partial decay widths into PP,  P V a n d  V V  channels. 
Fourth column contains total rate. Units are g~•  101Zs-1. 
(i) this calculation using U(2, 2) form factors (ii) F_ = 0, F~ a = 2 M y ,  
F~=F v=O, T m = O  as in [-9] (iii) F _ = 0 ,  F~ a = M  e+Mv, 
F~ = F v = 0, Y TM = 0 as in [6] 

P P  P V  V V  Z 

(i) 12.32 24.t2 39.47 75.91 
B~ (ii) 14.25 23.84 21.22 59.31 

(iii) 14.25 45.70 75.14 135.09 

(i) 9.99 19.60 33.41 63.00 
B ~ (ii) 11.74 19.33 17.39 48.46 

(iii) 11.74 34.91 56.47 103.12 

(i) 10.70 20.87 34.56 66.13 
/~  (ii) 12.18 20.29 18.79 51.26 

(iii) 12.18 35.56 57.80 105.54 

(i) 22.63 42.87 59,85 125,35 
B~ (ii) 23.69 38.45 35.40 97.54 

(iii) 23.69 56.44 86.20 166.33 

Relative to their PP and P V counterparts they are 
enhanced over what one expects from first order 
asymptotics, viz (2.20), (2.21) and (2.22a), which 
shows that corrections to the asymptotic formulae 
are important. For example, the transverse helicity 
suppression factor (2Mv/M1) 2 is not small in this 
case and in fact Table 2 shows that F -  g F o for these 
enhanced rates. Note that the transverse suppression 
does hold for the light V V states (2.23). It would be 
interesting to experimentally check the predicted 
helicity pattern of the produced V Vstates. A measure- 
ment of the angular distribution of the two pseudo- 
scalar mesons resulting from the decaying D* or p 
is sensitive to the ratio (F + + F-)/F ~ More involved 
correlations have to be measured to verify the predic- 
tion F-  ~> F +. 
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Let us briefly comment on some of the non-dominant 
decay channels. A confirmation of the suppression 
of these modes alone provides a qualitative test of 
our ideas. A determination of their branching rates, 
even if difficult experimentally, would provide a 
more quantitative test of our input assumptions. 
First, there are the Z -contributions that are small 
because of (Z_/Z+) 2"~,'~ 1%. Their rates are very 
sensitive to the assumed value of the renormalized 
weak coupling Z- and thus could occur at a stronger 
rate if the renormalization were weaker and closer 
to the free quark value (Z_/Z+) 2 = 1/9. We give some 
rates which occur at ~ 1% level (relative to the rate 
into that particular two body spin channel): 
B~ ~ r/oK- (1.3%); f fK-  (0.7%); ~ K * -  (2.2%). 
B ~ / c / ( ~  r/cK*~ ~kK*~ Bs~ 
D~176 K~176 ~p(2.7%). B~ 

O ~ D- (0.8%); D~ *- (0.7%); D *~ D* - (0.8%). 
Second, there are the B~- decay modes which obtain 
Z+-contributions from diagram III and where the 
form factor mass m is determined by a charmed 
meson mass as in B~- ~ K - / )  ~ etc., and where the 
form factor suppression is thus not so effective. 
Here we quote B j  ~ K - D ~ 1 7 6  (1.5~); F-~0 
(1.2%); ~/F- (0.7%); K * -  D*~176 *-)  (0.7%), where 
percentage figures again refer to decay rates relative 
to the relevant spin channel. Establishing these 
decay modes at the indicated level would test our 
assumptions about the qZ-behaviour of the form 
factors, though the branching ratios are prohibitively 
small. 
In Table 3 we have listed partial widths of B-mesons 
going into PP, P V  and V V  channels as well as the 
total two-body width. For the sake of comparison we 
have also calculated the same numbers for the P P  
channel setting F_ to zero, as has been done e.g. 
in [6, 9]. Note that the magnitude and phase of F 
as calculated using U(2,2) wave functions is in 
agreement with experiments on Kta-decays. However, 
its contribution to the decays studied here is not 
very large since the rate is dominated by the contri- 
bution of the F+ form factor. Since F+ is normalized 
to 1 as in [6, 9] the results are not very different. 
In the P V and V V case we have also calculated 
the rates for the two other form factor choices 
(ii) F ' ~ a = 2 M v , F ~ = F V = F  = 0  which is close to 
[9] and (iii) F ~ =  M e + lVlv,F ~ = FV= F_ = 0  as 

Table 4. Leading order contributions to helicity ampli- 
tudes resulting from different choices for ( 1 - I A .  + 
Vul0- ) matrix element. (i) U (2, 2)F~ = Mp + My, F~ = 
- 2(M e + My)-  ~, F v = - 2(Mp + Mv)-  ~ and (ii) F1 a = 
2M v and (iii) F~ = Me + Mv with F~ = 0, F v = 0 

ho/M p h_ IMp h+/Mp 

(i) M e / x ~  2 2Mv/M p 
(ii) M p / x / ~  2Mv/M p 2Mv/M e 
(iii) M~,/Mvx ~ I 1 
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suggested in [6]. Differences in the results of the 
three form factor choices can be easily understood 
by writing out leading order formulae as done in 
Table 4. As already remarked earlier, the form factor 
choices [6, 9] do not reproduce the width structure 
of (2.20)-(2.22) in every detail as can be verified 
from Table 4. 
The total hadronic rate of a bottom meson is usually 
estimated from the free quark decay diagram. For 
the decay b ~ c + d + fi one can neglect the masses 
of the d- and u-quark and obtains 

2 5 2 3G Mlgc,_,, 2, 2~ 
F - l~-n~ ~ tm c/m b) (2.26) 

where F(x) = 1 - 8x + 8x a - x 4 - 12x z In x. Using 
the quark masses (2.10) one has 

Fb~c+d+ a = 115 x 1012S-1 g~2 

Note that the rate (2.26) includes a colour factor 3 
but not the renormalization factors of the weak 
current product. As discussed earlier, the free quark 
limit is a good approximation for estimating inclusive 
b-decays. 
For the decays b --> c + s + 5 one cannot safely neglect 
any of the final quark masses. The complete decay 
formula is too complicated to be reproduced here. 
Numerically one finds Fb_.~+s+JFb_~+a+~,~20%o. 
Adding the semileptonic modes to the above hadronic 
modes one has for the total decay rate [12, 28] 

1,~12 - 1  2 F B ~ 2 3 0 x  t) s gc (2.27) 

Compared to the total rate the exclusive rate into 
two pseudo scalar mesons of the type 

B q, ~ (C?l,)e + (du)x, (2.28) 

amounts to ~ 1.5-2.0%. For decays of type Bq, 
(cql)p + (sc-)e the corresponding percentage figure 
is ~ 3-5%. In fact the two body decays Be, ~ (ell,) + 
(sc-) in Table 3 already tend to oversaturate the rate 
Fb_~+s+ ~ as calculated in the free quark model. 
One can probably safely say that in this case the 
two body channels constitute a significant fraction 
of that part of the total hadronie rate that is induced 
b y b ~ c + s + 6 .  
It is well known that a similar estimate for the 
branching rate into two pseudoscalar mesons in 
charmed meson decays gives too high a value com- 
pared to the experimental value ~ 2% [23]. We 
therefore believe that the ~ 2% rate calculated for 
bottom meson decays (2.28) is also too large either 
for the reason that the total rate is underestimated 
by (2.27) or else the two body PP rate is overestimated. 
This could for example happen if there is an addition- 
al mass breaking factor in the wave function overlap 
integral of the current matrix element between 
pseudoscalar meson states which changes e.g. F+ = 1 
to F+ = (Mz/M1)(1 +.. .) .  This question is expected 
to be settled in the near future when the details of 
the semileptonic D-decays are disentangled. At any 
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rate, if there were such an additional suppression 
factor it would equally occur for all the three PP, P V 
and V V cases since the same overlap is involved 
in all three cases, and thus our relative rate estimates 
should still be reliable. 
Perhaps a more reliable estimate of the P P branching 
fraction may be obtained by using scaling arguments 
appropriate to the powers of M~ occurring in the 
exclusive and total width formulae (2.20) and (2.26). 
Thus, when going from the charm changing to the 
bottom changing decays one expects the P P  rates to 
decrease by (mc/mb) 2~, 0.1. This would lead us to 
expect that the bottom meson decay rate into two 
pseudoscalar mesons is ~ 0.2% for B~, ~ (c~)p + 
(dfi)p decays and ~ 0.4% for B~, ~ (cqi)p + (SDp. 

3. Discussion 

In the preceding section we have estimated the two- 
body and quasi two body decay modes of pseudos- 
calar bottom mesons. We found that all these decay 
modes add up only to a small fraction of the total 
decay rate. Our choice of the U(2,2) form factors 
does, however, enhance the specific two body rates, 
though the relative rates with respect to specific 
spin channels are more trustworthy. In particular, 
we find the two body modes involving a pair of charm 
meson can have a substantial branching ratio ( ~ 1%). 
It would be worthwhile to look at the decay modes 
B~ -~ D~ F -,  (D*~ F - + F* -  DO), D *~ F* - etc. Implied 
in the large ( ~  1%) branching ratio of such decay 
modes is of course the assumption of the dominance 
of the A B = - A  C = - A  Q rule. In this respect our 
calculation serves to point out the most promising 
two body decay modes which might be useful for 
future experiments at PETRA, PEP and CESR. 
It is also clear from what has been said in the con- 
clusion of section 2 that an inclusive estimate of the 
final states in the hadronic decays of the bottom 
mesons is not very likely to be given by the two body 
(and quasi two-body) modes. Since the mass of the 
bottom mesons is still not large enough to justify 
a three quark jet description of the final hadronic 
state, a statistical model description seems to be more 
appropriate. An estimate of the multi body final 
states (D + multipions, D + K/~ + multipions etc.) 
and the ensuing hadronic energy distributions etc. 
is in progress and will be presented elsewhere. 

Acknowledgement. J.G.K. wants to thank P. Zerwas for an 
instructive discussion. 

Appendix 

Kinematical Formulae 

We label our momenta by P1, Pc, P3 (P1 = PE + P3) 
where 1 --. 2 + 3. In the rest frame of particle 1 

E 2 = (M 2 + M 2 _ M2) /2MI  

A. Ali et al. : Nonleptonic Weak Decays of Bottom Mesons 

E 3 = (M~ - M~ + M~) /2M,  (A1) 
p2=c E 2 _ M 2 = E 2 _ M~ 

Parity violating amplitudes are denoted by A and 
p.c. amplitudes by B. We also enumerate the 
LS amplitudes FLS. 

CaseA O - ~ O - + O -  

L.S. Ampl." F~b ~ 
Inv. Ampl. : (P2,P3IHIP1) = A (A2) 

1 
F -- 8nMzPcJA]2 (m3) 

Case B O- ~ O- + I -  

L. S. Ampl. : 
Inv. Ampl. : 

rgf 
( P2 ,P3]HIP1)  = e3uPl~B 

1 
F - 8nM53P~lBI2 

(A4) 

(A5) 

CaseC 0- --, 1- + 1- 

F,p.v. I~p.v. L.S. Ampl." F~'~',_oo,~22 
Inv. Ampl. : 

( P2, P3 I HIP1 ) = e3ue2v (A1 gu~ + A2 P l u P ~  
+ iB~u~o~PlpP2~ ) (A6) 

Helicity Ampl. : 

1 
n o o -  tl_(M 2 M 2 _ M 2 ) A 1  +MZp2A2)  

M2M3~,2t  1 

H _ = A  1 - M l p c B  
H ++ = As + MlpcB  (A7) 

F = F ~  - + F  + 

1 
=8nM2Nc(IHoo[2 + I H  _[2 +[H++Iz) (A8) 

In the main text we are frequently referring to ampli- 
tudes occurring in the semileptonic decays 0-  ~ 0-  
+ l+  v a n d O - - - . 1 -  + l+  v. 
We define 

( O- (P2)I Vu[O- (P1) ) 

= F+ (P1 + P2). + F (P1 - P2)u (A9) 

and 

( 1- (P2)IA. + Vul0- (P,))  
- A A = e2,(F 1 g.~ + F 2 p1.PI~ + iFVe.,p~PlpP2.) (A10) 

The differential decay rate for 0 - ~  0 - +  t + v is 
given by 

dF 2 3 _ G'p-  (M1) 
dq e (2g) 3 3 - +  

and for 0-  ~ 1- + l + v b y  

dF G 2 q2.p 
dqZ-(2rc)al2M2(lhol2  +[h_12 +[h+] 2) (A12) 



A. Ali et al. : Nonleptonic Weak Decays of Bottom Mesons 

where one has for the transverse helicity amplitudes 

h_ = F A - M l p F  v 

h+ = F A + M l p F  v (A13) 

and for the longitudinal helicity amplitude 

2 1/2 1 1 2 h o = ( q ) -  T 2 - ( ~ ( M 1  - M 2 _ qZ)Fa + M2p2F~) 
lVl 2 (A14) 

p denotes the momentum of particle 2 in the rest 
system of particle one and is given by 

p2 = E22 _ M 2 (A15) 

where 

E 2 = ( M  2 + M 2 - q 2 ) / 2 M  1 (A16) 

Canonical form factor powers are n = 1 for F§ and 
F~, and n = 2 for F~ and F v (see e.g. [251). I-n the 
contribution of diagram III in the VVcase one has 
the matrix element ( V I A ,  + V,I  V ) .  In that case 
the canonical power for the invariant projected out 
by g,b(P1 + P2), is n = 2 and n = 3 for the others. 
For nonzero lepton masses there would be an addi- 
tional term in (A10) multiplying e.g. q ~ P l , .  Although 
the corresponding contribution vanishes in semi- 
leptonic decays when the lepton mass is zero this 
term does in general contribute to the factorized 
nonleptonic amplitudes. For example, in the case 
of P ~ P V  one is projecting out the 0-  configuration 
in the q2-channel which gives zero contribution to 
semileptonic decays. It is therefore nontrivial that 
the U(2, 2) approach predicts that there are only the 
three form factors listed in (A10). 
In Table 4 we have listed the leading order contri- 
butions to the helicity amplitudes in the P ~ V case 
for the three models discussed in the main text. 
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