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We derive a sufficient condition for confinement of static quarks by a vortex condensa- 
tion mechanism. It admits vortices that are thick at all times at the cost of constraining 
them to a finite volume rli whose complement is not simply connected. The confining 
potential V(L) is estimated in terms of the change of free energy of a system enclosed in 
(1, which is induced by a change in vorticity (= singular gauge transformation applied 
to boundary conditions on LX’& .) For Abelian gauge theories in 3 dimensions the con- 
fining Coulomb potential is reproduced as a lower bound. 

1. INTRODUCTION AND SUMMARY OF RESULTS 

In the work of Migdal, Polyakov, Kadanoff, ‘t Hooft and others [l, 21 on the 
quark confinement problem, the idea is prevalent that one should try to generalize 
mechanisms which prevent spontaneous symmetry breaking in ferromagnets with a 
continuous global symmetry group G to Euclidean gauge field theories. In particular, 
‘t Hooft [2] has emphasized that natural analogs of Bloch walls in ferromagnets 
exist in Yang-Mills theories with a gauge group G that has a nontrivial center r. 
They are sometimes called vortices (and sometimes fluxons [2a, 31). 

In ferromagnets, spontaneous magnetization breaks down when Bloch walls of 
large extension become sufficiently abundant. Absence of spontaneous magnetization 
leads to falloff of the two-point spin correlation function with distance. The simplest 
Bloch walls appear in two-dimensional Ising ferromagnets with spins U[X] = fl E Z, . 
They are called Peierls contours there. The spin direction changes from + 1 to -1 
when one crosses the contour. (In formulas: let b be a link in a lattice; its boundary 
b = ab consists of two points x, y. Define a[b] = U[X]U[ VI-‘. Then a[b] = -1 when 
a Peierls contour passes through the link b.) These Bloch walls have a thickness of 
only one lattice spacing. However, in ferromagnets with continuous symmetry group, 
thick Bloch walls can also appear in which the spin direction rotates very gently as 
one crosses from one side to the other. These thick Bloch walls can be made responsible 
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for absence of spontaneous symmetry breakdown in two-dimensional ferromagnets 
with continuous symmetry group at low temperatures [4, 51. 

We consider lattice gauge theories without charged fields. The place of spins is 
taken by (random) variables U[b] E G assigned to links b in the lattice. For a closed 
path C consisting of links b, -a* b, one defines the parallel transporter U[C] around C 
by 

U[C] = U[b,] *-* U[b,]. (1.1) 

In particular, the boundary I, = ap of a plaquette (two-dimensional unit cell) consists 
of four links b, a** b, , and 

U[j] = U[b,] a*. U[b,]. 

The place of two-point spin correlation functions is taken by the expectation value 
of the “Wilson loop integral.” Let D be a unitary representation of the gauge group 
G and x its character, x(U) = tr D(U). Consider a closed path which bounds a 
rectangular surface of L x T plaquettes. Suppose that 

I(x(U[C]))l < c * e-Ty(L) for T>L. (1.2) 

c is a constant. According to Wilson [6], static quarks will then be confined by a 
potential >, I/(L) if they transform according to the representation D of G and if 

V(L) --f w  as L-00. (1.3) 

In non-Abelian gauge theories one hopes for an approximately linear rise of V(L) 
with L. We will consider theories in v = 3 and 4 dimensions. 

Vortices can (in principle) produce a falloff of (x( U[C])) with L much as Bloch walls 
can produce a falloff of spin correlation functions in ferromagnets [3, 71. The simplest 
vortices have a thickness of only one lattice spacing. Their position is specified 
by a set 5’ of plaquettes which is coclosed, i.e. they form a closed path (v = 3) resp. 
closed two-dimensional surface (v = 4) on the dual lattice. Such a path resp. surface 
can wind around the Wilson loop C. Preliminarily, the reader may imagine (following 
Yoneya [7]) that a vortex on S is characterized by U[$] M y for p E S, y a nontrivial 
element of I’ (r = -1 if r = Z,). The results of Ref. [S] for an W(2) model show 
that such thin vortices can confine static quarks for sufficiently large coupling con- 
stants /3-l (i.e., at high temperatures when Euclidean QFT is considered as a classical 
statistical mechanics), but that they are insufficient to do the same at small 8-l 
(when the center r of G is discrete. For Abelian groups G the situation is somewhat 
different, cp. below). It was concluded that thick vortices should be allowed for. Tn a 
thick vortex it can happen that U@] = 1 for all plaquettes. 

In this paper we derive a sufficient condition for confinement of static quarks. It is 
applicable for arbitrary compact gauge group G with nontrivial center r, hence in 
particular for G = SU(N), r = ZN , N = 2, 3,... . (Among the simply connected 
compact simple Lie groups, only G, , F4 , and E, have trivial center.) Our condition is 
similar in spirit to ‘t Hooft’s conjecture [2] but there are also essential differences. We 
admit vortices which are thick at all times, at the cost of restricting them to a finite 
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volume in space time. A mass gap is not required, instead the result is stated in terms of 
dependence on boundary conditions. We work on a lattice, but at a formal level our 
considerations and results (of Section 2) carry over to theories on continuous space 
time. 

To be specific we take the Euclidean action to be of the form 

(! .4a) 

The function 57 on G is supposed to be real, bounded above, gauge invariant in the 
sense that .JZ(VV,V-l) = Z(VJ, and it must satisfy Z(V) = P’( V-l), for V, V, E G. 
Summation is over all plaquettes p in the lattice /l. The path measure is 

tip(U) = $ n dU[b] eLtu). 
bEA 

(1.4b) 

dU[b] is normalized Haar measure on G and product over b runs over all links on the 
lattice. Our results remain valid for the modified SfJ(2)-models studied in Ref. [8] 
(since their path measure also has the Markov property). The proof is the same. 

To begin with, we should say what a “vortex” is. However we shall see that it is not 
necessary to specify that. Instead it suffices to say what is meant by a “change of 
vorticity.” 

Change of vorticity will be labeled by an element y of the center I’ of the gauge 
group G. If G is Abelian, r = G. Tf G is a (simply connected) compact semisimple 
Lie group then r is a finite group. In any case we write dr for normalized Haar 
measure on l? 

We will need some topology. 
We consider finite lattices /l C EY as cell complexes made of (oriented) O-cells, 

l-cells,..., St-cells. O-cells are points, l-cells are links, 2-cells are plaquettes, 3-cells are 
three-dimensional unit cubes (cubes for short), etc. n-cells are open subsets of UP’, but 
/1 is assumed closed, i.e., it contains with every cell also the cells on its boundary. In 
this way, rl specifies a subset of IhP (in the case of free boundary conditions. For 
cyclic boundary conditions some points on the boundary are identified). Thereby A 
inherits a topology and it makes sense to say that (1 is simply connected, or not. We 
write a for the boundary operator, and p E ac if p has incidence number + 1 with the 
boundary of c, etc. It is convenient to use also the coboundary operator 8. For cells it 
is defined by 

c E 8p if and only if p E ac, etc. 

8 is the boundary operator on the dual lattice. One says that S is closed if aS = 0 
(empty), coclosed (= closed in the dual lattice) if 8s = 0. 

We consider sublattices & of one big lattice (1 whose complement in A is not simply 
connected.” They will be called vortex containers. They are supposed to wind around 

1 In the main text, vortex containers etc. will be labeled by an index pair i, Y which indicates their 
position. 
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FIG. 1. Vortex containers Ai winding around the path C. (a) Three-dimensional case. (a), 
(c) Four-dimensional case. 

(b), 

C, i.e., C cannot be shrunk to a point in the complement of fli in fl. Different vortex 
containers may touch but not intersect each other or the path C. A vortex container 
in three dimensions (four dimensions) is shown in Fig. la (Figs. la, b, c). It can be 
viewed as a three-dimensional (four-dimensional) neighborhood of a path (two- 
dimensional surface) winding around C. Ai are considered as closed v-dimensional 
cell complexes. 

Let && be the boundary of fli . It is a LJ - 1 = 2 (3) dimensional cell complex. We 
consider the gauge theory on fli which is specified by the path measure (1.4) plus 
boundary conditions U on ?flj. The boundary conditions prescribe U[b] for all 
links b E &‘I,. 
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FIG. l-Continued 

A change of vorticity in Ai is a change of boundary conditions U + U, on &I, 
which has the form of a “singular gauge transformation”. (Only equivalence classes 
of singular gauge transformations modulo ordinary gauge transformations are 
relevant. Trnportance of singular gauge transformations was emphasized by Ezawa [9] 
and Englert [lo]; see also [l I]). It may be chosen as follows. Let Pi be a set of links in 
&I, which is coclosed in 8Ai and winds around C as shown in Fig. 1. A change of 
vorticity (in rl+) by y E r is effected by mapping 

UPI - Wbl = UblY if bEPi 

= U[b] otherwise. 
(1.5) 

This does not change U[j] for plaquettes p E 8Ai , but there does not exist V’[x] E G 
which is defined for all vertices x E aA, and such that CJJb] = V[x]U[b]V[ y]-l for 
all links b = (x, y) E ?Ai. 

EXAMPLE. Gauge inequivalent “classical vacua” (configurations U with U[j] = 1 
for all p E ‘?A?) are mapped into each other by map (1.5). 

Let Z(Ai- , cl) be the partition function of the system in Ai with boundary conditions 
U. A change of vorticity produces a change &J)~~~,~ in free energy 

,WIJL~.~ = -1nLG4, Wl-W’L , W. (1.6) 

Our results are simplest to state for gauge group G = SU(2) with center I’ = H, . 
The general result is embodied in Eq. (2.19) of Section 2. For G = SU(2), r has 
only one nontrivial element y = -1. Quarks transform nontrivially under r. 
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Let 

65 = m;x PA- lL,. u . (1.6a) 

Then inequality (1.2) for the expectation value of the Wilson loop integral is fulfilled 
for 

(1.72 

Summation is over all the vortex containers that can be fitted around the loop C. 
0 < fi < co always since &)/)ni,ri, = --(Y)~,,~ for y = --I by definition; the 
maximum in (1.6a) exists since the space G x *.a x G of all boundary conditions is 
compact. Because of translation invariance, arrangement of vortex containers can 
always be made in such a way that the r.h.s. of (1.7) becomes T-independent for large T 
(LT is the area enclosed by C; T > 15). A possible arrangement of vortex containers 
is shown in Fig. 2. 

FIG. 2. A possible arrangement of vortex containers winding around the path C. Their inter- 
section with the xY-plane is shown. 

Requirement (1.3) will be fulfilled, and static quarks will be confined, if an arrange- 
ment of vortex containers can be found such that the sum on the r.h.s. of (1.7) diverges 
to infinity, in the limit T -+ a, L + to. 

Suppose for instance that we insist on choosing our vortex containers in such a 
way that for some constant .$ (0 < e < cc) 

B/-4-lLl,.u < t- (1.8) 

for all boundary conditions I/ and all containers &. Let T * N(L) be the number of 
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such vortex. containers that can be fitted around C for T > L. Then V(L) + co for 
L -+ co if N(L) + co. (In particular, if TN(L) a TL, the area enclosed by C, one 
would get a linearly rising potential V(L).) 

The change p in free energy can also be reexpressed in terms of a ratio of expectation 
values of an operator BJS] for different boundary conditions 

(1.9) 

S consists of a coclosed set of plaquettes p inside Ai which winds around the path C 
like L’& itself. Otherwise S is arbitrary and (&[S]) does not actually depend on S 
so long as !i winds around C once. The expectation value 

(1.10) 

< >Ai.” is the expectation value for the system in Ai with boundary conditions U 
on &4,. 

In Section 3 of this paper we will apply our general result (2.19) to an Abelian gauge 
theory in three space time dimensions. In Abelian theories r = G and the parameter 
y E r in (1.5) may take values close to 1 if G is continuous. As a result, the effect of 
thin vortices does not become negligible for large j3, since the change p of free energy 
always tends to zero when y + 1. Put another way, one may compose thick vortices 
with any y from thin vortices with y m 1. Upon inserting some elementary estimates 
for thin vortices, inequality (2.19) reproduces the confining Coulomb potential 
V(L) > c@) In L as a lower bound. For large p, c@) - const p-l. For a special 
choice of Lagrangian this result has been derived before in Ref. [12] by another 
method. Our treatment amounts to generalizing the technique of Dobrushin and 
Shlosman’s for two-dimensional ferromagnets [Sj. 

We conclude with some comments and speculations on the possible uses of our 
result (1.7). The vortex containers fli have a certain length (area) given by the minimal 
number I P, j of links in Pi , and a certain width di . The distance of S from the bound- 
ary &‘li can be chosen to be mdJ2 in (1.9). (One may have different widths in different 
directions. For a moment let us imagine that they are all equal and call d, the diameter 
of L&.) We are ready to accept the possibility that the change of free energy p as 
defined by Eq. (1.6) comes out proportional to the length (surface) 1 Pi j of the vortex 
container, for fixed diameter di . Suppose one could show that the effect of the 
boundary conditions in (1.9) decreases like e- md~/2 with the diameter di of the vortex 
container, so that max p < const 1 Pi ) e- +i2, and condition (1.8) is satisfied for 
di > (2/m) In / Pi 1 (m is some mass). Then Eq. (1.7) produces a confining potential 
V(L) > const’ . L(ln L)-2 which rises approximately linearly. A possible mechanism 
for producing a mass gap in non-Abelian gauge theories was suggested in Refs. [ 13,141. 

The reader will also discover similarities with vacuum tunneling approaches to 
two-dimensional gauge field theories [15]. We will not elaborate on this point since 
we are not prepared to discuss approximation schemes in this paper. 
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2. SUFFICIENT CONDITION FOR CONFINEMENT OF STATIC QUARKS 

We consider a theory described by the action (1.4a). The factor /3 will be absorbed 
into 9 in this section. 

We will study the expectation value (x(U[C])) of the “Wilson loop integral” for 
characters x that are nontrivial on r, 

xw = xc v ill for VEG, YET, (2.1) 

with w,, a nontrivial (one-dimensional) representation of r. 
We start from the path integral formula for (x(U[C])). We will rewrite it in another 

equivalent form, Eq. (2.16) below, by applying a series of variable transformations. 
In these variable transformations, invariance of the Haar measure on G is used 
repeatedly 

dU = dUU, = d&U for all U, E G. 

Haar measure dy on r has similar invariance properties. Our results will follow 
from Eq. (2.16) as a consequence of elementary inequalities. 

Our theory lives on a v-dimensional hypercubic lattice A C P, (V = 3, 4). We will 
regard the x1-axis as (Euclidean) time direction. We write e, for the unit vector in 
time direction. 

Let C be a rectangular path in the x1x2-plane as shown in Fig. 3. It encloses the 
area 9 consisting of points 

B = {x = (xl, x2, 0 --- 0); 0 < x1 < T, 0 < x2 < L). 

We divide our lattice into hyperplanes x1 = integer and open layers .Zc7 = 
(x, r - $ < x1 < r + i> between them, r = -J& &&... . Links b EZ~? point in the 
time direction, b = (x, x + er). For such b we introduce 

FIG. 3. Path C and one of the layers 27. 
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(distance to the time axis). We restrict attention to layers Zr which intersect the path C, 
viz., 0 < r < T. One of them is indicated in Fig. 3. To each Y let us fix an increasing 
sequence of integers aiT; i = 0 a*. s, 3 0 with aor = 0. Let 

ASi’ = (b E 22, // b 11 = air}, i = 0, I,..., s,. . (2.3) 

&T is a single link on the path C. Some of the layers may contain none of the sets 
Sir with i >: 1. Every set &’ of links specifies a set Sir of plaquettes as follows. Plaquette 
p E .Zr is in Sir if it contains a link b E Sir in its boundary, and the other timelike link 
b E ap has /I b j/ = air + 1 (cp. Fig. 4). If plaquettes p are considered as elements of the 
dual lattice, Sir form closed paths resp. surfaces winding around C. 

FIG. 4. Set L?; of links in .P (heavy lines) and plaquettes p E Str attached to them (squares). 
Drawing for three dimensions. 

Finally we choose vortex containers (lit as sublattices = closed v-dimensional 
subcell complexes of II such that 

AiT 3 sir (i = 1 ***s,) (2.4) 

They are not allowed to intersect each other or the path C except possibly with their 
boundaries (i.e., they are allowed to touch). They wind around the path C. A possible 
arrangement is shown in Fig. 2. The boundary &Lr of (li’ will be considered as a 
v - 1 dimensional cell complex so that it contains O-cells, l-cells = links,..., (v - I)- 
cells = plaquettes resp. cubes. 

Special case. A thin vortex container is obtained if we take the smallest v-dimen- 
sional cell complex & which contains Sir. 

It is convenient to introduce some further subsets of D. 

i = 1, 2 ,..., s, , 
(2.5) 
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Fir consists of timelike links “between” ..4!$, and sir; it includes sL1 but not @ 
(see Fig. 5). The intersection of the boundary &Ii7 of the vortex container with the 
open layer .Z? decomposes into two disjoint pieces, each of them winding around C. 
They contain sets of links 

Pir = {b E ZT n a&; 11 b 11 -e aiT}, 

Pf = {as above; 11 b /I > a~}; i = 1, 2 ,..., s, . 
(2.6) 

Pi’ is like sir, except that it consists of links in the boundary of Air (rather than in its 
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FIG. 5. Relative position of various subsets of a layer Z’. Fi consists of the timelike links between 
$-, and $ , including those in &-, , but not those in .$ . F, +, is outside #a* (s, = 3 in the drawing). 
Dotted areaa are in the interior of vortex containers Ai . Shperscripts P are dropped. 

Let us now return to the Wilson loop. Its expectation value is given by 

CxWClD = 4 $ v Wbl xWC1) ev C WXPI). (2.7) 
P 

Here and everywhere, sums and products over b, p without further specification run 
over all,links resp. plaquettes of the total lattice A. 
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Let (lc be the closure of the complement of all the vortex containers Ai in rl. /lc is 
again a cell complex and (lc n Ai = a&. 

We divide the variables U[b] into those associated with links in one of the vortex 
containers, and those in (le. The former ones will be renamed U’[b], the latter ones 
U,[b]. Since b E 8rliV are in both sets, &functions will appear. (6(U) is defined by 
J. dUf( U)&(U) =f(Q). Thus 

<x(W3) = -& J’ n W[bl x(WCl) exp c ~ip(WBl) (2.9) 
be/l= PEAC 

*n(l JJ 
dU’[b] exp 1’ 3’(U’[j]) n S(U,[b] U’[b]-l) . 

T,i bd,’ pEAir b&Air 1 

Here and in the following, the prime ’ on Z:’ means that plaquettes in the boundary 
aAir are omitted. 

Since the path C does not intersect any of the vortex containers, x(w) involves only 
U,-variables. 

Given elements yi+ E F of the center of the gauge group (i = 1 *** sl) we make a 
variable substitution as follows 

WI = UPI yi’ 
= U[b] 

if b E Fir 

if b $ u FiT. 
(2.10) 

The path C has one link in FIT for each r; all other links in C are outside u Fir. There- 
fore 

xwI[cl) = xwP3 wo I-I YIF . 
( 1 r 

We may integrate (sum) the yir over F, using normalized Haar measure dr on f. As 
a result 

(xW[Cl)> = ; j- n Wbl x(WCl) (2.11) 

*J-n 
hi’ wo I-I 75’ ev C ~(WJI) 

: 

-i/j n 

( 1 c pEnC 

dU’[b] exp 1’ =!T(U’[fi]) n 6(U,[b] U’[b]-‘) . 
r,i beA,’ PEA<- bean,’ I 

In writing the first exp C 9 as a function of U[j] rather than UJj] we used the fact 
that 

WI = WI for pEAc 

This is so because the boundary j of any plaquette p E AC contains either none or two 
links in any one of the sets Fir. If there are two, they have opposite direction. Since 
yir are in the center r of G they cancel out. 
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Next we inspect the inner integral. Let A’ be some sublattice of A, i.e., a closed 
v-dimensional cell complex. We define the partition function of the system in A’ with 
boundary conditions U. That is, the string bit variables take prescribed values U[b] 
for all links b E a/l’. 

z(A’, U) = 1 n dU’[b] exp C’ 9p(U’[PI) n %(.@I Wbl3 
bEA’ PEA bE&4’ 

(2.12) 

We note that it is invariant under the action of gauge transformations on the 
boundary conditions U: Let V[x] E G be defined for all vertices (O-cells) x E &I’ and 
let U[b] + V[x]U[b] V[ ~~1-l for b = (x, y) E &I’. Then Z(A’, U) remains unchanged. 
To see this, extend the definition of V to the interior of A’ by setting V[x] = 1 for all 
x 4 &4’, and perform a variable transformation U’[b] + V[x]U’[b]V[ y]-’ on the 
variables of integration. 

Let us now consider one vortex container flir. Let u E l? Given U on aA,+ we 
define a configuration U, on the boundary LX’&* by 

UJb] = U[b]o if b E Pir 

= U[b] otherwise. 
(2.13) 

The substitution U -+ U, is a “singular gauge transformation” if (T f 1. Since any 
plaquette p E &l,l has none or two links of opposite direction in PiT, it follows that 
U&3] = U[j] for all plaquettes p E &lir. More generally, let A be any topologically 
trivial part of the surface &‘lir. Then the substitution U + U, agrees with the action 
of a gauge transformation V[x] on A. However it is not an ordinary gauge transforma- 
tion; U,[b] f V[x]U[b]V[ u1-l for any V that is defined everywhere on aAi7. 

The a-functions in (2.11) involve variables UJb] for b E &Q. Since aAir intersects 
Fir in Pir and Fi’,, in P,“, Eq. (2.10) specializes to 

&PI = UPI Y? 

= Nbl rZ++l 
= U[b] 

if b E PiT 

if b E PI’ 

otherwise. 

(2.10’) 

We note that U,[b] differs only by an ordinary gauge transformation from U,[b] as 
defined by Eq. (2.13), for u = yi’(yi+l)-l. (Explicitly U,[b] = V[x] U,[b]V[ y]-l for 
V[x] = $+I if x E aAir, x1 > r, and V[x] = 1 otherwise.) Consequently, the integral 
in { } in Eq. (2.11) is equal to a partition function Z(Ai7, U,), u = riV(+&+$l; Z is 
defined by Eq. (2.12). 

We introduce new variables 

u.r = yir(y;+y; i = 1 “‘S 2 r 
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with $+I == 1. It follows that yl’ = l& ujT. Thus 

w.(Jpj = %(rpj = p%(Ui~). 

Because of invariance of Haar measure on r, n dri+ = n duir. Putting everything 
together into Eq. (2.11) we obtain 

(2.14) 

It is convenient to introduce normalized probability distributions p(y) on r by 

This gives finally 

(2.15) 

(x(WI)) = & 1 fl dW1 x(WCl) exp C ~P(-Vbl> 

(2.16) 

Here $.. is the Fourier transform of p.. . It is defined by 

(2.17) 

for any character w of I’. p..(y) was defined in Eq. (2.15). 
Eq. (2.16) is exact. We use it to derive a bound. 
We note the identity 

1 = &s n dU[bl exp 1 -W@l) n 1s do Z(&, UJ/. (2.18) 
hcAC peAr i.r r 

This is derived in the same way as (2.16). In place of x(U[C]) one puts 1 in (2.7) and 
later formulas. As a result oO gets replaced by the trivial character 1 everywhere later 
on. But $..( 1) = 1 since p is normalized, ldyp..(y) = 1. 

Now we can write down the bound. We have 1 x(U[C])J < x(Q) and 1 $Z1,V,o(~,)l < 
sup, I jni,,I,(~O)l. Therefore, using (2.18) 

(2.19) 

The product goes over all vortex containers; they are labeled by i, r here. l’nequality 
(2.19) has been derived without any approximations or extra assumptions. Tt is an 
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inequality for the (confining) potential, cp. Eq. (1.2). 1.. is defined in Eqs. (2.15), 
(2.17). 

To use it one has to know something about $..(w,). Let us consider the case 
G = SU(2), r = Z, as an example, with x(U) = tr U so that wO(&t21) = fl. Since 
Jr dr(. . .) == .p,(. . .) 

jn~,rr(wo) = (1 - *)(l +*)-I (2.20) 

with u = - 1. In terms of the change of free energy, t.~, that was introduced in Eq. 
(1.6) of the Introduction this is (p = 1 in this section). 

if 

Inserting this into inequality (2.19) and comparing with (1.2) we obtain the result 
(1.7) (cp. remark after Eq. (1.7)). 

It remains to verify Eq. (1.9). We show that 

WV, Uo) = -WV, w&wl>~,~,c/ (2.22) 

for u = - 1. This will be true for any U. Taking the same equation with I/ replaced 
by ZJ, and dividing the two equations we obtain Eq. (1.9). 

Z(&, U,) is defined by Eq. (2.12) with U replaced by U, . We make a variable 
transformation 

U’[b] = U”[b]U if b E Fi’ 

= U”[b] otherwise. 
Then 

U’[j] = Lqj]u if p E Sir 

= U#[$] otherwise. 

Inserting this into Eq. (2.12) produces the desired result (2.22). 

3. ABELIAN GAUGE THEORIES IN THREE DIMENSIONS 

In this section we will discuss application of our result (2.19) to an Abelian gauge 
theory in three dimensions. To be specific, let us choose a gauge group G = U( 1) = I’. 
Its elements are complex numbers of modulus 1 

V = eim, fp = 0 *** 2?r, dV =&drp. 
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We assume that 9(V) is twice continuously differentiable. Hence we may define the 
coupling constant p-l in the action (I .4a) by requiring 

We consider the Wilson loop for a static quark of unit charge, 

x(U) = w,(U) = u + 1. 

wO is the character of a one-dimensional unitary irreducible representation of r (=G). 
We consider thin vortex containers (lir as were described after Eq. (2.4). We let them 

be densely packed, i.e., we choose aiT = i, i = 0 ... L - 1 in (2.3) r = 3, 3 ,..., T - $. 
There are then T identical layers P’ containing L - 1 vortex containers each. 

There are then no links in the interior of /lip, and the set of plaquettes in fliV\&lir is 
exhausted by Sir (cp. Fig. 4). Therefore 

(y = eiw). (3.2) 

There are 4(2j + 1) plaquettes in S/. Let 

A/ = rn$x C 6p(U[j] eim) 
aL!T,~ 

and let the: maximum be reached for q~ = v,, . Then, by Taylor expansion in v with 
Lagrange’s estimate of the remainder R, one deduces from (3.1) that 

It follows that 

with cl@) iv (87r&1/2 for /3 --+ co. 
Therefore 

O G Pl$r.u (eiq) = Z(A,‘, U i e .I [I -mj+? U&4> 4/4-1 

< c,@-l(2j + 1)1/2. (3.3) 

In Appendix A it will be shown that inequalities (3.3) together with the normalization 
condition Jp..(ei”) dy/2r = 1 imply that 

8,r,u(qJ < exp - f 43)2(2j + I>-'. (3.4) 
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We insert this into our general result (2.19). This gives 

(x(u[C])) < x(Q) exp - Tg c,@)~ ‘fl Pi +- I)-’ 
j-1 

< x(Q) exp -Tc,@)[ln L + const.] (3.5) 

with c,(p) = (7r2/12) c&3)” N const. B-l as /I + co. This shows that inequality (1.2) 
is satisfied for 

V(L) = c2(/3)[ln L + const.]. (3.6) 

APPENDIX A: A BOUND FOR FOURIER COEFFICIENTS OF PROBABILITY 
DISTRIBUTIONS ON THE CIRCLE GROUP 

We consider the compact Abelian group r = U(I). It consists of elements z = 
&rn 

3 -rr < p < r. Normalized Haar measure is drp/2v. Probability distributions 
p(z) are (measurable) functions satisfying 

P(Z) b 0; s n p(e”“) dcp/2n- = 1. (A-1) 
-. 

They possess Fourier transforms 

$(I) = 1” p(e”“) eizw dtp/2q I = 0, fl,... . 
--?r 64.2) 

Because of Eq. (A.l), j(O) = 1. Suppose that 

P(Z) G A for all z (A.3) 

We will show that this implies 

772 
I f(Z)/ < exp - -A-2 

6 
for If 0 (A.3 

Remark. In applications, this result serves as a substitute for the central limit 
theorem on the circle group. For instance, by using it, the results of Ref. [5] can be 
sharpened so that they imply a power law decay of the two-point spin correlation 
function (as was proven by another method in Ref. [16]). Consider a sequence p,(z), 
n = 1, 2,..., of probability distributions, and the convolution products 
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(The a-function with support at 1 is defined by ~G(zlf(z) dy/2r =f(l)). Suppose 
that p,(z) < A, for all z. Then 

1 j(“)(l)/ = fi I jk(Z)l < exp - $ 5 Ai2 for 1 # 0. 
1 k=l 

As a consequence, P(~)(Z) -+ 1 as N -+ cc in an appropriate topology if Cr=‘=, Ai = 
+a.1 

Proof. We want to find the maximum of / $(,)I subject to constraints (A.l). First 
we note that $(I) changes by a phase factor if we substitute p(eit’-*ol) for p(e%@). 
Therefore we may assume without loss of generality that $(I) is nonnegative real. In 
this case i)(l) = J cos Zp,p(eiq) dv/2rr. Consider first the case I = 1. It is evident that 
the maximum of $ (1) is reached for 

This gives 

p(eio) = A for I y I < TAP 

=o otherwise. 
64.6) 

B(l) < $ sin TA-l 64.7) 

for I= 1. For general I # 0 the maximum is reached for a function which remains 
invariant under y -+ y + 2rrll. A variable substitution y’ = Ip, then reduces the 
problem to the case 1 = 1. As a result, inequality (A.7) is generally true for If 0. 

The inequality p(e”Q’) < A can only be true for A > 1. We can therefore use the 
inequality 

1 X2 
--In x sin x 3 r for 0 < x < ?r. h4.8) 

Setting x := ?rA-l we deduce (A.5) from (A.7). 
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