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Abstract. We use the quark model framework to 
calculate the weak decays of the lowest lying charmed 
baryons into ground state baryons and mesons. We 
present detailed results on the predicted flavour and 
multipole composition of the final state configurations 
which can be tested in the near future. For the decays 
1/2 + --, 1/2 + + 0-  we also give symmetry and current 
algebra estimates which we compare with the quark 
model results. Semileptonic branching ratios in charm- 
ed baryon decays are calculated to be of the order of 
~ 5 %. The total lifetime of charmed baryons is pre- 
dicted to be ,,~ 7 10  -14  S which is 5-10 times smaller 
than the free quark model estimate. 

I. Introduction 

In a recent e+e--annihilation experiment at SPEAR 
[1, 2] the inclusive production of baryons showed a 
marked increase when the beam energy was raised 
through the expected threshold for charmed baryon 

pair production at 1 f ~ 4 . 5  GeV. It is believed that 
this is the long expected signal for charmed baryon pair 
production in e+e--annihilation. Previously charmed 
baryon candidates have been identified in a neutrino 
production [3] and in a photoproduction experiment 
[4]. 
The interpretation of charmed meson decays has been 
successfully guided by the GIM scheme [5]. Similarly 
one expects the decay products of the lowest charmed 
baryon to dominantly contain a strange quark. 
Recently the issue was raised whether the s-quark 
from c-decay turns up in the final state baryon or in 
the final state mesons since the small yield of excess A's 
(or A's) compared to excessb's above charmed baryon 
threshold is somewhat puzzling [1]. 

* On leave of absence from Gesamthochschule Siegen 

In a previous note we have addressed ourselves to the 
above problem by calculating C~ (cud) decays in a 
quark model [6]. In this paper we present details of 
the calculation as well as extending the calculation to 
include the weak decays of the next stable charmed 
baryons A +'~ (csu (d)) and T o (css) decays. 
We take the point of view that the lowest charmed 
baryons decay into two body and quasi two body states 
most of the time. This is orthogonal to a statistical 
description of these decays [7] in which multiple 
mesons originating from weak charmed baryon decays 
are essentially uncorrelated except for possible jet 
configurations. The latter approach already seems to 
be at variance with some of the observed D-decay 
modes [8]. On the other hand resonance dominance of 
multibody final states in most production processes 
has been firmly established in the last few years. 
We shall be mainly concerned with the Cabibbo 
favoured decays of the lowest charmed baryons into 
ground state mesons and baryons. The bulk of the 
lowest charmed baryons decays should consist of these 
channels. Higher resonance contributions are sup- 
pressed because of phase space, and, in the case of 
higher baryon resonances, due to adynamic suppression 
caused by the suppressed quark model wave function 
overlap between ground state and excited state baryons. 
Cabibbo suppressed decays to the low lying baryons 
and mesons are not likely to be important due to the 
Cabibbo suppression factor tg 2 0 c ~ 5 %. 
The plan of the paper is the following. In Sect. 2 we 
discuss the structure of the effective current x current 
charm changing Hamiltonian that arises from the 
operator product expansion of the product of free 
quark currents at short distances [9]. We systematically 
discuss a number of sum rules that arise from the flavour 
symmetry properties of the effective Hamiltonian using 
various subgroups of SU (4). These sum rules relate 
charm changing decays among each other as well as 
A C= 1 decays to the A C = 0 hyperon decays. Section 2 
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Table 1. Charmed 1/2 + baryon states, lab]and {ab} denote anti- 
symmetric and symmetric flavour index combinations 

Notat ion Quark SU(3) (L13) S C Mass 
content (GeV) 

C~ c[u,d] 3 (0, 0) 0 1 2.26 
A + c[s,u] 3 (1/2, 1/2) - t  1 2.47 
A ~ e[s,d] 3 (1/2, - 1 / 2 )  - 1  1 2.47 

C + + cuu 6 (1, 1) 0 1 2.42 
C[ c{u,d} 6 (1, 0) 0 1 2.42 
C o odd 6 (1, - 1) 0 1 2.42 
S + c {s,u} 6 (1/2, 1/2) - 1  1 2.56 
"S O c{s,d} 6 (1/2, - 1 / 2 )  - 1  1 2.56 
T O css 6 (0, 0) - 2  1 2.73 

Sect. 2 may be affected by symmetry breaking. Sect. 4 
contains the results of a current algebra evaluation of 
some of the transition amplitudes. In Sect. 5 we give 
a summary of our results. Technical details are relegated 
to the appendices. Appendix A contains the calculation 
of the factorizing contributions. In appendix B we 
present a proof of the identity of the tensor invariants 
describing the parity violating (p. v.) amplitude in the 
process 1/2 + ~ 1/2 + + 0- using current algebra plus 
soft pion techniques on the one hand and quark model 
diagrams on the other hand. Appendix C finally 
contains some kinematic definitions and rate formulae 
needed for the discussion in the main text. 

J(~+ ecu 3 (1/2, 1/2) 0 2 3.61 
X f  ccd 3 (1/2, - 1 / 2 )  0 2 3.61 
X]  ccs 3 (0, 0) - 1  2 3.79 

Table 2. Charmed 3/2 + baryon states 

Notat ion Quark SU(3) (LI3) S C Mass 
content  (GeV) 

C~ ++ cuu 6 (1, 1) 0 1 2.49 
C~ + cud 6 (1, 0) 0 1 2.49 
C~ ~ cdd 6 (1, - 1) 0 1 2.49 
S *+ cus 6 (1/2, 1/2) - I  1 2.61 
S *~ cds 6 (1/2, - 1/2) - 1 1 2.61 
T *~ css 6 (0, 0) - 2  1 2.77 

X *++ ccu 3 (1/2, i/2) 0 2 3.67 
X] + ccd 3 (1/2, - 1/2) 0 2 3.67 
X *+ ccs 3 (0, 0) - 1  2 3.85 

0 + + ccc 1 (0, 0) 0 3 4.89 

Table 3. Flavour content  of charm changing interaction 

Decay Ampli tude AS AI 

c--*sud cos z Oc 1 1 
c--*dud - c o s  Oc sin Oc 0 1/2, 3/2 
c-~sug cos 6) c sin 0 c 0 1/2 
c--,du~; - s i n  2 0 c  - 1  O, I 

also contains a discussion of the spectrum of charmed 
baryons. In Sect. 3 we present the details of the quark 
model calculation and give our results on partial rates, 
total rates, asymmetry parameters, charged multi- 
plicities, inclusive rates and semileptonic branching 
ratios. Where possible we compare the quark model 
results with the results of calculating the decay ampli- 
tudes from SU (4) using the known A C= 0 nonleptonic 
hyperon decay data as input. Since the calculated 
quark model amplitudes incorporate symmetry break- 
ing effects we discuss how the sum rules derived in 

II. Symmetry Relations 

The ground state charmed baryons are classified as 
usual as members of the (inequivalent) SU (4) multiplets 
20' and 20. The J= 1/2 ground state baryons (contain- 
ing the ordinary C = 0 octet baryons) comprise the 20' 
representation and the J= 3/2 ground state baryons 
(containing the ordinary C=0  decuplet baryons) 
comprise the 20 representation. In Tables 1 and 2 we 
have listed the quantum number content of the charm- 
ed baryon members of the 20' and 20, where we have 
used the same notation as in [10]. 
The mass values in Tables 1 and 2 are estimated by 
the methods of [111, where we have used Mc~ =2.26 
GeV and recent values for the D, D*, F, and F* masses 
as input. If these mass estimates are correct then the 
baryon states C + , A + , A ~ T o , X + +, X + , X + , and O + + 
must decay weakly. In this paper we shall only be 
concerned with the lower mass C = 1 charmed baryons 
C~, A +, A ~ and T o leaving the discussion of the C= 2 
and C= 3 baryons for future investigations. 
A discussion of charm changing weak decays proceeds 
from the interaction Hamiltonian 

~=gZrv ~ d4xDF(x, m2)T(juZC(x)J~(O))+h.c. (2.1) 

where gw is the weak gauge coupling constant and DF 
is the W-boson propagator, j f c  and J, are the charm 
changing and charm conserving charged GIM currents 
[5] 

j~c= c7~,(1- i75)(cos Ocs-sin Ocd ) (2.2) 

and 

J, = uT~ (1 - i75) (cos Ocd+ sin Ocs) (2.3) 

where a summation over cotour indices is implied in 
(2.2) and (2.3). 
The dominant piece in (2.1) is proportional to cos 2 0 c  
and obeys the selection rule AC=AS=AI=I.  The 
selection rules for the Cabibbo suppressed parts in (2.1) 
proportional to cos 0 c sin Oc and sin 2 0 c are given 
in Table 3. Since the corresponding modes are sup- 
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Table 4a. I, U, and V spin multiplets for mesons 

/'-spin 
s = singlets: r/8 ; r/15 ; F + ; F -  
d=doublets :  K+, K~ ~ - K - ; D ~  +, - D  O 
t =triplets: _ n + ,  ~o, n -  

U-spin 
s: t/is ;DO; D~ (t/8 +V3n~ 
d: re-, K -  ; K +, -z~ + ; D - ,  F -  ; F +, - D  + 
t: - K  ~ (V-3 ~/s- n~ K "~ 

V-spin 
s: th5 ; (]/3~z~ D + ; D -  
d: D ~ F - ;  F +, -DO; zc +,/~o; K o, - n -  
t: - K  +, (n~ +l/3t/s)/2, K -  

Table 4b. I, U, and V spin multiplets for J =  1/2 baryons 

/-spin 
s: A; c~ ; T~ &+ 
d: p, n; ,F, ~ - ~ -  ; S + , SO; A + , A~ X + +, X + 
t: 22% 1;o, _1;- ;  C[+,  C~, C ~ 

S:  

d: 
t :  

U-spin 
(A-I/SX~ a~ x. + +; c;  + 
p, 22+ ;1; - ,  ,F,- ; Cg, A + ; X~ ,  X+ ; C[ ,  S + 
n, (]/'3 A +22~ ~o; C o, S o, TO 

S:  

d: 
t: 

V-spin 
(A-V31;~  A +; X f ;  C o 
n, 2;-; z +, ~o; c~, A~ X: +, x?; C?, S o 
p, ( I / 3 A +  Z~ ~ - ;  C [+ ,  S +, T o 

Table 4e. I, U, and V spin multiplets for J =  3/2 baryons 

/-spin 
s: f2 - ;  R*+ + ; T * ~  *+ 
d: S *~ ~ * - ;  S *+, S*~ X *++, X *+ 
t: 2;*% I; .~ 1;*-;  C *++, C *+, C *~ 
q: A + + , A + , A ~  

U-spin 
s: A++; R*++;  C*++;  X *++ 

* +  * +  d: A+,22 * + ; C  * + , S  * + ; X j  ,X~ 
t: A o, 2;,0, ~ .o ;  C,O, S,O, T.O 
q: A-,  22"-, ~ * - ,  12- 

V-spin 
s: A - ;  R *+ +; C * ~  *+ 
d: A ~ 2;*-;  Ci ~+, S*~ X *++, X *+ 
t: A +, Z *~ •*- ;  C *++, S *+, T *~ 
q: A++, Z .+ ,  ~.o,  f2- 

pressed by factors tg z 0 c and tg 4 0 c  we shall, how- 
ever, discuss only Cabibbo favoured decays in the 
following. 
From a reduction of the current product in (2.1) one 
finds that the Hamiltonian (2.1) can be split up into 
two pieces transforming as 20" and 84 in SU (4). Let 
us define two corresponding operators O-  and O § 
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with the above SU(4) transformation properties by 
writing 

O-T = ( (~C)L (tid)L -T- (gd)L (tiC)L). (2.4) 

In (2.4) we have employed the short hand notation 
(SC)L = ST, (1 -- i7S) C etc. 
The Hamiltonian (2.1) can be seen to be dominated by 
the short distance properties of the current x current 
product [121 which can be calculated in an asympto- 
tically free theory as in QCD [9]. The resulting inter- 
action Hamiltonian is then well approximated by an 
effective local form 

-~eff  = 1 ~  COS 2 0 c ( f _ O -  +f+O +) 

 2o"• (2.5) o,~, eff m o-t, eff 

where the coefficients f_ and f+ in (2.5) can be estimated 
from calculating the hard gluon contributions to (2. i). 
One obtains f_ > I  >f+ which means that the 20" 
contribution in (2.5) dominates over the 84 contribution 
[13]. 
The considerations in this section are not dependent on 
the exact numerical values off_ and f+ in (2.5), since 
we shall be writing down separate sumrules for the 
two pieces in the effective Hamiltonian (2.5). In- 
dependent of the numerical values off+ calculated in 
[13, 14, 15, 16] the relative importance of the two 
pieces in (2.5) may perhaps eventually be judged by 
how well the two respective sets of sum rules are 
satisfied. 
Most of the sum rules for charmed baryon decays 
following from (2.5) do not in fact require full use of 
the SU (4) or SU (3) properties of (2.5), but a consider- 
ation of the SU (2) I, U, and V spin subgroups will 
suffice. Using the relevant raising operators 

I+d=u U+s=d V+s=u 

I+fi= - d  U+d= - ~  V+fi= - ~  (2.6) 

one readily sees that ~ , f f  (2.5) transforms as a U- and 
/-spin vector whereas ~ o ,  is in general a mixture of 
the two V spin operators, since O-  and O + transform 
as V-spin scalars and vectors, respectively. In Tables 
4a-c we have listed the relevant I, U, and V spin 
multiplets for the mesons and baryons of interest, 
where we use the phase convention 

I+_ lI, I3 )=(( I  + I3) (I + I3 +1))1/2j, I3 +_1), 

and similarly for U+_ and V_+. The sum rules given in 
Tables 5a-d can then simply be worked out by using 
SU (2) Clebsch-Gordan tables. Since we are employing 
quark model phase conventions in our later calcu- 
lations we have changed some of the phases in 5a-d 
in order to present one consistent set of phases. Note 
that the sum rules are not all linearly independent. As 
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Table 5. I, U, and V spin sumrules 
a) From AI= 1 property 

(c~" ~z'+ ~~ = - ( c  + ~ s% +) 
( A ~  ~ 2 _ ( A ~ 1 7 6 1 7 6  - (A +--+~~ +) 
(A~176176 - ( A  + --+Z + go) 
(C~--,A+ + K-)=I/'3(C+ ~A+ go) 
(c~ ~ z* + ~o) = (cg ~ z * %  +) 
(A~ * - r~ + ) + ] /2(A~176 ~ = - (A + --*2*~ + ) 
(A~ ~ Z  * + K - ) - V 2 ( A ~ 1 7 6  - (A +--*Z* +go) 

b) F rom A U =  1 property 

(A<--).7% ~ + (A~ Z~ go) =/3(A~ + ~ (A~176  q8 ) 
] /2  (C~ + --+Z~ +) - I /3 (C~ --)A~+)+(C~ + Z ~  + ~ Z ~  +) 
~/~( c~--, z+ ~)-('c~ ~ z+ ,~~ c~ ~pgo)= -1/~ (A +--, z+ go) 
2 (A ~ ~Z * ~  = -_1/3 (A ~ ~Z*~ + (A~176 ~ 
(Co ~ * ~  - [ /2  (C + ~X*~  +) = (A + ~ * ~  +) 
1/~(c~ --,z* + ~s)- (cg-~z* + # ) -  V~(c~-~ +go)= 

- ~/~(A + - , z *  +go) 

c) From A V =  0 property of 0 - 

(c8- ~z~  +) + 1/3(cg - +A~+)-V2(cg -,ego) = o 
(c~ --,z +~~ + ~ ( c 8 -  ~,z + ,~ , ) -~ (cg - - , z~  +)= o 
(A~ ~,~176176176176 K-)=O 
(C~ ~ ~ 1 7 6  
(A~ ~S~ I/3(A~ Ago)+I/2(A~ +E-x+)=O 
(C~ --,pgo) + ( A ~  = 0 
l/~( c~-~ z+ ~~ c~ -, zo~+ )+ V~(Ao-+zo.o)=o 
(A+->~%z+)+(A+-->Z+ go)=O 

(c~ ~A+ g o ) + ~ ( c g - ~ z * % + ) = o  
(C~ ~A+ go)+(A~ ~ * - n  +)=O 
(c~ -~A + go) - 1/~ (A ~ ~Z*~ ~ = 0 
(A + o Z *  + g ~  (A +-- ,~*~ 0 
(c~ ~z*+ ~ s ) - ~ ( c  +-,z*+ ~~ 
(A ~ ~ ~*%8) + ]/3(A ~ ~ ~,o~o) = 0 
(C~ ~ A  + + K - ) - V 3 ( C  ~ ~ z * ~  0 
(Cg ---,A + + K-)+(A~163 -- 0 
V5 (~-~z*~ Or~ +) = o 

d) F rom A V =  1 property of 0 + 

(A+ ~Z+go)- (A+~%+)=0 
(C~ ~ p R ~  + ( A ~  +) = 0 
(C~ --+~~176 
2 ( C~ --, A~ +)-  ( A~ Ag~ - 1/~ ( Ao_~ zo go) = 0 
2 (C + ~ Z,~ + ) -- ~ (A o ~ Ago) + (A ~ ~ Z~ = 0 
2 (cg ~ z + ~o) + (AO__,.~%o) _ V~ (A o _~ S.%) = 0 
2(c~-~  +~8)-]/3( A~176 o ~ % ) =  0 

(G ~A+go)-(A~ =o 
(c~ ~z*~ +) - (A~176 = 0 
(A + ~ Z *  + g o ) +  (A + ~E*~ = 0 
(C~ --*S*~ +) - (A~ * +K-) = 0 
(C~- ~ A  + +K- )  - ( A ~  +) = 0 
(C~ ~*+~~176176 
(Cg ~z* +r/8)-(A~176 
[/6(Cg- -->Z* + no) + 3 i ~ ( C ~  " --*Z* +'08) + 2(Cg ~ A  + + K - )  

_ 2V~(c 8- ~_~*~ 0 

pointed out in [17] one can also derive a number of 
interesting sum rules for the total  and  part ial  decay 
rates of  Co ~- and A ~ if one keeps only the 20" piece in 
Yoff. Since yf~fo- is a V-spin scalar and CJ- and A ~ are 
members of  the same V-spin doublet (see Table 4b) 
one can easily show that Co + and A ~ must have the 
same total rate as well as the same rates into particular 
spin configurations. Thus one obtains 

/"total ( C g )  = ~total (A0)  (2.7) 

Z F(C~ --,B~+ Mj )=  Z F(A~ (2.8) 
i,j i,j 

where the B~ are either the 1/2 + or 3/2 + baryons and 
the Mj the 0 -  or 1 - mesons. In the case of transitions 
to the J =  1/2 ground state baryons there are further 
s u m  rules. The derivation of these, however, require 
the use of  the fu l l  SU (3) - u d s -  properties of the O -+ in 
~/t'Pcff. First, there is one s u m  rule which holds for a 
general linear combination of O + and O -  : 

] / 3 ( ( C o  + ~ X  + r/8) - (Co+ ~ A x  + ) )  = 

-- I f2  ( (A~ Z -  x +)-- (A~ s +K-))  

- ( A ~ 1 7 6  ~ + ] /7  (A ~ --,•~ ). (2.9) 

Second, from the SU (4) transformation property of 
He 2~ and j(fsf~ one has the two following sets of sum 
rules : 

2 0 "  
~ e f f  " 

( C ~ A T r + ) p . v . = O  

l~ (C0 + -~#:~ + l / i  (A~ A~: ~ = 0 

1/6 (Cg -,p~:%.~.- l/g (c? --, =~ /p .v ,  

- ( T ~ 1 7 6 1 7 6  = 0 

[/-2 ( C~  ~ A x  + )v.~.-  f i  ( C~  --,pR~162 

-]/ /2(A~176162 = 0. (2.t0) 

~f~: 
(Co + ~ A ~  +)~.v. = o 

(Cff ~pR~ + 2 (Cff ~5~ 

+ ~/6 (A~ AR~ = 0. (2.11) 

The derivation of  the sum rules (2.10) and (2.11) 
requires in addition use of the charge conjugation 
properties of  ~f,  rf which from C P  invariance is C =  - 1 
for p.v. amplitudes and C =  +1 for p.c. amplitudes. 
It is noteworthy that (Co + ~A~z+)o.~. = 0  for any linear 
combination of  ~f~fo" and jif84 (see also [18]). 
In Tables 4a and 5a-d and in (2.9) the states t/8 and ths 
refer to the unphysical I =  0 q-state transforming as the 
SU (3) octet and singlet members of  the 15-dimensional 
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SU(4) representation [19] (tls=(u~+dd-2s~)/lf6; 
~h5 = (uft +dd+ sg-  3 &)/lf-~). 
The physical r/ and ~/' states are empirically well ap- 
proximated by the so called Isgur's wavefunctions 

~'= (uf~ +dd+ ~/2s~)/2 (2.12) 

which means that t/s is a linear superposition of t /and 
t/' given by 

t/s = (6)-~/2 ((1 +[/2)t t  + (1 - ]/2)~'). (2.13) 

Since (2.13) shows that ~ ~t/s the sum rules involving 
t/s may in some cases be valid also for the ~/depending 
on the coupling strength of the ~'. In order to obtain 
relations involving the t/' one would need information 
about transitions to the SU(4) singlet state ~s. Since 
this is lacking we cannot make any symmetry pre- 
dictions involving the t/'. 
It is clear that the relations in Table 5a-d as well as 
the sum rule (2.9) are also applicable to transitions 
involving vector mesons if the appropriate changes in 
notation are made. The isoscalar octet state is now 
given by 

cos = (1/3)~/~co- (2/3)~/~ cp (2.14) 

where we have assumed co and q~ to be ideally mixed. 
In order to be able to assess the completeness of the 
sum rules derived so far one has to count the number 
of SU (4) invariants describing the relevant transitions. 
This can best be done by counting the CP and SU (4) 
invariant couplings in the t-channel B +/~--M. 
For the 1 /2+~ 1/2 + + 0-  case one needs the following 
decompositions 

20'@20'= 1(+)+ 15~+) + 15(z+) + 20"(-) + 45 (-) 

+ 45(-) + 84(-) + 175 (+) 

20"@15 = 1 5 + 2 0 " + 4 5 + 4 5 +  175 (2.15) 

84@15 = 15+45+45+84a  +84a + 175 

+256+256+300  

where we have indicated the symmetry nature of the 
reduced representations in 20'@20' by a superscript. 
Then one has for the two cases ~,~(i~o" and j t ,  sf4 the 
following t-channel reduced matrix elements 

(i) ~4 ~2~ 

p.v. amplitude 

p.c. amplitude 

(ii) ~ 

p.v. amplitude 

p.c. amplitude 

R ~ 0 .  ~ t " R45 +gg 

R[5, ; ; R b s .  (2.16) 

t . t . R t 
R 4 5  + ~  ' R 8 4 1  ' 842 

R t l 5 ~  , R t . t . t 
" 152 ' R 4 5 - g g  , R175.  (2.17) 

Adding the number of sum rules in Table 5a-c to those 
in (2.9) and (2.10) derived from gfo~o,' one has 17 
relations for 15 s-wave amplitudes and 15 relations for 
the 15 p-wave amplitudes. Judging from (2.16) this 
shows that the sum rules are not all linearly independent. 
For jfsf4 one finds correspondingly 15 relations for 
the 15 p.v. amplitudes and 13 relations for the 15 p. c. 
amplitudes. Again the sum rules are not linearly in- 
dependent as can be judged from (2.17). 
For the processes 1/2+-~3/2 + + 0 -  one needs the de- 
composition 

20 |  15+45+84+256 .  (2.18) 

Thus one has the two invariants R~5 and R[5 for ~'~e 2~ 
and the five invariants R~s, R[5, R's4,, R~42, and R~56 
for af~sf 4. In this case there are no additional relations 
from CP invariance. 
The sum rules (2.10) and (2.11) which only follow 
from the complete SU (4) transformation properties of 
J~e2f ~ and ~ e  s4 can be derived using SU (4) Clebsch- 
Gordan tables [20]. Another way of deriving these is 
to use the tensor method first applied to SU(4) by 
Iwasaki [21]. Here the 20" and 84 pieces of Jfeff are 
represented by the traceless antisymmetric tensors 
r[[ab ] T(ab}  ca~ and the traceless symmetric tensor ~ca~, respect- 
ively. In the following we shall discuss only applications 
involving the antisymmetric part of  ~'~eff' 
The transition 1/2 + ~  1/2 + + 0- is now represented by 
the following SU (4) tensor invariants 

p.v. __ -T- {~[[ i j ]  ~ k  R[nl] ll/l'm -i- IJ[kl] ~ i  l:t [nm] ll/l'J'~ T(p.~.)-a t ' ' [ k q  L*[nm]*~'i x,~tj - i -zz[i j]  a.,[nl]Z., k ~Varn, 

]~ T [LI[ i j]  ~ n  l~[km] ~/fl  -7  121[ kl] K J  R [ira] ][Arn'~ 
+ ~  \aa[kl] . t . ' [ im]~j  .~va n n".t~[ij '] *.,[km]~n ~v~t 11 

+ C  ~ (T4"[iJ]~ l R[kn] Adm"T12l[kl]  K m  D[/j] ~lAn~ 
ta*[k/]  -c*[ij].u m ava n "F-~a[ij] *~'[kn]*'l ~V~m) 

+ r ]  ~ (LT[iJ] K m R [  kn] Jill "l "T- LI'[ kl] K m l~[iJ] A/fn'~ 
u ka.t[kl]~J[ij]~m aran~-L t [ i j ]  ~L,,[kn]JL,, m XVZ l ] 

(2.19) 

where one has incorporated the correct C-conjugation 
behaviour. The B[ jk~ and M / a r e  baryon and meson 
tensors transforming as 20' and 15 in SU(4) and are 
given in [22]. 
It turns out to be much more convenient to use a 
different representation for the baryon tensors 

B i  j k l  - - ~  ~ j k m n  l2~ (2.20) - -  2 c a~,i[mn ] 

where the tensors B~rm. 1 can now be directly interpreted 
in terms of their flavour content as in Table 1. Re- 
writing the invariant (2.19) in terms of the B~tm. ~ one 
obtains 

T pv' =�89 - 2 c -  - 2 d - ) I  3 +�89 +b-  - 2 c - ) I 4  
and (2.21) 

Tp.~-=(-2a  + +b  + + 2 c  + +2d+)I~ - 2 a + I 2  

+ � 8 9  + +b  + + 2 c + ) I  + -4c+I5  (2.22) 
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where we use the following notation for the standard 
tensor invariants 

11 = BaV'~ Batb~'lM~ Ht~d~ "j 

12 = ff'tb~l nbtc,alMff nttcCd] '1 
la -- f fa[bc] lyl AArd L[[c'b'] 

- -  ~ .Oa[b, c,]Xv~t c Jt~t[db] 

i 4 _ _  ~ b t c a l u  71/I-dLl-[c'b'l (2.23) 
- - . w ,  "~ ~*[db] 

13 = ~ a  tbc] B a tb,c,]Mdc' nddcb]'] 

~4 __ ~a[bc]  D ll/[ C' Ll[db '] 
--~t~ .Ob,[c,al2.r~ d Jta[cb] 

15 ~ .  j~a  [bC] g a ,  [b' c']McC" n[[aa;f "] 

and 

In order to obtain the final form (2.21) and (2.22) one 
has to make use of the tracelessness of rtvJl �9 ~ [ u ]  as well as 
of the Jacobi-type identity for the baryon tensors 

Bitjk I + B~tk0 + BkV~] = 0. (2.24) 

In the case of the p.c. amplitude Tp.o. we have made 
use of the following tensor identity 

2/1 =I3 + (2.25) 

in order to reduce the number of tensor invariants in 
(2.22) to the minimal set of four as is indicated by the 
analysis (2.16). The amplitudes (2.21) and (2.22) have 
the advantage that they contain only the necessary 
minimal number of SU (4) invariants [see (2.16)]. Also 
the tensor contractions avail themselves to a dynamical 
interpretation in terms of  connected quark model 
diagrams which has numerous advantages as will be 
discussed in detail in Sect. 3. 
For the case 1/2+--,3/2++0 - (and 3/2+--+1/2 + + 0 - )  
one can directly write down the appropriate represent- 
ation in terms of the SU(4) tensor invariants and 
obtains 

p.v. __ * T(p.o.)--aI~ -v- + bi ,~  (2.26) 

where 

I~ • L,~{abc} ~R xv~t h / f  d ~t~t~Ll[c'd'] --'-1- z.~ f f a  [bc'] ~ I~ ,lhrd" L l  *a'c[Cd] 
a[bc'] d" [cd] - -  {abc}~'~d [ 'd'] 

+ ~{abc} l~  A/IdLI"[ c'b'] -.1- ~a[b 'c ' ]12  ?iArcLl[ db] I*-  = ~ ,  ~t~a[b,c,].tra c .tZ[db] ~1 . , ,  z.,,{abc}~Vatda.t[c,b, ] . 

(2.27) 

Again the tensor invariants are readily interpreted in 
terms of connected quark diagrams which greatly 
facilitates the understanding of these transitions. 

Up to this point we have only considered relations 
among the charm changing transitions. Since the 
relative strength of  the A C =  1 and A C =  0 parts of J f a f  
is fixed in principle one can atso write down sum rules 
relating A C= 1 and known A C=O transitions. For 
example, using ~2o,, one has the relation 

tg 2 0 c ( C  ~ --+A + +K-)p.v. =�89 --+AK-)p.v. (2.28) 
p.o. p.c. 

where we have neglected possible differences between 
the renormalized coupling strengths f_ ac= 1 and f_~c= o. 
Similar relations can be derived for the transitions 
1/2 + ~ 1/2 + + 0 -  where one finds using again ~ o , ,  only 

tg z Oc(C ~ --+~~ = (6) -1/2 (X + -~nrc +)p.v. 

tg 2 0 c  (C~ ~pg~ = (3)-'/2 (S + -+prc~ 

tg20c  (T o__+ ~ o/~o) = _ (X - -* n~ -) 

tg 2 f2 c (Cff --, Arc + )v.~. = - (8) - ~/2 (s + ~prc~ 

+ (6) - 1/2 (E - ~ Arc - )p.~. 

+ 5/2]/6(A~pTZ-)p.~. (2.29) 

tg z Oc(C ~ - - ~ ~  ' = ( 6 )  - 1 / 2  ( ~ ' +  --,nrc+)p.o. 

tg 2 0 c  (C~ ~pR~ = - 1f3/2 (S + -+prc~ ' ~. 

+ 3/2 (A--,prc -)v.~. 

+ (S - - ,  A~ -)p.~.. 

It is clear that these relations are expected to be valid 
only very approximately because of the large mass 
breaking effects between charmed baryons and or- 
dinary baryons. 
Among the A Y= 1 hyperon decay amplitudes the x4 ~2~ 
leads to the sum rule [211 

]/6(A--+prc-)v.~" = - ] ~ ( S  + -+pzt~ (2.30) 

Analogous relations have already been written down 
in [17]. Concerning the decays involving vector mesons 
similar sum rules can be written down for the various 
amplitudes. These are, however, not so useful, since 
there are no corresponding A C =  0 decay amplitudes 
which could be used for normalization. 

III. Quark Model  Calculation 

A. Decay Amplitudes 

In the quark model the effective current x current 
Hamiltonian (2.5) gives rise to the 5 types bf decay 
diagrams drawn in Fig. 1. We have chosen to label the 
quark lines for the specific transition C ~ A ~ z  + for 
illustrative purposes. The wavy lines are included in 
order to indicate how the effective quark currents act. 
In terms of quark model wave functions the decay 
amplitudes corresponding to Fig. 1 can be written as 

--ABC" -- D' ( ~ C D  ~ o C  D "l TBI~Bz+M=HtBz B1ABcM~) L v C ' D ' - -  3",ID'C'J 

- -AB'D -- D" BC +Hz(Bz BIABcM; OB,,, 
+ ~ A B ' C '  t~ u r n ~ C B  

1"2 ~Jl  ABC2rJtD V B ' C ' J  

rr ~A'B'C'~ ~TtCc~ AB (3.1) 
. t~3~, 2 ~ , I A B C I V J t C , V A , B  �9 

where the first, second, and third line of (3.1) cor- 
respond to the contributions of diagrams I, II, and III 
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s u d u u s d d u 

C U d c u 

f_ f_ f .  

Fig. 1. Quark diagrams for two body decays of C~-. Quark lines are 
labelled for the specific decay C + --, A~ + (p +). The appropriate short 
distance factors are given underneath the diagrams. For neutral final 
state mesons the short distance factor of (Ia+Ib) bis 1/3(2f+-f_). 
Diagrams Ia and Ib are related by Fierz crossing and diagrams IIa and 
IIb by C-conjugation and crossing 

in Fig. 1 in that order. BABc and M~ are quark model 
wave functions for the baryons and mesons. Each 
index A stands for a pair of indices &, a), where ~ and 
a denote the spin and flavour degrees of freedom. We 
have already summed over colour degrees of freedom 
which results in the typical factor ( -1 /3 )  in the first 
line of (3.1). The matrix OAC~ describes the structure 
of the effective current x current Hamittonian (2.5), 
where we have rewritten (2.5) in a more concise notation 
as 

~ e f f  = : ~ J A ~ ' I c ~ B ~ J D ' O C g  ( 3 . 2 )  

/ /1, / /2,  and//3 are wavefunction overlaps correspond- 
ing to diagrams I, II, and III. 
One should note that in the case of transitions between 
ground state baryons as treated in this paper diagrams 
II and III obtain contributions only from O-  [trans- 
forming as 20" in SU(4)], because of the symmetric 
nature of the ground state baryons [23, 24]. Both 
operators O + and O-  contribute to diagram I. The 
contributions ofla and Ib add up such that the resulting 
contribution is proportional to Z+ = 1/3 (2f+ +f_) and 
Z_=l/3(2f+-f_) depending on whether the final 
state meson is charged or neutral. 
For the calculation of the factorizing diagrams Ia and 
Ib of Fig. 1 one does not need to take recourse to the 
quark model, but these can be directly calculated from 
the two particle current matrix elements in complete 
analogy to the evaluation of D- and F-meson decay 
amplitudes as done in [15, 25]. However, one should 
already now keep in mind that these factorizing contri- 
butions are likely to constitute only a fraction of the 
total amplitude as will be explicitly shown in Sect. 3B. 
This is different in the mesonic case where the factor- 
izing contributions determine the whole amplitude. 
The actual calculation of the factorizing contribution 
corresponding to diagram I is relegated to Appendix A. 
The results of calculating diagrams II and III will of 
course depend on the details of the quark model wave 
functions which are used as input. In particular, the 
form of explicit SU(4) symmetry breaking of the 

resulting amplitudes will depend on how quark and 
particle masses appear in the wave functions. Undoubt- 
edly these questions will have to be studied in more 
detail at a later stage. We propose to use the U (2, 2) 
type quark model wave functions of [26] for the eva- 
luation of diagram II and III. The U(2,2) wave 
functions have recently been applied with good success 
also to the phenomenology of heavy meson decays [27]. 
The explicit forms of the wave functions are given by 
[26] (colour indices are always suppressed and the 
dependence on internal momenta is not exhibited) 

jP=l+ BABC=U~(yS(P_M)C)~B~[bc l 

+ cycl. [A, B, C ] 

je=3+ BABc=uU(7~(P_M)C)~,B~abc~ (3.3) 

+ cycl. [A, B, C? 

jpc = 0- + M f  = (75 (JY- M))~Mb, 
SVC=l-- MB=(r (3.4) 

In (3.3) and (3.4) P and M denote the momentum and 
mass of the particles and C is the usual charge con- 
jugation matrix. Note that the quark masses do not 
appear in these wave functions. Symmetry breaking 
effects enter solely through the use of physical particle 
masses. 
After some straightforward algebraic manipulations 
involving the evaluation of the amplitude (3.1) with 
the wave functions (3.3) and (3.4) one arrives at the 
following amplitudes, where we present our results in 
terms of invariant amplitudes defined in Appendix C :1 

CaseA 1/2+---,1/2++0 - 

G M1M2 H2 ( ~ A=Afac+-~fcf_ - (Mz-Mz)Q+I f 
v - 

-~((M~+Mz)Q- -2M1M2M3)If)) (3.5) 

B=Bfa~+ fcf- -~ MIM2 S Q+((M1-M2)I- 

+(MI + M2)I +) 

Ha 3MIM2(Ma+M2+M3)Is) (3.6) 
+MIM z 

where Q+ =(PIPz+_MIM2), fc=cos  2 0 c  and I + =/3+ 
+214 -+. The tensor invariants Ii -+ have been defined in 
(2.23). A fac and B fa~ denote the factorizing contribu- 
tions which are given in Appendix A. We have factored 
an explicit mass factor (M~Mz) -~ from the wave 

1 In the approach of [28] the contributions of diagrams IIa and III 
have been neglected without statement of reasons. The result of cal- 
culating diagram IIb in [28] agrees with our result which is given by 
the tensor invariant ?a and ?3 + 2 i ,  for A and B, resp. Note that 
?3 = - (?3 + 2 ?4)/3 for the decays of C~- and A o + 
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function overlap functions H2 and H3. This assures 
correct charge normalization when evaluating diagram 
I with the baryon wave functions (3.3) lone could have 
equally well factored out the square of the algebraic 
mean 4(Ml+M2) -2 which is not very different nu- 
mericallyl. Hz and/ /3  will be assumed to be channel 
independent. 
One notes that the tensor covariants with the wrong 
C parity, namely I3 + in A and I -  in B, are multiplied 
with (M~ -M2)  and thus their contributions vanish in 
the symmetry limit. There is no contribution of 
diagram III to the p.v. amplitude. The only contri- 
bution to A that survives in the symmetry limit is given 
by the tensor invariant I f .  It is quite intriguing that 
the same tensor invariant describes the contribution of 
the ETC-term which arises in the current algebra-soft 
pion evaluation of the same amplitudes as will be 
shown in Appendix B. z 

CaseB 1/2+~1/2+ +1 - 
In this case there are two p. v. and p.c. amplitudes each 
which are denoted as At, A2, and B~, B2 (see Appen- 
dix C). One has 

~ 2  H 2  ( ( M ~ - M 2 ) Q + I - / 3 2  A1 =A["~+ fcf- av 

+((Mt+M2)Q- -2MtM2M3)I+/32) (3.7) 

G H e (MI+M2+M3) A2:-~fcf- av ~lM2 

�9 ((M~-M2)I-/32+(M~ +M2)I+/32) (3.8) 

Ba=Bf"r av(M-~MzQ+ 

(+(Mr - M2)I-/8+(M~ + M2)I+ /8) 

H3 3MaMa(MI+M2+M3)Is) (3.9) 
+ M1M2 

B2=Bfa~__~2fcf_ av ( He 
M 1  M 2  

�9 (M~ + Mz)  ( ( M  t + Mz) I +/8 + (Mr - M2) [-/8) 

+3 He M3((Mt+Mz)I~-/S 
MIM~ 

+(M~-M2)I~/8) Ha 6M~Mfls). (3.10) 
M~Mz 

2 The same equivalence between diagram II and the ETC term holds 
even for current products with different chiral structure as appears 
in the calculation of the p.v. NNrc coupling using a product of 
neutral currents [29]. If this equivalence is not accidental but true 
in general it would be quite interesting to find out how this equivalence 
exactly comes about. In this context it is particularly puzzling that 
the ETC amplitude has one more effective fermion loop and thus 
there is an additional colour factor of 3 compared to the contribution 
of diagram II 

Table 6. Values of SU (4) invariants for ground state 1/2 § baryons. 
Note the identity 2 It = (/3 + I3). Further identities hold for SU (4) 
subspaces, as e.g. I1=I2 and i4= -2-T3 for Cg, A +, and A ~ decays. 
The q8 appearing in the table is the unphysical I=0 ,  Y=0 SU(3) 
octet state. We have also included values of the tensor invariants for 
the unphysical SU (3) singlet state th. The corresponding values for 
the physical states t/and q' are obtained from the linear combinations 
] /6 t /=  (1 +]/-2)t/8- ( 1 - ] f 2 ) t  h and ] f6t / '=  (1-]f2)t/8 +(1 +] /2 ) t  h . 
Similarly the appropriate combinations for the physical states co and 
(p (using ideal mixing) are ~ o = - ~ ] 3 r l 8  + ~ t  h and og=Va-~r/s 
+ V2--~th. We have always factored out the product offlavour space 
quark model wave function normalizations 

6C~ ~Arc + - 2  - 2  - 2  4 - 2  4 1 
~ C + - ~ Z ~  + 0 0 --2 0 2 --4 - 1  
] / ~ C  + --,Z+ ~ ~ 0 0 2 0 - 2  4 1 
6C+~Z+t/s  0 0 - 2  4 2 - 4  1 
]/i-8C~ ~ Z + t h  0 0 4 - 2  2 - 4  1 
~6cg-~p~:~ - 1  - 1  - 2  2 o o o 
V,6 c~  --. F.~ + 0 0 0 2 0 0 1 
V6_A+ ~ Z + [ (  ~ - 1  - 1  0 0 - 2  4 0 
~/6A+ ~ ~  + 1 1 0 0 2 - 4  0 
6A~163 ~ 1 1 4 - 2  - 2  4 1 
]f~A~176 ~ 1 1 0 - 2  2 - 4  - 1  
~-6A~ - 0 0 0 2 0 0 1 
~ ' ~  A~ ~%z ~ 0 0 2 - 2  - 2  4 0 
6A~176 0 0 - 2  - 2  2 - 4  - 2  
]/]8A~ 0 0 4 --2 2 --4 1 
~/6A~ + --1 --1 --2 2 0 0 0 
T~176 ~ 1 - 1 0 0 2 0 0 
]/6A--,prc- - 1 - 1 0 2 - 2 4 1 
~ 1 2 A ~ n ~  ~ 1 1 0 - 2  2 - 4  - 1  
~ Z  + --*p~z ~ 1 - 1 0 2 2 0 1 
Z+--*n~ + 0 0 0 2 0 0 1 
S - - ~ n ~ -  - 1  1 0 0 - 2  0 0 
I/-dZ----,A~- 2 - 1  0 0 4 - 4  0 
~ F . ~  ~ Arc~ 2 1 0 0 - 4  4 0 

There is no factorizing contribution to A2 since we are 
neglecting as usual the induced pseudoscalar form 
factor in the axial vector matrix element (see Appen- 
dix A). We have allowed for a relative renormalization 
of the amplitudes involving vector mesons by intro- 
ducing the factor a v in (3.7)-(3.10). As in case A the 
contributions with the wrong C parity vanish in the 
symmetrylimit M t = M 2 . The amplitudes in (3.7)-(3.10) 
have quite a complex structure and in general all 
multipole amplitudes contribute to the transition. 
There is one exception. In the decay T~176  "~ the p. c. 
transition goes via the transverse multipole Mt - since 
I f  and/5 are zero for this decay [see (3.9), (3.10), and 
Table 6]. 
The decays involving 3/2 + states have a considerably 
simpler structure�9 First, note that the 3/2 + wave 
functions are separately symmetric in flavour and spin 
indices so that diagrams IIb and III vanish since ~4 ~2~ 
isantisymmetricin flavour space [30]. Second, diagrams 
I and lib do not interfere since Co + and A;  occur only 
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via diagram IIb and T o only via diagram I as can be 
seen again by flavour symmetry arguments. 
First we consider 1/2 + --,3/2 + + 0-. One has 

Case C 1/2+--.3/2 + + 0 -  

A=O (3.11) 

B = B f a c + ~ 2 f c f  - / / 2  ( M 1 M 2  3 M1M2 ~ I*+). (3.12) 

Note that the p.v. amplitude is predicted to be zero 
[30]. For the factorizing part this results from the 
assumption that the vector current transition 1/2 § --,3/2 + 
is conserved even for flavour changing transitions. 
A similar supposition has been made in [31] and is 
also a result of an explicit quark model calculation [32]. 
The absence of a p.v. transition from diagram IIa is 
again analogous to the current algebra+soft pion 
evaluation which predicts the p.v. amplitude to be 
proportional t o f j  1 (3/2 + IJC~p.~.ll/2 + ) and this is zero 
in the quark model for the aforementioned reason [30]. 
The absence of a p.v. amplitude leads to a zero decay 
asymmetry. This quark model prediction [30] has 
recently been confirmed in a recent determination of 
the asymmetry parameter e in the decay ~2- - ,  AK- [33]. 
As a last case we treat 

CaseD 1 / 2 + ~ 3 / 2 +  + 1  - 

A1 =A~"~ fcf- av M1--~2 

�9 (M1Q+-M1M2(MI+M2+M3)(--~I~3 , - )  
(3.13) 

A 2 = O  

~2 H 2 3 MII. - A3=Af"~ fcf-  av M1Ma 2 

~2 H2 MaQ+ 3 i~ + B, = B[ ~~ - f c f  - av M1----~2 

~2 H2 MIM2 ~ I'+ B2 ~'B2 fae- fc f -  av M,-----~2 (3.14) 

By making the appropriate projections one finds that 
the parity violating amplitude is a mixture of electric 
and longitudinal multipole amplitudes (no magnetic 
multipole contribution) and the p. c. transition is a pure 
M~ + transition. Although it may be quite difficult to 
experimentally disentangle the various multipole 
transitions in charmed baryon decays it would be ex- 
tremely interesting to check these predictions of the 
quark model. 

Table 7. Values of SU(4) invariants for ground state (1/2 + --,3/2 + 
+ meson) transitions. Fur ther  explanation as in caption of Table 6 

I~ ~ ~ ~ IU IU 

6 C + ~ X * %  + 0 2 6 A~176 ~ 0 - 2  
6Cg ~2;*%z ~ 0 2 Vi-8A~ 0 - 2  
]/i0"8 C+ --," 2;* + t/8 0 6 6A~176 ~ 0 - 2  
i / ~  C~- ~ Z * + q l  0 0 l / i - ~ A ~  ~ E*~ 0 2 
KI~C~---+A+K ~ 0 --2 K54A~176  0 - 4  
i/6C+ ~A + +K- 0 - 2  i / ~ A ~  + 0 2 
~18C + ~N*~ 0 2 ~'6A~ + 0 2 
j/ A ~ 0 0 V3r~176176 -1  o 
i/-J'gA + --+ 5*~ + 0 0 T~  + - 1  0 
~ -  --*E~ - +_ 1 0 
1 / ~ a - ~ - ~  ~ +1 o 
V'612-~AK- 0 +4 

In Table 6 and 7 we have listed the results of evaluating 
the various standard SU (4) invariants for the decays 
treated in this paper. We have also included the cor- 
responding values for the usual A C=O, A Y = - I  
hyperon decays. The tables can also be used for the 
corresponding vector meson decays with the appro- 
priate changes in notation. Concerning the I = 0  
mesons one has to keep in mind that the physical 7, r/', 
co, and q~ mesons are linear combinations of the t/s and 
ql states appearing in the tables. The relevant com- 
binations are given in the caption of Table 6. One can 
check that the various sum rules and the identity (2.25) 
written down in Sect. 2 are satisfied by the entries of 
Table 6. 
As a last remark we would like to point out that the 
nonfactorizing quark model amplitudes in (3.5)-(3.14) 
possess remarkable properties in the limit of Ml 
becoming large. This limit may not yet be relevant for 
charmed baryon decays but may be profitably studied 
in the decays of the next heavy baryons with bottom 
quantum numbers. In the large M 1 limit only contri- 
butions from diagram IIa survive in which the heavy 
quark first decays weakly and then emits a meson. All 
helicity amplitudes are of the order (M,) 3 which is a 
result of subtle cancellations among the invariant 
amplitudes contributing to the helicity amplitudes. 
For example, in the case 1/2+--,3/2 + + 1 -  these can- 
cellations occur at the leading and next to leading 
order level. The resulting widths are of order F-~ M1 s. 
If one would have factored the algebraic mean 
4(M1 +M2) -z from the amplitudes one would have 
obtained F ~_ M 3 similar to the large Ma behaviour of 
heavy meson decays studied in [27, 2nd reference]. 
Whereas the factorizing contributions in (3.5)-(3.14) 
have a simple helicity structure in the large M~ limit 
reflecting the basic (V-A) heavy quark decay this is no 
longer true for diagram IIa. Thus heavy baryon non- 
leptonic decays are not so well suited to study the basic 
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u,d~s d 

W • ;rue;\ 
U~C " ~  

u~djs s 
Fig. 2. Representation of correction term to A C= 0 nonleptonic 
hyperon decays as discussed in [36]. Soft gluon exchange spoils the 
GIM cancellation of u and c quarks 

heavy quark decay property as are e.g. the heavy 
meson decays which obtain contributions only from 
factorizing contributions [27, 2nd referencel. 

B. Numerical Results 

The quark model amplitudes calculated in Sect. 3A 
contain a number of parameters (i. e. f+, f_ ,  H2, and 
//3) which have to be estimated in order to be able to 
make any quantitative predictions about decay widths, 
branching ratios, asymmetry parameters etc. Since 
estimates of these parameters are at present afflicted 
with theoretical uncertainties, it is clear that those pre- 
dictions of our quark model calculation must be 
considered most reliable which are independent of the 
particular values of the above parameters. A glance at 
Table 6 shows that the quark model amplitudes for the 
cases 1/2+~1/2 + +0- (1- ) (3 .5) ,  (3.6), and (3.%3.10) 
are sufficiently complex that there are no parameter 
independent predictions which go beyond the/, U, and 
V sum rules given in Sect. 2. However, in the cases 
1/2 + --,3/2 + + 0-(1 -) the quark model amplitudes are 
sufficiently simple so that the resulting structure is 
parameter independent to a considerable degree. 
Among these predictions are the zero asymmetry in 
the decays 1/2 + --* 3/2 + + 0- ,  the M1 + structure of the 
p. c. amplitudes for 1/2 + --* 3/2 + + 1 -, and the vanishing 
of the decay modes A +~Z*+/~~176 and 
A+ ~S*~ 
Further results are obtained by fixing the parameter 
values. For the short distance enhancement factor 
f AC=l which may be calculated by considering the 
renormalization of the weak vertex due to hard gluon 
exchange [9] we take a value which lies in the middle 
of the range of estimates proposed in [13], [15], and [16] 
and thus 

f_~c=1=1.9 f+~c=l=(f_~c=l)-l/2=O.73 (3.15) 

which leads to 

z~+c=l = 1.12 za_c=l= -0.15. (3.16) 

For the values of the quark model wave function over- 
lap parameters H2 and H3 we use the best fit values of 
[30] which were obtained from a fit to the ordinary 
A C = 0 nonleptonic hyperon decays. Thus we take 3 

f~c=o . H2 = 0.75 GeV (3.17a) 

f ac=o .//3 = - 0.62 GeV. (3.17b) 

There exist two independent checks on the value of H2 
in (3.17a). Firstly, the hyperon beam experiment at the 
CERN SPS produced a data sample of > 1000 f2- 
which resulted in a new f2- partial width determination 
of[33] 

F~-~aK- ~0.8 101~ s -1. (3.18) 

The same experiment showed that the asymmetry in 
this decay is consistent with zero, as predicted in our 
quark model. Since there are no factorizing contri- 
butions to g2--~AK- the quark model rate is pro- 
portional to IHz 12 [see Eq. (3.12)1. Using the numerical 
value (3.17a) we calculate I't?-.AK =0.64 101~ s -1. 
The agreement is satisfactory. A second indirect con- 
firmation of the value of (3.17a) comes from a recent 
calculation of the matrix element (B'I~e'p.o.[B) using 
harmonic oscillator wavefunctions for the baryons 
[341. The above matrix element determines the proper- 
ties of the non-leptonic hyperon decays (see'next 
section) and its calculated value is in agreement with 
the best fit value found in [35] if the currently accepted 
values o f f _  ~c=~ are properly included. Since latter 
approach was found to be equivalent to the quark 
model calculation (see Sect. 4 and [30]) the calculation 
of [34] gives further support to the estimate (3.17a). 
There is no independent check on the value of H3 in 
(3.17b). The value (3.17b) was determined in [30] by a 
common fit to the p-wave hyperon decays. 
Recently there has been an interesting suggestion by 
Shifman et al. [36] who argue that there exist an 
additional SU (4) 15 contribution to the A C= 0, 
A Y= - 1 nonleptonic hyperon decays that arise from 
soft gluon effects. They evaluated the gluon exchange 
diagram Fig. 2 and found that its contribution to the 
operator product expansion due to imperfect GIM 
cancellation from soft gluon contributions may be 
larger than had been previously assumed. The main 
effect of this new term is to considerably enhance and 
change the structure of the factorizing contributions 
corresponding to diagram I. One finds that this would 
imply a corresponding reduction of the contributions 
of diagrams II and III if the same hyperon decay data 
were fitted. This in turn would result in a lowering of 

3 Our normalization of H 2 and H3 differs from that of [30] 
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Table 8. Partial width (in units of  10 lz s -~) and asymmetry c~ for 
1 /2+~1 /2  + + 0 -  in the quark model, SU(4) and in the current 

algebra approach. Our asymmetriy a is defined such that c~]~p~_ is 
positive 

Quark SU (4) Current  
model algebra 

P ~ F c~ P 

C +--*An + 0.08 0.86 0.28 0.0 0.38 - 1 . 0  
C + ~ Z ~  + 0.09 - 0 . 9 9  0.05 - 0 . 7 6  0.55 - 0 . 9 7  
C~--*S+~z ~ 0.09 - 1 . 0 0  0.05 - 0 . 7 6  0.55 - 0 . 9 7  
C~- ~2;+ ~/ 0.27 - 0 . 9 6  . . . .  
Co~ ~ Z + ~  ' 0.35 - 0 . 8 8  . . . .  
C ~ p ~  ~ 0.89 - 0 . 6 8  0.63 - 0 . 3 4  0.16 - 0 . 8 8  
C~- ~ ~  0.22 0.0 0.07 0.01 0.00 0.0 
A+--,I2+K ~ 0.98 - 0 . 8 6  0.04 1.00 0.62 - 0 . 9 4  
A + ~ ~  + 0.08 - 0 . 9 6  0.04 1.00 1.23 +0.64 
A~ ~ 0.27 - 1 . 0 0  0.17 - 0 . 7 7  0.20 - 0 . 9 7  
A~176 "~ 0.39 0.38 0.16 0.49 0.08 -0 .63  
A~ 0.43  0.0 0.17 0.06 0.26 - 0 . 2 2  
A~176 ~ 0.08 0.92 0.19 - 0 . 8 5  1.28 - 0 . 9 0  
A ~ 1 7 6  1 0.18 0.95 - -  - -  0.03 0.0 
A~176 0.79 - 0.97 . . . .  
A ~  + 0.24 - 0 . 0 3  0.48 - 0 . 4 2  0.89 +0.50 
T~ ~ ~  ~ 6.87 0.38 0.11 - 0 . 1 9  1.42 - 0 . 9 8  

the fit values of Hz and//3.  Since this new term is not 
effective in the A C= 1 case, this would directly result 
in a reduction of the charm changing decay rates com- 
pared to an evaluation using (3.17). We believe that 
the authors of [36] have considerably overestimated the 
contribution of diagram Fig. 2. Apart from theoretical 
arguments that can be raised against the choice of 
certain parameters used in [361 that enhance the con- 
tribution of Fig. 2 one can directly confront the resulting 
prediction for the rate of e.g. f 2 - ~ ~  - with the 
recent experimental value 

f ~ - ~ % - ~ 0 . 3  10 i~ s -1 (3.19) 

from the CERN hyperon beam experiment [331. 
The decays f 2 - ~ ~  ~ provide a clean test of quark 
models since only diagram I contributes. Using the 
model parameters of [361 one calculates ~2 I01~ s -1 
for (3.19) whereas one finds ~0.11 101~ s -1 if the soft 
gluon corrections are omitted. This shows that there 
is some room for such a new term, however, not at the 
strength proposed on [36]. We have checked that the 
inclusion of such a small additional contribution 
improves the overall fit to the A C= 0 1/2 + ~ 1/2 + + 0- 
nonleptonic hyperon decays in [30], without, however, 
affecting the fit values H 2 and H 3 (3.17) appreciably. 
In the realm of charmed baryon decays the importance 
of the contributions of diagrams II and III may be 
indirectly appreciated by calculating decay rates using 
diagram I alone. From Tables 6 and 7 it is clear that 

only a very small number of possible charmed baryon 
decay channels are fed from diagram I. From these one 
obtains the rates 

Fco+= 1.27 1012 s-1 

Fa+ =1.77 10 i2 s -i  

FAo = 1.79 10 iz s -i 

Fro =8.04 1012 s -1. 

(3.20) 

This has to be compared with the corresponding semi- 
leptonic rates as calculated by Buras [31] (into e or g) 

F~ol.=0.6 1012 s-1 

F~l.= 1,45 10 i2 s-1 

F J J =  1,45 1012 s -1 (3.21) 

F~J'= 1.44 1012 S - 1 .  

If the contributions from diagrams I were really 
dominant, one would obtain very large semiteptonic 
branching ratios which seems unreasonable from what 
is known for the corresponding charmed meson decays. 
Returning now to (3.17) we note that the fit to the 
hyperon decay data can only determine the product of 
f j c = o  with the wave function overlap parameters//2 
and Ha. One expects f_ ac = o >f_~c = 1 on general grounds 
since the average effective mass of the quarks and thus 
the subtraction point for evaluating the hard gluon 
corrections is lower for A C =  0 decays [13, 16]. For the 
ratio off_ Ac=~ and f_ Ac=l we use the same value as in 
our previous calculation [6] 

f_AC = 1/f_AC = 0 ~ 0 . 5 4  (3.22) 

which is at the lower end of the range of values cal- 
culated in [16]. Uncertainties in the theoretical 
determination of the ratio (3.22) would change our 
rate estimates accordingly. 
Concerning the vector meson weight factor a v in 
(3.7-3.10), (3.13), and (3.14) we note that av= 1 in a 
pure U(2, 2) approach. Since, however, the same model 
predicts fa./f~+(=fK)=l/m o [see (3.4)] compared to 
the experimental value ~-, 1.46~rap we have decided to 
multiply the vector meson amplitudes by the factor 1.46. 
All the parameters appearing in the quark model 
amplitudes are now fixed and one can proceed in the 
evaluation of the numerical predictions of our model. 
We reiterate at this point that due to the theoretical 
uncertainties involved in estimating some of the par- 
ameters the numerical results should be treated with a 
certain amount of caution. Nevertheless we felt that it 
would be useful to present our results also in a definite 
numerical form in order to provide a guiding pattern 
for the analysis of charmed baryon decay data expected 
in the near future. 
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Table 9. Partial widths for decays 1/2 +~  3/2 + + 0-  (in units of  10 ~z 
s-~). Second and fifth column: this quark model calculation. 
• denotes kinematically forbidden processes. Third and sixth 

column: SU(4) result normalized to f2----,AK-. Because of  r/-~/'  
mixing there are no SU(4) predictions for q-decays. T O decays are 
not related to I 2 - ~ A K -  (see text) 

Q.M. SU(4) Q.M. SU(4) 

C~" "-,27"~ + 0.23 0.17 A~176 ~ 0.31 0.20 
C~ ~2~*+~ ~ 0.23 0.17 A ~  - 0.63 0.41 
C ~ Z * + r l  0.31 - -  A ~ 1 7 6  ~ 0.29 0.18 
C~--,~*+tl ' x x A~ ~E*%? 0.01 - -  
C+---,A+I~ "~ 0.51 0.41 A~ *~ x x 
C + ~ A + + K  - 1.54 1.23 A~ + 0.57 0.35 
C+ ~ * ~  + 0.11 0.07 A~ ~ O - K  + 0.62 0.36 
A + ~L'*  +/~ ~ 0.0 0.0 T ~ 1 7 6  ~ 0.01 - -  
A+--*~*~ + 0.0 0.0 T~  + 1.02 - -  

Table 10. Partial widths for decays 1/2+--,1/2++1 - (in units of  
1012 s - b  

C + ~ A p  + 0.81 A~ *~ 0.67 
Cg-*X~ + 0.68 A~176 *~ 2.42 
C ~ Y - , + p  ~ 0.69 A ~  *-  3.78 
C~- ~2~+o9 1.84 A~176 ~ 0.37 
C~ ~27+(p 0.06 A~176 2.06 
C~ ~ p K  *~ 1.68 A~176 0.78 
C+ ~ ~  *~ 0.20 A~ + 1.69 
A+ ~27+/~ *~ 1.22 T~176 *~ 3.60 
A + --*S~ + 1.66 

Table 11. Partial widths for decays 1/2+--,3/2++1 - (in units of 
1012 s - l )  

C g ~ X * ~  + 0.11 A ~ z~ *~ *~ 0.38 
C g ~ , * + p  ~ 0.11 A~ *-  0.79 
C+-*S*+o) 0.09 A ~ 1 7 6  ~ 0.26 
C~- ~ Z *  +(o x A~176 0.23 
C~ -'*A +g7 *~ 0.41 A~176 x 
C~- ~ A  + +K*-  1.28 A ~  * - p +  0.51 
C~ ~ * ~  *+ x A~ ~ ? - K  *+ x 
A+~'S*+I72 *~ 0.0 T O ~ , o j ~ , o  0.13 
A-~--'~*~ p + 0.0 TO ~ f 2 - p  + 6.82 

In Table 8 we have listed partial decay rates for the 
decays 1/2+-*1/2++0 - as well as values for the 
asymmetry parameter defined by* 

2k Re A B *  
= (3.23) 

IA 12 + k  2[BI 2" 

The asymmetries are in general close to their maximal 
(minimal) possible value + 1 ( -  1) indicating that p. v. 
and p.c. amplitudes contribute equally to the decay 

4 Our rate values sometimes differ from those given in [6]. This is 
due to using a slightly different f_ ~c= 1 and the introduction of  t t-~/ '  
mixing. Note that the 4 : - 1 0  ~ mixing angle used here has an ap- 
preciable effect on the calculated rates in some cases 

width. For Co + -*S~ + and A ~  - the asymmetry 
is zero caused by the absence of a p.v. contribution. 
This follows directly from the vanishing of the in- 
variant/3 for these decays (see Table 6). 
In Table 8 we have also listed the corresponding SU (4) 
predictions. We have used SU (4) for the dimensionless 
amplitudes A and B, 20"-dominance for x/f~ff and 
hyperon decay data in the manner of[17] supplemented 
by the T o sum rule in (2.29). The resulting amplitudes 
were scaled by the ratio of enhancement factors (3.22). 
In general there are large discrepancies between the 
SU(4) and quark model results for both rates and 
asymmetries. Note in particular the factor 20 difference 
in the predicted rates for T~176163 ~ and the difference 
in the predicted asymmetry c~ for C~--,Arc + . For the 
latter SU (4) predicts e = 0 due to the vanishing of the 
p.v. contribution (see (2.10) and also [18]). The 
discrepancies between the results of the two models can 
directly be traced to the explicit mass breaking factors 
present in our quark model approach. Measurements 
of branching ratios and asymmetry parameters are 
necessary to resolve the question of the importance of 
symmetry breaking effects in the decay of charmed 
baryons. A discussion of the current algebra plus soft 
pion results given in Table 8 will be presented in Sect. 4. 
In Table 9 we have given the results of our quark model 
calculation for the decays 1/2 + -*3/2 + + 0-. One notes 
the predicted vanishing o fA + ~ Z * § and A § --, ~* ~ +. 
The same result was obtained in Sect. 2 using SU (4) 
and 20" dominance for ~eff. The quark model result 
is more powerful in that it predicts a vanishing rate for 
a general mixture of ~f~0', and ~4,~ 4. Note also the 
small value predicted for the rate T ~ 1 7 6  ~ which is 
due to the fact that this decay proceeds via diagram I 
and is proportional to the small )~A_c=I (3.16). The 
small rate for A~176 "~ is a consequence of t/l-t/s 
mixing which in this case effects an almost complete 
cancellation of the relevant ~/1 and r/8 contributions. 
We have also included in Table 9 SU(4) predictions 
using SU (4) symmetry for the dimensionless amplitude 
B(M1 +M2), 20" dominance for -~eff and as input the 
0 - * A K -  rate (3.18). We also assume that the decay 
is entirely parity conserving which is consistent with 
the data [see discussion following (3.18)]. From 
drawing decay diagrams or explicitly from Table 7 one 
notices that the Co+ and A ~ decays are directly related 
to f 2 - - * A K - ,  whereas T~ + and T~176163 ~ are 
related to f2 -~~  We have refrained from giving 
SU(4) predictions for T~ + and T~176 ~ for 
several reasons. First there may be a SU(4) 15 con- 
tribution to f2- -* ~-~ as discussed above (see also [37]) 
which means that it may be too naive to use the ex- 
perimental f 2 - ~ o r c o  rates as input in the SU(4) cal- 
culation. Secondly such a comparison depends on the 
values of the ratios .AC=I, .AC=O z_+ /,~_+ which are quite 
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sensitive to input assumptions. Otherwise the pre- 
dicted SU(4) rates are not very different from the 
quark model predictions which reflects the simple 
structure of these transitions. 
In Table 10 and 11 we have given rate predictions for 
the cases 1 /2+~1/2++1 - and 1 /2+~3/2++1- .  
Future measurements will be able to test these pre- 
dictions. 
Summing up all the partial rates in Tables 8-11 we 
arrive at the following total rates for the quasi two body 
decays. 

Fco+=12.9 1012 s - 1  

FA+ = 3.9 1012 S - 1  (3.24) 

F :  =18.7 1012 s -1 

Fro =18.4 1012 S -1. 

As argued before, this rate should already be quite 
close to the total hadronic rate. The above rates are 
larger than the free quark model estimate of Ellis et al., 
who quote ~(1.5-2) 1012 s -1 for mc=].5 GeV and 
~(6-8)  101~ s -1 for m~=2GeV [13]. Their rate 
estimates is closer to the numbers given in (3.24) for 
the factorizing contributions which shows that the 
more complicated quark transitions occurring in 
diagrams II and III may not be adequately estimated 
by calculating the decay of a free quark. In the same 
vain the fact that FA+ ~ ffAo compared to the free quark 
model prediction FA+ = F :  reflects the lack of possible 
decay channels for A + compared to A ~ which cannot 
be accounted for in the free quark model. 
The fact that Fco+~Fao reflects the fact that the do- 
minant piece of the transition comes from diagrams II 
and III and thus from the 20" piece in the weak 
Hamiltonian. Equality of Fco+ and/'Ao is expected for 
20" dominance in the symmetry limit (see (2.7 and [17]), 
as well as for rates into specific spin configurations. 
Our results are close to these predictions and the de- 
viations from equality are mostly due to mass breaking 
effects. 
By comparison with the semileptonic widths of Buras 
[31] [see (3.21)] we arrive at semileptonic branching 
ratios (e or/~) of4~o, 37~,  7 ~ ,  and 8 ~  for C~-, A +, 
A ~ and T ~ As we shall argue in the following one 
mostly expects to see decaying CO+'s in the energy 
region above charm baryon threshold. If the above 
semileptonic branching ratio of 4 ~ for CO+ reflects the 
total semileptonic branching ratio this would mean 
that the semileptonic branching ratio of charmed 
baryons can be expected to be approximately half of 
that of charmed mesons. 
From the partial widths in Tables 8-11 one can cal- 
culate inclusive p, A, and 22 decay rates by considering 
the various possible decay chains with their known 

branching ratios [38]. One finds (in units of ]012 S -1 )  

Fco+~p+ x= 5.7 + 2.0+ l.8; 

Fco+_.A+X=3.2; Fco+_~• (3.25) 

where the inclusive proton rate is thefultinctusive rate. 
The second and third term in the sum FCo+~p+x 
represents contributions from A and 22 decays which 
have to be subtracted if these subsamples have been 
removed from the data. The inclusive rates in (3.25) 
suggest that the yield of A's and X's from Co-decays is 
approximately 33 ~ of the (full) yield of protons. This 
is in qualitative agreement with some recent experi- 
ments in e+e - annihilation [1], where a signature of 
charmed baryon production was observed in inclusive 
baryon production when the e+e - energy was raised 
above charmed baryon threshold. The additional yield 
of baryons was observed to be strongest in the/5- 
channel and occurred at a considerably reduced rate 
of ~ 15 ~ in the A-channel [1 ]. Our calculated inclusive 
rates (3.25) show that the Co + preferentially decays into 
p's compared to A's, however, the effect is not as big 
as indicated by the data 5. 
If the experimentally observed large suppression of 
excess A's (or A's) persist in future data, one may have 
to look for sources other than Co + for excess baryons. 
One possibility would be that one is also observing 
weak decays of the C ~ and C(  + members of the C1 
isotriplet. This could be the case if the mass values of 
the C1 isotriplet turn out to be lower than the QCD 
estimate of [11] which could mean that C o and C(  + 
have to decay weakly because of phase space reasons. 
There also exist some inclusive Z-data in e+e -- 
annihilation which shows that the yield of I~'s also 
increases after charmed baryon threshold [2]. The 
increase in the inclusive yield was estimated at AR~ 

0. ] 2 _+ 0.05. It is not clear how relevant this data is to 
our analysis since the data taken above charmed 
baryon threshold are at 6-7 GeV. The above AR~ is 

5 A heuristic explanation of the predominance ofp's over A's may 
be obtained from the following argument. The flavour wave function 
of the proton contains fewer terms than that of the A. This is con- 
nected to the fact that the proton lies on the edge of the SU (3) weight 
diagram whereas A lies in its centre. Therefore each wave function 
component in p carries a higher weight than those of the A since 
both wavefunctions are normalized to the same value. Since the 
weak transition af'eff connects only to selected wave function 
components in p and A the net result is that transitions to protons 
are favoured. This enhancement mechanism is explicit in the entries 
of Table 6 where we have factored out the normalization factor of 
the quark states in each separate flavour channel. The remaining 
coefficients are all of the same magnitude so that the strength of a 
transition is on the average determined by the inverse of the normal- 
ization factor which is big for particles lying in the center of weight 
diagrams and small for particles on the edges. A striking example of 
this enhancement mechanism is provided by the decay T~176 ~ 
where all three particles tie on the edges of the respective SU(4) 
weight diagrams and where the normalization factor is therefore 1 
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~75% of the AR~ measured in [1]. A reduction of the 
Z-rate relative to p is also indicated in our calculated 
rates (3.25) which give a relative rate of 36% and is 
somewhat smaller than the above number. One im- 
portant observation concerns the fact that our results 
predict that 99 % of the inclusive S rate from Co-decays 
consist of 2+'s  (and 1% of s  which should be 
checked in future charmed baryon production ex- 
periments. 
For the decays of the other charmed baryons A + ,0(T o) 
we expect the inclusive rates to be weighted more to- 
wards the A and S channels since the decaying charmed 
baryons carry one (two) more units of strangeness so 
that the baryon decay products should carry on the 
average one (two) more units of strangeness. This is 
borne out by explicit calculation. We find (in units of 
1012 S -1) 

/'A+ ~ p + X = 0 W l . l + l A  ; 

FA+ _~A+X = 1.7 ; Fa+ _+Z_+ + X =  2.2 (3125) 

Fao~p+ x=O+ 9.2 + 2.3 ; 

FAO_+A+x=14.4; FAo~z+_+X=4.4 (3.26) 

and T o decays into A + X  100% of the time. Again the 
inclusive Z -+ rates are made out of inclusive 2 +'s 99 
of the time. 
If the A +'~ and T were copiously produced in e+e - 
annihilation above their respective thresholds, their 
decays would primarily feed into the A-inclusive 
channels. This makes the lack of observation of ad- 
ditional A's in the Spear experiment even more puzzling 
since most of the data is taken in an energy region 
where pair production of A's and ~ s  could occur. 
We believe, however, that pair production of A's and 
T's is considerably suppressed relative to theproduction 
of the lower lying charmed baryons, due to form factor 
effects. In fact, making a simple ansatz for the electro- 
magnetic form factors of charmed baryons based on a 
dipole ~P, 7 ~' vector dominance picture one arrives at 
the following relative production rates 

CoC o : AA : T~ p~ 1 : 0.2 : 0.05. (3.27) 

This shows that the decay characteristics of Co + -decays 
should in fact determine the additional baryon yield 
after charmed baryon threshold to a high degree. 
As a last point we discuss the average multiplicity into 
charged and into all particles for Co+-decays. Using 
known branching ratios for the particles in the decay 
chains we calculate 6 

(nc~) =2.7 (3.28) 

6 We count K~ as two particles and take K~ to go undetected 

and 

( n a i l )  = 3.9. (3.29) 

This means that the C~ decays on the average into 
several particles and should be looked for in multibody 
final states. Also one expects jet-like configurations 
since the particl~es originate mostly from resonances. 
The average multiplicity (na~l) is approximately the 
same as given in the statistical model [7, 10] so that 
measurements of this quantity are not useful to 
discriminate among these two models. The correspond- 
ing numbers for A ~ and T O decays are quite Similar 
and are not given here. 

IV. Current Algebra Results 

Since the current algebra plus soft pion technique has 
led to a plausible description of the nonleptonic 
hyperon decay data in 1/2+--+1/2++0 - it is quite 
natural to try and extend this method to study the 
corresponding charmed baryon decays. We shall do 
this extension in the most straightforward manner in 
the spirit of SU(4), being, however, aware that the 
different kinematical range involved in latter decays 
may require additional considerations. Least one 
worry that the soft pion, kaon and eta extrapolation 
necessary in latter application are problematic we refer 
to the interpretation of the current algebra plus soft 
pion method in terms of quark diagrams which 
ameliorates some of these misgivings [30]. 
The current algebra plus soft pion method for the 
description of nonleptonic hyperon decays have been 
discussed in detail in [35, 39] and we therefore only 
need to give a brief recapitulation here. The transition 
amplitude BI--,Bj + Pk is written as 

T~jk= ( ekgjl~w(O) ln,> 

= ~l (Aijk -~- Bijki75) U. (4.1) 

The LSZ reduction technique allows one to reduce the 
pseudoscalar meson in the final state. The off-shell 
meson field is then related to the corresponding axial 
vector current using PCAC. Finally, one exploits the 
current algebra commutation relation between the weak 
Hamiltonian and the axial vector and vector currents. 
Explicit pole contributions due to near by ground state 
mesons and baryons are separated off and retained 
before the soft meson limit is taken. The result of these 
manipulations are given by the following expressions: 

fac 1 Aqk = AiSk --~ (BjI[Q~ (0), ~p.c.(0)] IBm) (4.2) 

B B fac -q- ~ gJmkSim ginkSjn 
i~k = ijk ~ M,~--MI ~-~ Mj--M,," (4.3) 
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The 2nd term in (4.2) is usually referred to as the equal 
AETC time commutator term ~Uk " In (4.2)fp denotes the 

reduced pseudoscalar meson decay constant�9 Qk(O) is 
the SU (4) charge with the quantum numbers of the 
meson Pk and operates on the baryon states to its left 
and right as a SU (4) generator. Thus the matrix element 
in (4.2) is reduced to a sum of terms of the form 

( B 2  [5r [B1) = g~Slzu (4.4) 

where both B1 and 1t2 are members of the 20' multiplet. 
The same spurion amplitude S u appears also in the pole 
contributions to the p.c. amplitude Bij k in (4.3) since 
the sum over pole contributions in B~;k is usually 
assumed to be well approximated by the ground state 
baryons. The strong coupling constant g).k appearing 
in (4�9 denotes the strong coupling (BjBmPk). 3rac ~'i~k and 
Bf"~ denote the factorizing contributions as given e.g. idk 
in Appendix A. The relative scale and phase between 
the p.v. and p.c. amplitude is set by the generalized 
Goldberger Treiman relation which gives 

fvk -(gA)uk(M~+ Mj) . (4.5) 

gijk 

Before evaluating (4.2) numerically we wish to make 
some comments on how the SU (3) application of (4.2) 
to the ordinary nonleptonic hyperon decays appears 
in the light of the discovery of SU (4). It is well known 
that the symmetric coloured quark model predicts that 
only the octet component of Yfp.~. contributes to the 
matrix element (4.2) at the level of SU(3) [23, 24]. 
There are then two SU (3) tensor invariants describing 
(4.4) corresponding to a general F and D structure. 
One possible coupling is given by 

I=-Bmtkq B,,,MHt~] ~ (4.6) 

which can be seen to correspond to a F/D ratio of - 1. 
The other SU (3) tensor invariants involve contractions 
within Ht~l~. The rationale for using only the tensor 
invariant (4.6) and thereby a F/D = - 1 for the matrix 
element (4.4) in the old quark model calculations was 
based on rather imprecise notions of connectedness of 
quark line diagrams [30, 35]. The rationale for using 
only (4.6) is now of course provided by the GIM 
mechanism which tells us that contractions within Htt~ ~ 
cancel (or almost cancel [36]).This is also the reason 
that some SU (4) results for the SU (3) sector ofhyperon 
decays were already anticipated in the pre-SU(4) 
calculations, as e. g. the ratio D/F--- - 1 which leads to 
the sum rule (2.30) and the vanishing of the matrix 
elements (B 10 I~/fp.~. ]B 8) and (Bt0 ~p.~. [B10 ) [23]. 
The factorizing contributions in (4.2) correspond to 
the K and K* contributions of [35, 40] which were 
estimated from a pole model description ofnonleptonic 
K-decays. The size of the K and K* contributions used 

in [35, 40] are in general larger than what one calculates 
directly from the factorization prescription. This is of 
course again a reflection of the fact that the nonleptonic 
enhancement calculated from hard gluon exchange is 
not sufficient to explain the AC=O transition am- 
plitudes. 
For the charm changing transition one believes that the 
calculation of the renormalization effects due to hard 
gluon exchange is more reliable since the mass scale is 
higher for the charm changing processes [13, 16]. Thus 
one anticipates that the factorizing parts in (4.2) are 
well accounted for by the estimates in Appendix A. In 
order to fix our notation we give the results of evalu- 
ating the amplitudes (4.2) for the two transitions 
C~- --*ATz + and A~ ~ 

1. C~--+Azc + 
A = A fae 

B=Bfar + A) 

f f 
�9 ( +A) 

2. A~ 

A = d fac q- (6)I/ZF fK- t 

B = B fac "-~ 2 (6)l/2F'g (A ~ + A) 

�9 ( ( 3 f - d ) 3  
\(z+ ~ 

(4.7) 

f 
(:Co - C o) (C o + A ~ )" 

(4.8) 

In (4.7) and (4.8) we have used particle symbols for the 
masses of the particles, m N is the mass of the nucleon, 
g the strong coupling g =  13.5, (d+f)=If2, d/f= 1.73 
in agreement with the factorizing part and 2 F '  
=12.3 10 .8 GeV as follows from the fit in [35]. We 
have used SU (4) for the axial vector coupling which 
means that the strong coupling is broken according to 
the generalized Goldberger Treiman relation (4.5). 
The amplitudes for the other processes follow from 
(4.7) or (4.8) by simply applying SU(4) to the relevant 
matrix elements�9 
Because of the particular nature of the symmetry 
breaking of gUk which favours coupling to heavy 
baryons the second term in the p.c. amplitude do- 
minates. These are the contributions where the charmed 
baryon first emits a meson and then undergoes the 
A C= 1 transition. This is different from the quark 
model approach where we found that the dominant 
contribution in the case of large M1 masses occurs in 
the configuration diagram IIa where the charmed 
quarkfirst decays into a noncharmed quark and then 
emits the meson. The nonfactorizing contributions in 
(4.2) are of lower order in M1 than the factorizing parts 
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which is again different from the quark model, where 
both parts are of similar order. 
The numerical results appear in the last two columns of 
Table 8. When comparing with the quark model results 
there does not seem to be an apparent trend of 
deviations, whereas differences between the two set of 
results are pronounced for some single channels. 
Future experimental results have to decide which of 
the two sets of predictions are closer to reality. 

V. Summary and Conclusions 

We have argued that charmed baryons decay pre- 
dominantly into two body and quasi two body final 
states belonging to the ground state baryons and 
rhesons. We have presented the results of a quark 
model calculation of these decays starting from an 
effective weak Hamiltonian that incorporates hard 
gluon exchange effects. We give detailed predictions 
for branching rates and asymmetry parameters. We 
found that decays into states at the edges of flavour 
symmetry weight diagrams are favoured which may 
explain why more protons than A's are seen from 
charmed baryon decays. 
We have stressed that some of our quark model pre- 
dictions are quite model independent, as e.g. predicted 
multipole structure or vanishing of certain decay 
modes. Other predictions depend on parameter choices 
and on the way mass breaking effects are incorporated 
in the quark model wave functions. We found that 
SU (4) sum rules that are based on the SU(4) charge 
conjugation property of the decay amplitudes are 
badly broken in the quark model whereas sum rules 
that are based only on the/ ,  U, and V spin properties 
of the interaction are approximately satisfied. Due to 
the dominance of a certain class of  quark model 
diagrams the transitions are also well approximated 
by 20" dominance. We have also given SU(4) and 
current algebra plus soft pion prediction for certain 
spin channels. There are large differences between the 
predictions of the three models which can be tested in 
future experiments. Our total life time estimates are 
5-10 times smaller than the free quark model estimates. 
Reasons for this discrepancy are pointed out. 
Summarily speaking, the phenomenology of charmed 
baryon decays provide us with a rich testing ground 
for our ideas on how on the one hand quarks weakly 
interact with each other at short distances and how on 
the other hand the fundamental quark interaction is 
imprinted on the quarks in the final states which are 
bound by long distance forces. We have tried to raise 
some of these issues by doing some explicit calculations 
in this paper and hope to have provided some stimulus 
for further theoretical and experimental work on these 
problems. 
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Appendix A 

Factorizing Contributions 

The current matrix element of two baryons belonging 
to the 20' has in general two SU(4) reduced matrix 
elements which can be specified in terms of the mea- 
sured form factors of current transitions involving 
known baryons as has been discussed by Buras [31]. 
In the charm changing case one finds, by following 
the quark lines in diagram I, that the only possible 
contributions come from transitions that involve a 
charged ~+ (or p+) or a neutral K ~~ (or/~,0) in the 
final state. The results of calculating the factorizing 
contribution can be conveniently expressed by the 
two tensor invariants/1 and I2 defined in (2.23) and 
calculated for individual processes in Table 6. For 
1/2+~1/2 + + 0 -  one has 

A f a c  = G z+_fcfe(M1 _ M2)(3(I1 +I2)H~3,) 

]/2 +1(11 -I2)H~(6")) (A 1) 

Bfac - G Z+fcfe(M1 +M2)(3(I1 +12)i_1j(3") 

1/2 -/2)//3(% 

and for 1/2 + ~1/2 + +1 - 

A _G_G_ 2 3 +12)1-13(3")+1(/1 1 - , -  Z+ fcm~fv(-j(I1 -I2)H3 (6.)) 
V2 

Az=O 

B 1 - 
(A 2) 

a 2 3 
1/5 z_+ 3.) + 

+ (/1 + 

G 2 (~(I1 + I2)H2 (3.) 
Bz= ~ Z +fcm~fv M1 + M2 

+�89 - X2) 

In (A 1) and (A 2) the (+)-sign refers to decays in- 
volving a u + (p+) and the (-)-sign to K "~ (K'*~ 
The pseudoscalar meson coupling constants are de- 
fined by 

(Tz + JAil0)=if.+q, (h  3) 

and correspondingly for/(o.  The vector meson cou- 
pling constants are defined by 

2 e:~ (P + [Vu [ 0) = rnpf o + gu, , (A 4) 

and correspondingly for/~,o. We use f~§ = 0.932 m.+, 
f~ = 1.28 f ,+,  fp+ = 0.247 and fK, =fp +. For the con- 
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venience of writing we have dropped explicit reference 
to the arguments of the form factors H~. 
As described in [31] the q2=0 values of the various 
form factors H~ are fixed from the vector and axial 
vector form factors of known baryons. Following 
Buras [31] one has Hl(6)(0)=Hl(3*)(0)=l, //2(6)(0)= 
-2.03, H3(6)(0)=-0.33, H2(3")(0)=1.79, H~3*)(0)= 
0.71. We prefer to use the invariant form factors 
H[(q 2) to continue from q2 = 0 to  q2 = m 2 as suggested 
in [32, 41] rather than the G~(q 2) and GM(q 2) as in 
[31]. Continuation in terms of the latter form factors 
may be a doubtful procedure in the timelike region 
(see [42]). We use power behaved form factors of the 

N - 1  

form 1-[ (1-q2/ (m~, ,p ,+nc(- l ) )  -1 with mD,=2.006 
n = 0  

GeV, me, = 2.14 GeV and a Regge slope c(= 0.25 GeV-2 
as suggested by the 7 j -  7 j '  sequence. For / /1  and//3 
we take the canonical power behaviour N :  2 and for 
H2 the canonical N =  3. Since nothing is known about 
the mass values of the even parity mesons DA and F A 
that appear in the form factors//3 we use the same 
mass values for these as for D* and F*. 
In the case of decays involving a 3/2 + baryon the only 
decays with non-vanishing factorizing contribution 
are T ~ 1 7 6 1 7 6 1 6 3  ~ and T~ + (p+). The vector 
and axial vector transition matrix elements that are 
needed for the evaluation of the factorizing contribu- 
tion are obtained by relating them to the known N -  A 
transition form factors [43]. 
One has for 1/2+-~3/2 + + 0 -  

A = 0  

B=__G (a 5) Z+_ fcfI "1*CA 

where C A (0)= -2 .08 from PCAC. The p.v. amplitude 
A is zero since the 1/2+~3/2 + vector transition is 
assumed to be conserved even for flavour changing 
transitions. 
For 1/2 + ~3/2  + + 1 - one has 

M, + cA Z +_ f m fv I f 
2Mz 

A2=0 

G 1 
A3 --- ~ Z +- fcm2 fv  I* 

and 

G Ma +M2 
B' = - ~  z + fcm}sv s? 2M2 CV 

B 3 = _ B 1/Q + 

Ma(M  + 

(A 6) 

(A 7) 

For the p.c. amplitudes in (A 7) we have assumed pure 
M~ structure as is predicted in the quark model and 
is realized to a high degree in N - A  photo transitions 
(see e.g. [42]). In (A 5)-(A 7) we have assumed SU(4) 
to hold for dimensionless invariants, where dimensions 
in the covariants are removed by multiplication with 
powers of ( M I + M 2 )  -1 as in [31]. In deriving (A 7) 
we have used quark model results to relate the two 
non-zero axial vector 1/2+~3/2 + form factors [43]. 
Numerically Cv(0)= 8.25 as follows from CVC [43]. 
Continuation from q2= 0 to qZ= M3Z is achieved by 
using the above power behaved form factors with a 
power N = 4  [41]. Values for the tensor invariant I* 
are listed in Table 7. 

Appendix B 

Connection between Quark Model and 
Soft Pion Approach 

The connection between the equal time commutator 
(ETC) term in the parity violating amplitude A of 
1/2 + ~ 1/2 + + 0-  that arises in the current algebra plus 
soft pion approach and the contributions of diagrams 
IIa and IIb in the quark model approach can be 
established by performing some tensor manipulations. 
The ETC term has been worked out in (4.2) and is 
given by 

A ~  c = - T p  ( ( BflQ•IB') (B'[Jt~p.c.tB,,) 

- (BaiJt~p.c.In ' ') (B"IQr[B~,)) (B 1) 

where one sums over all intermediate 20' states B' and 
B" that contribute to (B 1). 
We want to write (B 1) in tensor notation. The tensor 
invariant for the matrix element (B'IQ~[B) is given 
by the antisymmetric invariant 

, (~,ctab] ~,.tbd~n r ~a (B2) (B IQeIB) = , -  - ~  ju~tablt~,j,, 

where (Q~)~ is the normalized matrix representation 
of the generator Q~. For the matrix element (B'I ~p.o. [B) 
one has 

(B,I~p.c.IB) _,B, , , , tuln rltijl (B 3) - -  ~ ~ r n i i j j ~ t . t  [klJ 

where a is the reduced matrix element of the coupling 
(B 3). Note that there is only one SU(4) coupling for 
(B 3) since 20' occurs only once in the product 

20'| + 36 + 6-0+ 140'+ 140 '' (B 4) 

We can then rewrite A ETc in the tensor representation 
and obtain 

AETc - 4  ( (Q , )~ ( B-~ t"b l - B~tbd) B'~}db l B;''tktl ~ = jp  

�9 m utm (B 5) ~ ' m [ i j ]  J_z [kl] 

~ r n [ k l ] I ~ t t a  ~ [ i j ] ~ t t c [ a b ] [ I ~ a  ~ d 
-'-'r "-',,tUl'" tkq'-'- ~'-'~tdbl--Bdtb~l)(Q~,),~) 
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where a summation over the 20' states B; and B;' is 
understood�9 
We use the completeness relation for the sum over 
intermediate 20' states 
s ~ra[kl] l ~ 2( ,~m.~k~l  m 1 k 

L,a U c [ d b ] - - - f f k v c t ~ d V b - - f ~ c t } d 3 b )  

1 m k l m l k 
AI-~((~ d ~ ct~ b --- t~ d t~ ct~b ) 

1 [.~m.~k.~l m l k --~Wb ~ a - -  (~b 6~[d) (B 6) 

to rewrite (B 5) and obtain 

A E T C  2a fBm[al]B ~ r "~kH[iJ] 
~f17 7 \ fl m [ i j ] k ~ T J a  [kl] 

J P  - k [ l a ] - ~  - ~  sm rr[i j]  
+2Bp 1Jitjm](~e)a r/[kt] 

Dm[al] l~e  { f l  ~i 12[[ki] 
- -  ~t.,fl *~ralij] \,','~y,,'k * a  [fa] 

") K k [ l a l  l7 x { D  ~m I4[iJ]'~ (B 7) 
- -  z , ~ f l  JJ i [ jm] \k3~]a  ~t*[kl]] 

The first row in (B 7) results from the first commutator 
term in (B i) where the SU (4) charge acts on the out 
state baryon, and the second row in (B 7) results 
from the second commutator term in (B 1) where the 
SU(4) charge acts on the in state baryon. As is re- 
quired by CP invariance, the two terms correspond- 
ing to the contractions of Fig. III cancel. The remain- 
ing terms in (B 7) correspond to the tensor invariants 
I 3 and I3 which together form the correct CP com- 
bination 13- = 13-  ~73. Since latter invariant also deter- 
mines the quark model contribution of Figs. IIa and 
lib in the symmetry limit (see 3.5) this proofs our 
assertion of the group theoretical equivalence of the 
two approaches. 
The above derivation is of course no proof of the 
dynamical equivalence of the ETC contribution and 
the contributions of the quark diagrams IIa and lib. 
The result is, however, very suggestive of the existence 
of such an exact dynamical equivalence. If this were 
true this would be to our knowledge the first example 
where a soft pion result has its exact counterpart in 
the framework of the quark model. 

Appendix C 

Definitions of Amplitudes and Width Formulae 

In order to clearly differentiate p.v. and p.c. ampli- 
tudes, the former will always be denoted by A~ and 
the latter by B~. We shall also list the number of con- 
tributing LS amplitudes in each case, which we write 
as FLS. For convenience of notation, we introduce 
the abbreviations O _+ = P1/'2 -+ M1M2, where momenta 
and masses are labelled in the order 1--2+3.  The 
c.m. momenta of the decay products are then p~ 
= (O + O _)112/2 311 w e  also use k 2 = O _/Q +. 
We shall define p.v. and p.c. helicity amplitudes by 

p.v .  
- (~.o.) ( c  1) 

/ / 2  t; Las  ~ g 2 q ;  2223  ~ H-2~,-z2 - x 3 .  

J. G. K6rner et al. : Weak Decays of Charmed Baryons 

The decay width is then given by 

1 P c  1 [ ] / ~ p . v .  2 

F =  8~M* a (2s,+1) ~ ~v1,,2,;~.~3 he l .  (21 > 0 )  p.~. 2 (C 2) + IHI. 2=,31 ) 

Case A : 1/2 + ~ 1/2 + + O- 
p.v .  , LS-amplitudes: Fo, 1/2, FP,~)2 

Invariant amplitudes : (~u = 2 m) 

(PzP3IXw(O)IP,)=~2(A +iBTs)u * (C 3) 

Helicity amplitudes: 

H {pp:~:} = 2 ] / 2 I ~ - * A  (C 4) ,,2;t,2o [F -B 

Case B: 1/2+--+1/2 + +1 - 

LS-amplitudes : p.v. p . . . .  p.r /'0,1/2, ff2,3,2, /"1,1/2, fff,'~}2 
Invariant amplitudes: (e ~ G = - 1) 

( P2Pa]JC~w(O)IP,)=ft2e*3 (A, iGys + A2P,flys 

+ B~Ya+ B2Pla ) (C 5) 

Helicity amplitudes: 

/1 pp:::} =4  I ~ - + A l l  
/2;-1/2 -* [ - ~ _ - _  B, J (C6) 
p.v .  u{--} - 

1/2; 1 , 2  0 - -  

- M 3  t~-~_(MI+M2)Bt+VQ+MlP~ B2 

Case C: 1/2+--+3/2 + + 0 -  
�9 p .v .  . LS-amplitudes Fz,a/2, F~,'~)2 

Invariant amplitudes: 0]~G=2m) 

( P 2 P a l ~ w ( O ) [ e l ) = ~ 2 ( A P l a i ~ s  + BPla)U 1 (C 7) 

Helicity amplitudes : 

�9 12;*12 o = 4/-i-~P~(M,/M2) [ ~++ B J 

For the inverse process 3/2 +--,1/2 + + 0 -  one defines 

(P2P3lJgw(O)lP~)=~2(Ap2dys + BP2~)u I (C 9) 

with 

[ / U A  } 
1/2;1,2o=4~/]p~ { ~++ B (C10) 

Case D: 1/2+--+3/2 + + l -  

LS-amplitudes: p.v. p.~. p . . . .  F0,1/2, F2,3/2, F2,5/2, 
p.o. p.o. p.o .  Fl,1/2, ffl,3/2, F3,5,2 
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I n v a r i a n t  a m p l i t u d e s :  

(PzP3 [~f w (0)]P1 > --  -a'~2~*3,~b (Alg,b + AzPla~b 

+A3PI"Plb (C 11) 

-4- Bl gabiT5 -4- B2 PtaTb i~ 5 
+ B3Pt,PlbiY5)u 1 

Hel ic i ty  a m p l i t u d e s  : 

.!~2~i!21=2~'2I/Q+A11 
t /gY_B,} (c 

H{pP:V:} - 1 = 2  2 ~  I ~ + ( A 1 - 2 Q - / M z A 2 ) "  

1/2; -*/2 [.- ]/~-f_ ( B 1 - 2 Q +/M2B2) 

go + Vbal ] 
+ Q - (Ma + M2)A2 

2 2 + M1 PEA3) p.v,  
H!p.r } _ 4 */ ;1~20 

] / 3 M z M 3  - ~ _  ( � 8 9  I 

-Q+(M1-M2) 2 I 

I t  is c o n v e n i e n t  to  i n t r o d u c e  also t r ansve r se  m u l t i p o l e  
a m p l i t u d e s :  

M 1  - 1-1"/-rp'c" _1-]-~H~]~;3/21) - -  2 \ * ' 1 / 2 ;  - 1 / 2  

E 2  = ~ 1 2  (3 Uf/~; -1/2 -1 - ~/3 Hf/~23/2 ,) 

p,v.  El _1~ up.". _1/3H1/223/21 ) - -  2 t . - - . t ~  1/2; - 1 / 2  - 1  

_ _ ~  - -  p,v.  M 2 =  (3 HF/'2v/-1/2 -1-/3H1/2;3/21) 
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