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We study the low-energy physics of quarks in two dimensions, which are minimally 
coupled to CP n -  1 fields. Within the 1/n expansion, heavy quarks are confined, the U(1) A 
chiral symmetry is spontaneously broken and a light isoscalar pseudoscalar boson is 
avoided via the axial anomaly. 

1. Introduct ion 

That spontaneous chiral symmetry breaking in QCD is not accompanied by an 
isoscalar Goldstone boson has only recently been understood as an instanton effect 
[ 1,2]. The infrared divergent dilute instanton gas approximation is the only calcu- 
lation supporting this explanation and one has no means to show that its predic- 
tions are qualitatively correct at low energies. To get an idea about this and related 
questions, we here propose to study a two-dimensional theory,  the CP n-1 model 
[3,4] with quarks [5,4], which is very similar to QCD 4 : it is asymptotical ly free, 
there are instantons and the U(I)A current has an anomaly proport ional  to the 
topological density. In contrast to QCD4, CP n-1 models can be 1/n expanded,  and 
since this expansion is infrared stable, one is able to reliably analyze, e.g., the spon- 
taneous breaking of  chiral symmetry.  

At first sight, one might object that a continuous symmetry in two dimensions 
cannot be spontaneously broken and consequently there is no U(1)A problem. 
Because of  the anomaly, however, Coleman's theorem does not apply here so that 
it may be perfectly consistent to have (~q / )4 :0  and an 7?-propagator ((~Ts ~b)(x) X 
( ~ s  4) (0) )  decaying with some power of  Ixl (i.e., there would be no mass gap but  
no Goldstone boson either). Besides this, the U(1)A symmetry could be realized in 
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a phase, where it is almost spontaneously broken in the sense that quarks acquire a 
spontaneous mass, but ( ~ ) =  0 and ( ( ~ ) ( x ) ( ~ ) ( 0 ) ) ~  Ix[ -~ (Ixl ~ ~ )  (this is the 
Berezinski-Kosterlitz-Thouless phase [6] familiar from the X Y  model). Thus, mass- 
less excitations in two dimensions are not a priori excluded and it is a non-trivial 
property of the theory if there is a mass gap in the ~ channel. 

The glue part in CP n-1 models with quarks is the pure CP n - I  non-linear o-model, 
which has already been analyzed in great detail. We shall assume here that the reader 
has read our first paper [4] on this subject. To find a geometrically natural way of 
how to couple quarks to CP n - I  fields, we discuss in sect. 2 the supersymmetric ver- 
sion of the CP n - I  model. From the point of view of supersymmetry this model is in 

itself very interesting, because it has an 0(2)  extended supersymmetry (sect. 3). 
Readers not interested in the supersymmetric model may skip sects. 2 and 3 and 

jump to sect. 4, where we write down an action for heavy flavoured quarks interact- 

ing in an U(N) X U(N) symmetric manner with CP " - I  fields. The 1/n expansion of 
this model then reveals a rich physical structure, which we discuss in sect. 5. Con- 
clusions are drawn in sect. 6 and an appendix is included describing some properties 
of the Dirac equation in the presence of a background CP n - I  field. 

2. The supersymmetric CP n -  1 model 

The supersymmetric CP n-1 model has been constructed by Cremmer and Scherk 
[5] in the context of supergravity. In this section we want to construct it in two 
dimensions proceeding in exactly the same way as in the case of the supersymmetric 
O(n) o-model [7,8]. 

One starts from a superfield ~ba(x , 0), a = 1 ..... n, 

(~(x ,  O) : z~(x )  + iOx~(x) + ½i07sOFa(x) , (1) 

whose component fields z~, Xc~ and F~ are complex fields, which transform accord- 
ing to the fundamental representation of SU(n), while 0 is a real two-component 
spinor *. Under an Abelian gauge transformation, ¢ transforms as follows: 

~b'(x, 0) = ~b(x, 0) e iA(x' 0) , (2) 

where A is a real scalar superfield. 
In order to construct a super and gauge invariant Lagrangian we need a super- 

covariant derivative ** 

V = D - A . (3) 

* We use the following representation for the Euclidean ~ matrices: 

** The formalism for a supersymmetric gauge theory in two dimensions has been developed by 
Ferrara [9,71. 
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Here, D is the usual supersymmetric covariant derivative 

D =  ~-d + i~O , 

and A is a fermionic real superfield, which transforms as an Abelian gauge field 
under a gauge transformation: 

A' : A + iDA. (4) 

Of course, D and A also carry a two-dimensional Lorentz spinor index which is sup- 
pressed for simplicity. 

A supersymmetric, gauge and SU(n) invariant action is now given by 

s : ~fd~x dO 7s dO ~ "  ")'s VqS, (5) 

where the bar denotes complex conjugation. The action (5) together with the con- 
straint 

~ .  ~ : 1 , (6) 

provides a supersymmetric extension of  the CP n - I  models. The gauge field A can 
be eliminated from the action by using its equation of  motion: 

A : ~ .  OqS. (7) 

Inserting eq. (7) back into eq. (5) we obtain an action involving the field ~b only: 

s=~f fd2x dO ")'s d0 {D-~" ")'sD~b - ~" D~bTs~ " D~b} . (8) 

In terms of  the superfield ~ one can also write a "topological charge" 

Q=~-~fdzxdO'rsdO ~ "  V~, (9) 

the supersymmetric version of  the self-duality condition 

v~ = (+-) 7s v4,, (10) 

and the equation of  motion (which is implied by eq. (10)) 

VTs v4~,~ + (v4~- 7sV~),~ = 0 .  (11) 

Next, we rewrite the action (8) in terms of  the component fields defined in eq. (1). 
The constraint (6) gives 

f . z = l ,  2-. X + Z .  ~ = 0 ,  

~ .  F = F "  z = i X T s X .  (12) 
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Performing the integration over the O's in eq. (8) and using eqs. (12) we get 

1l : 2 
S :  ~ J d  x {13uzl 2 -  i ~  + i ~ 7 , ¢ / Z O , z  

- (G + pTs~)(G - P75 ¢') + (gOuz)(gO~z) 

+ ~[(~4j)2 + (~7s¢,)2 _ (~Tugj)2]} . (13) 

Here, we introduced the following new fields: 

¢J~ :x~ - z ~ ( Z .  ×), 

c ~  : F ~  - z~(~-"  ~ 3 ,  

O = ½i(z" X -  z "  X). (14) 

Eliminating the dummy field Gc~ using its equation of  motion, we see that p dis- 
appears, an effect, which can be traced back to gauge invariance. We are then left 
with 

S : ~ f  : d 2 x  { D , z  " D , z  - i~I/9~ 

+ ¼ [(~@)z + (~Ts ¢j)2 _ (~T.@)2]) , (15) 

where 

D u = Ou - ~-" Ouz , (16) 

and the fields are constrained by 

2-. z =  1, 2-" ~ = ~ ' z = 0 .  (17) 

Obviously, the action (15) is invariant under gauge transformations 

z" (x) : e ia(X)z~(x)  , 

¢,~ ( x ) :  eiA(x)t~ (X), (18) 

and the supersymmetry transformations are 

6z~ : i e ~  , 

+ 7ue[Duzc~ - ½iz~(gJTu¢J)] . (19) 

As in the case of  the supersymmetric O(n) o-model, supersymmetry requires the 
presence of  four fermion interaction terms, which are also chirally invariant in our 
case. 

We conclude this section with the remark that the supersymmetric CP 1 model is 
identical to the supersymmetric 0(3)  o-model. This can be shown trivially as in the 
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non-supersymmetric case by defining the field 

qi = ~ .  oi(a, i = 1,2, 3 , (20) 

and checking that the action (8) and the constraint (6) written in terms of  qi become 
the action and the constraint of the 0(3) supersymmetric o-model. 

3. Complex supersymmetry 

As in the case of the 0(3) o-model [8] and the Higgs model [7], the supersym- 
metric CP n-1  models have an additional supersymmetry for any n. In other words, 
the action (8) is actually invariant under an 0(2) extended supersymmetry, whose 
Noether supercurrent is given by 

j ,  = ~l~.  7 , v ~ .  (21) 

where 

a ~ = a  u -  ~-au~b , V : D  ~-Dq~. 

The structure of an 0(2) supersymmetry implies furthermore the existence of a 
conserved 0(2) bosonic current 

V u = ~7~. ~,ug~. (22) 

The most direct way to prove invariance under complex supersymmetry is to 
rewrite the action (8) and the constraint (6) using only 0(2) superfields. This is a 
function R(x,  0, O) o f x , ,  a complex spinor 0 and its conjugate 6, transforming as 
follows under a supersymmetry transformation: 

This transformation law follows directly from the transformation laws of x .  and O: 

fix. = ½i[c~7.g+ ~7.01,  

60 = a ,  80  = ~ .  (24) 

The supersymmetric covariant derivatives are thus given by 

a - -  a 
D= 3- ~ + ½i~g, D : ~  + ½i~O . (25) 

It is well-known [10] that the superfield R can be reduced by imposing the 
invariant constraint 

DR = 0 ,  (26) 

which is equivalent to 

R = R(x  u - ½iOyuO, 0) .  (27) 
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The complex supersymmetry transformation (23) then simplifies: 

0 
- i~OJ R .  ~R = L ~ (28) 

Introducing complex component  fields z, X and F by 

R ( x u  - ½i07~0, O) = z (x )  - ½i67u0 3uz(x)  

1 
16 ( 0 " [ 5 0 ) ( 0 ~ 5 0 )  [~Z(X) + iOx(x) - A(07sO)(07s~X(x))  

+ ½i07sO F ( x ) ,  (29) 

eq. (28) reads 

6z = ia~ , 

6~  = 7 s F a  + ~z~ ,  

6 F  = iff3's~6 • (30) 

The complex conjugate superfield / /  satisfies the opposite "chiral i ty"  condit ion: 

DR = 0 .  (31) 

In addition to R one must also introduce a 0 (2 )  real superfield V(x, 0, 0) that is the 
0 (2)  supersymmetric generalization of  the vector field X u appearing in the purely 
bosonic theory. 

Under an infinitesimal Abelian gauge transformation these fields transform as 
follows: 

6R = i A R ,  6R = - i ? d ~ ,  6 V = - i ( A  - A ) ,  (32) 

where the gauge function A ( x  u - ½iO 7uO, O) is a "chiral" 0 (2)  superfield. 
In the Wess-Zumino gauge the vector superfield V has the following form 

V = ½0"[uOX, + ½frOM + ½i(OvsO)N + (OvsO)(f~)  

+ (07sf)(O~.o) + (07sO)(O3,sO)D. (33) 

An 0(2)  supersymmetric and gauge invariant action is given by *" 

?/ 2 S=~fd x d20 d 2 f I - V + R R e  v] . (34) 

By varying S with respect to the vector superfield V one gets the following equation 
of  motion: 

RR = e - v  , (35) 

'~ We thank S. Ferrara for very useful discussions on complex supersymmetry. 
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which implies the following identities in terms of  the component fields: 

2-. z = 1, ~ • z-= 0, M = ~ ,  N =  i ~ 7 s ~ ,  

X~ = i[z • ~ -  ~ .  3~z - i~ • 7off] , 

D : ~ [0u~-0uz - i ~ $  - F F ]  + 1 (_XuXu _ M E _ N2) ,  

~ :  ¼7s(~Z. ff - ~ff • ~ -  ½F" 5 -  (36) 

Inserting (35) back into (34) after the integration over 0 and 0 one gets the action 
(15), while the first two equations (36) give the constraints (17). That proves that 
the action (15) and the constraints (17) are invariant under a complex supersym- 
metry. 

It is interesting to notice that in a manifestly invariant 0(2) formalism one must 
not add any constraint with a Lagrange multiplier as in the case of  real supersym- 
merry, because in this case the constraints are obtained from the equation of  motion 
for the vector superfleld V. 

4. 1/n expansion of CP n - I  models with quarks 

From the supersymmetric action (15) we see that the coupling between quarks 
and CP n - 1  fields is described by the Dirac equation (neglecting the four quark 
interaction) 

2 p ~  -- Xz a , (37) 

where the Lagrange multiplier X is to be eliminated using the constraint 

£~ffa = 0 .  (17) 

Some properties of the classical solutions of  this equation such as the Atiyah-Singer 
index theorem are discussed in the appendix. 

The supersymmetric model can now easily be generalized to incorporate flavored 
massive quarks with an "electric" charge e possibly different from that of  the z- 
particle. The total action then reads: 

( 1 s =fd2x Duz"  Duz + ~ ( 0  - MB)~ + ~n (gs + e2 f ) (~T .~ )  2 

with 

gV2n [(~'i~b)2 + (~Tsr i~)2]}  ' (38) 

iz12_ n g .  f f = ~ . z  = 0 .  (39) 
2f '  
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In addition to the color index a, the quark field ~a now carries a flavor index 
a = 1, ..., N, too. For simplicity, we assume that the bare mass MB is flavor indepen- 
dent. The N X N matrices r i, i = O, 1 . . . . .  N 2 1 form a complete set of  hermitian 
flavor matrices normalized such that 

1 
r°  = ~ ~,  T r ( r i r  k )  = 6 ik • (40) 

The four quark interaction in eq. (38) is the most general one invariant under chiral 
U(N) X U(N) transformations: 

~ ' =  exP{½i(1 + i T s ) r k c o  k ) ~ , 

~ ' =  ~ e x p ( - l i ( 1  ¥ iTs)'rkco k} • (41) 

The covariant derivatives D u act in a different way on z and ~ fields: 

D u z a  = 3 u z  ~ - f_Z ( g .  ~ u z ) z a  , 
n 

D u ~  a = 3 u ~  a - e f ( 5 "  ~ u z ) ~  a . (42) 
ti 

Correspondingly, the gauge transformations are 
p 

z a ( x  ) = e iA(x)  z a ( x )  , 

G"(x)  : .~ieA(x),~,a,. ~,~,r"~. (43) 

The supersymmetric model (15) is the special case, where N = 1, e = 1, gs = 0, 
gv = l a n d  M B = 0. To match eq: (38) with eq. (15), the fields have to be rescaled 
according to * 

z ,  

As in the Thirring model the coupling constant gs is not infinitely renormalized 
and since it does not give rise to any interesting interactions, we put it henceforth 
equal to zero. No other interactions than those included in the action (38) will arise 
through renormalization, because there are no other gauge, U(N) X U(N') and 
parity-invariant possibilities to couple z and ~ fields that satisfy the constraint (39) 
(the mass term breaks chiral symmetry only "at small momenta") .  

The 1/n  expansion of  the generating functional for the Euclidean Green func- 
tions of  the CP n-1 model with quarks, 

X e x p ( - S  + f d = x  [7" z + i "  J + ~" ~ + ~ • n] ) , (44) 

• The factor ( - i )  is introduced for notat ional  convenience. 
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can be done as in the case without quarks [4]. Thus, to remove the constraints and 
the quartic interaction terms one introduces a set of Lagrange multipliers a, c, c-, X u, 
q5 i and 4~: 

x [ I  [6(  [zl2 ~ )  6(~ •z)6(~-" ~)1 expfd2x{ f [ (~ - •  ~,,z)-e~'Yuq~, 2 

2I, 
= f*~.c.e.x. * ¢  cb~s e x p f d  x ~ lz12- V 

i i 

1 ) + 1 i -  i 
- rn2 + -  XuXu [zl 2 ( c j ~ r i ~  + Cs6vsr ¢) 

11 N/l~l 

l .} - 2g~ (~iOi + cks~is) " (45) 

For later use, a parameter m 2 has been introduced here. It is completely irrelevant 
at this stage, because Izl z = constant. Inserting eq. (45) back into eq. (44) and per- 
forming the Gaussian integral on ~, ~, z and forte gets 

Z(J, f 7, ~) = f ~  ~ c  ~ -  c/?X u ~q~ C0~s 

( , ) 1 ( ,  )1/ • AB+--C-'AFlCn J + ~ g - ' A ~ 1 7 7  , (46) 

where 
i i 

A n = - D u D  s + m Z - ~ n  c~, Du = Or + ~ n  Xu 

1 i ie 
~ x F : 0 - / . - ~ 7 ( ~  + ~ s ) ~  i, D. :0 .+~-TX . .  

The effective action Sere is given by 

,) Self = n Tr log B + n c A F  c - n Tr log A F 

+ f A2x - + - - ( ¢ ¢  + ~o~) . 
2f 2gv 

(47) 

(48) 

(49) 
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We wish to expand Serf in a power series of  1/,v/n around a minimum. Such a mini- 
mum occurs at a non-zero constant field 4~, i.e., within the 1/n expansion chiral sym- 
metry is spontaneously broken. The quark mass term acts like an external magnetic 
field on a ferromagnet, i.e., it defines the direction of  spontaneous U(H) × U(N) 
symmetry breakdown: 

(~o) = X/7~Ms ' Ms > 0 ,  

(q~i} = O, (i 4= 0); (0~) = 0 .  

MS is the spontaneously generated quark mass. Defining 

¢o = ~bo _ x /nNMs , 

ggi = ~i , (i @ 0);  ~0~ --~5-- i , 

and expanding 

Self = constant + ~ 001-v/2S(v) , 
V - 1  

one finds 

+ ~P°(0)'v/N { Ms 2gv r ' d 2 q  } vJ(7~7~)~ (q~ +MS) - '  , 

where 

(5o) 

(51) 

(52) 

(53) 

~(p) = f d=x e ipxa(x), etc., (54) 

and 

M = MB + Ms (55) 

is the total quark mass. Regularizing the divergent integrals in eq. (53) with a Pauli- 
Villars cutoff  A, the saddle-point condition S O) = 0 requires the bare coupling con- 
stants f and gv to vary with A according to 

27r A2 
f - l o g ~  , (56) 

2 ~ _  M A 2 
gv Ms l ° g ~  " (57) 

The renormalization of  f is identical with what we found in the pure CP n - I  models 
[4]. In particular, fermions do not affect asymptotic freedom no matter how many 
flavors are introduced. 
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The quadratic part ofSef f is given by 

s ~2) = f d 2 x  d2y {½~(x)r~(x - y)~Ce) + ½~,~(x)r~v(x - y)~,vC~) 

+ ½:i(x) r/~(X -- y) :](y) + I hOt~ (X) ri~ .s (x - y):/0') 

+ ~ , ~ ( x ) r ~ : ( x - y )  : ° ( v )  + e ( x ) r ~ " ( x -  y ) c ( y ) )  , (58) 
where 

~ ( p ) =  A(p; m2) , (59) 

eLCp) = (8.. PuPv] p2 ] (192 + 4m2) A (p; m 2) 

-4Ne2M2A(p;M2)+(Ne  2 1 ) 1 } ,  (60) 

" / 1 log + (p2 +4M2)A(p;M2) , (61) 

:s { 1 1 1 2  } 
ri/ ( P ) = S q  - ~ l o g ~ + p 2 A ( p ; M  2) , (62) 

P~: (p ) = - euvp v 2ex/~ MA (p; M 2), (63) 

p~-C(p) = i~b 4~p2 log +--2p 2 + M2)A(p;  m2;M 2) 

- MA(p; m2 ; M2).  (64) 

Here, A (p; m 2 ; M 2) denotes a one-loop integral 

(" dZq A ( p ; m 2 ; a 2 ) = O ( ~ )  2 ((qZ + m2)((p +q)2 + a 2 ) } - I  

1 
- 4rr [(p2 + m 2 _ M2)2 _ 4mZM 2] --1/2 

p2 +m 2 +M 2 + X/(p2 +m 2 +M2)2 _ 4m2M 2 (65) 
X m2 log p2 + +M 2_ xT'(p2 +m 2 +M2)2 4mZM £ , 

and A(p; m 2) = A (p; m 2 ; m2). The calculation of [,~0 and p : s  involves a divergent 
fermion loop integral, which has been regularized with a Pauli-Villars cutoff. In the 
limit A -+ o~ we require that 

1 1 A 2 
gv 27r log ~ = e/> 0 .  (66) 
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To match with eq. (57), the bare mass MB must scale as 

2rr 
MB(A ) : eM S log(A2/M2 ) . (67) 

Thus, M B goes to zero as A -+ oo so that the total quark mass M coincides with the 
spontaneously generated mass M s in this limit. Taking eq. (66) into account, P~ 
and ps0s read 

['~(.D) : (~ij{ e + (192 + 4 M 2 ) A ( I ' ; M 2 ) }  , (68) 

~,~s (is) = 8 q ( e  + p 2 A ( p ; M 2 ) }  . (69) 

Tile higher-order terms in the 1In expansion of Serf are finite and need not be 
renormalized. From eqs. (56), (57) and (67) we see that the coupling constants f 
and gv and the bare mass M B have disappeared and are absorbed into the physical 
parameters m, M and e. The "electric charge" e is not renormalized at all at this 
level. 

The free parameters N, m, M, e and e take special values, when some symmetry 
is realized: in the chiral limit M B = 0, we have e = O, and in the supersymmetric 
case N = 1, e = 1, m = M and e = 0. When supersymmetry is broken by a mass term 
only, then M > rn and the chiral symmetry breaking parameter e is fixed to the 
value (1/2rr) log(M2/m 2) by the requirement that supersymmetry be recovered at 

high energies. 
As in the pure CP n-1 model, the 1In expansion of Euclidean vacuum expecta- 

tion values of z and ~ fields are obtained by expanding the integrand of the gener- 

a B ~,o ~b = 8cq3 6Qb D~(p) 

_ P _  . . . .  D c~ {p) 

P P 
' .............. . :8ij O~°(p} - - "  8ij D% (p} {i,j ~EO} 
f j i I 

P 
~ :  D%(p} ~F------ : E~v Pv ox~P (p) 

p 

Fig. 1. Graphical representation of the propagators occurring in the i/n expansion. 
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. . . .  '--- 8cd3 = -  {p~t* p'p) 6al3 ¢-C 

~3 - - p ; 1 3  

- ~ 8~,., 8o.~ : -  ~-n y~.Sa138ab 
v 13 ~,b 

¢ct.a /~ ,a  
J ~ J = 1 

"x~, Bb 

-~ ~ ¥5 Sag 8ab ¥ - ~ - .  8al3 8oh 

p.b 
Fig. 2. Vertices  for the 1/n expansion•  

ating functional (46) in powers of 1/n and performing tile resulting Gaussian inte- 
grals over the Lagrange multiplier fields. The corresponding Feynman diagrams are 
composed of the propagators and vertices displayed in figs. 1,2, respectively. The 
graphs collected in fig. 3 should not be drawn, since "they have already been 

.... O - - -0- - -_0_ 

............. O T  ............ 

<.1; 

_ . ~ 1 _ O  .~1_ - 

Fig. 3. Forbidden (sub-) diagrams. 
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included in the propagators of  tire Lagrange multipliers". We use tire following con- 
vention for the propagators: 

- f d2P °iP(x Y)hAB{r~'~ ( 7 0 )  

Explicitly, in the Lorentz gauge 0.X~, = 0, one finds 

DZ~(p)= (p2 + m 2 ) - l  , (71) 

D ~ ( p )  = (i¢ -- M) -a  , (72) 

D~(p) = (A(p; m2)) -1 , (73) 

D x (p) = ~, ~s (p) [~,x (p) p ~os (p) + p 2 (p x~ ( p ) ) 2  ] - 1 , (74) 

D~(p) = [e + (1)2 + 4M2)A(p;M2)]  -1 , (75) 

DWS(p) = [e + p 2 A ( p ; M 2 ) ] - I  , (76) 
o 

D~S(p) = pX(p)[~,X(p)p~S(p) + p 2 ( p X ~ ( p ) ) 2 ]  1 , (77) 

DX~(p) : ~X~(p) [~,x (p) ~,~s (p) + p2 (~,x~O(p))2 ] - -1  , (78) 

DCQp) = (pea(p))-1 , (79) 

where (cf. eqs. (60), (63) and (69)) 

~Xuu(p ) = (Buy (P.Pv/P2))FX(P),  

~ 5  = Pij (P) 8i/F~S(p) 

5. Physical interpretation of results 

The 1/n expansion provides a description of  quarks and partons (the z-particles, 
cf  ref. [4]) valid at low energies. The Feynman rules of  sect. 4 reveal that both 
kinds of  particles are massive and interact by exchanging a, X, so, sos and c quanta. 
From eqs. (73), (75), (79) and 

A(p; m 2) = 4nm~ 1 - 6 - ~  + O(P+) ' (P -+ 0 ) ,  (80) 

it follows that the a, so and c exchanges are short ranged, i.e., the corresponding 
Yukawa forces have a range of  order l /m or 1/M. The other interactions can con- 
veniently be summarized by writing a low-energy effective Lagrangian density: 

~eff = D~z " Duz + mZ]zl 2 + ~(Ip - M ) ~  
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M E 2Ne2m 2 + 1 F 2 + (3u~o~) 2 + 21-e(go~) 2 
24rrmZM 2 8rrM 2 

_ 1 

2rrM 
(81) 

where F = %.auX v and D u = O u + iXu/x/n when acting on z, and D u = ~ .  + ie)tu/x/n, 
when acting on ~, respectively. 

As in the case without quarks, the propagator of  X u has a pole at p2 = 0: 

OX(p)  = c/p 2 + O(1) ,  (82) 

with 

12rr2m2M 2 

c = e 3Ne2m2 + err(M2 + 2Ne2m2 ) 
(83) 

When e 4: 0, i.e., when the bare quark mass Mn is not zero, the exchange of  X 
quanta gives rise to a linear Coulomb potential so that quarks and partons are con- 
fined: the physical Hilbert space contains only states with zero n-ality. This effect 
has already been discussed at length in refs. [4,11] so that we are not going into it 
any further. 

When the bare quark mass vanishes, e = 0 and the pole eq. (82) disappears. Con- 
sequently, quarks and partons are liberated, i.e., there are one-particle states carry- 
ing the fundamental SU(n) quantum numbers. This phenomenon is a screening 
effect: any externally applied "electric" field is bleached by chiral quark-antiquark 
dipoles. To make this explicit, we add two infinitely heavy static charges with 
values eO/(2rr) (relative to the z-particle) at x i = +oo to our system. This amounts 
to a change of  the effective action by 

0 
f d2x euuOu)tv (84) S°re-- S e . -  i 

The external charges produce a constant background "electric" field. Due to vacuum 
polarization, the actually measured field ( c f  eq. (83)), 

0 
(F) o = ic ~ + O(n-3 /2 ) ,  (85) 

is much reduced, when e is small, and disappears for e = 0. 
That the screening of  an external "electric" field is due to chiral quark-antiquark 

pairs is also supported by the following observation. From the effective low-energy 
Lagrangian, eq. (81), or directly from eq. (78) one finds that the mixed propagator 
D x~ has a pole at p2 = 0: 

d +O(1) (86) D x~° (P) = p2 
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where 

6 7 r v ~  em 2M 

d = 3Ne2m2 + elf(M2 + 2Ne2m2 ) (87) 

This implies that ~s ° = (gv/JVS/-N) ~3's ~ acquires a non-vanishing expectat ion value in 
the presence of  external charges: 

i.e., there is a constant background density of  chiral quark-antiquark dipoles, which 
is indeed maximal for e = 0. 

Although quarks are liberated in the chiral limit e = 0, it is not straightforward 
to construct one-quark states. For example, the quark field ~ in the Coulomb 
gauge Xl = 0 creates a state of  infinite mean energy when applied to the vacuum. 
The problem roots in the gauge variance of  ~(x),  which requires a non-local tail 
such as 

to be added. Roughly speaking, this phase factor represents the unscreened 

Coulomb field due to a point charge at x .  One can show, within a non-relativistic 
approximation,  that the infinite Coulomb energy can be reduced to a finite value 
by multiplying with an appropriate exponential  of  ~Ts ~ in complete agreement 
with the physical picture explained above. 

Chiral symmetry is spontaneously broken: from eq. (50) and q5 ° = (gv/Vrn--N)~ 
it follows that 

<gv@~ > = n N M s  , (89) 

where M s = M is the spontaneously generated quark mass. From the Goldstone 
theorem, we then expect the existence of  a multiplet of  pseudoscalar bosons with 
a mass of  the order of  the chiral symmetry breaking parameter e. Indeed, from eq. 
(81) it is obvious that the i ~0 s, i = 1 . . . .  , N 2 1, are interpolating fields for mesons 
("pions")  with a mass 

m~ = 47reM 2 . (90) 

Due to the mixing term between X u and ~0s °, however, there is no light particle asso- 
ciated to the isoscalar ~o °, i.e., when the propagator (77) of  ~0 ° is worked out in the 
low-p 2 range, it turns out to be analytic there, no matter  how small e is. This shows 
that there is no U(1)A problem in our model: the "~" (if  it exists) is not a Goldstone 
boson! No contradiction between the absence of  a low-mass isoscalar boson and the 
Ward identities of  the axial U(1) current arises, because of  the anomaly: 

3u/s  (x) = - 2 e n N i q  (x) + 2emg v (~Ts ~ ) ( x ) .  (91 ) 
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Here,/u s = ~TsTu$ and q(x)  is the topological density 

q(x)  = i f  euv~u g"  ~vZ = 1 
n--n 2nx /n  e u v ~ k v  " (92) 

Note that gv~TS~ = x/n-N~ ° is the renormalized axial quark density, so that it 
makes sense to call eM the current quark mass. 

If there would be no anomaly in eq. (91), the Ward identity in the chiral limit 
e = 0 ,  

Ou(]us(X)gv(~Ts~)(O))= 25 (x)(gv~$), (93) 

would imply that there was a pole at  p2  = 0 in the two-point function 
(/uS (X)gv(~Ts $)(0)). However, from eq. (86) we see that the anomalous term 
- 2 e n N i q ( x )  contributes at p2 = 0 and a short calculation reveals that it cancels the 
right-hand side of eq. (93) exactly there. In particular, (]us(X)gv(~Ts~)(0)) is 
analytic around p2 = 0. Remarkably, the way the U(1)A problem is resolved in our 
model looks much the same as in the dilute instanton gas approximation [1,2], 
except that due to the many zero modes of the Dirac equation in an instanton field 
( c f  appendix), this approximation predicts @~)=  0 (instead chiral symmetry is 
broken by a non-zero vacuum expectation value of a product of 2n quark fields). 

When there is more than one quark flavor and e = 0, the 1/n expansion breaks 
down: higher-order diagrams involving internal ~pt s lines are infrared divergent, 
because of the pion poles at p2 = 0. This was to be expected from Coleman's theorem 
[12] and the fact that the flavored axial currents are anomaly free. If the theory 
nevertheless exists, SU(N) × SU(N) chiral symmetry cannot be spontaneously broken, 
in particular (~b~) = 0. On the other hand, the currents 

]#.i = ~,yuTi~.t , lu'i'5 = ~75,) ,pri~ , (94) 

are both conserved for i 4= 0 and since 757u = -euvTv in two dimensions, they are 
actually free massless fields. The presence of these massless excitations suggests that 
the SU(N) × SU(N) chiral symmetry is realized in a phase similar to the Berezinski- 
Kosterlitz-Thouless phase of the X Y  model [6], but we did not analyze this ques- 
tion any further. 

6. Conclusions 

An outstanding property of CP n-1 models with quarks is their asymptotic free- 
dom. Some high-energy processes could therefore be calculated in perturbation 
theory yielding logarithmic scaling violations as in QCD4. On the other hand, from 
the 1/n expansion one can derive a superrenormalizable effective Lagrangian valid 
at low energies. In this regime, chiral symmetry is spontaneously broken and the 
quarks consequently acquire a large constituent mass. If they are given a bare mass 
MB, they are also confined by a linear Coulomb force, which is produced by the 
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CP n-1 fields with non-trivial topology. IfMB = 0, a screening effect takes place and 
the fundamental  SU(n) quantum numbers are liberated. Also due to CP n 1 fields 
with non-vanishing winding number is the absence of  a light isoscalar boson in con- 
nection with chiral symmetry breaking. 

We believe that the breaking of  the W(1)a chiral symmetry in QCD4 looks very 
much the same as in our two-dimensional model. In particular, we conclude that 
the mechanism resolving the U(I)A problem as suggested by the dilute-gas approxi- 
mation is likely to be valid beyond this approximation.  We doubt ,  however, that 
confinement breaks down in QCD4 in the chiral limit MB = 0. Topologically non- 
trivial glue fields are suppressed in tiffs limit too, but it seems that confinement in 
four dimensions is not due to the contr ibution of  these fields. It might be more 
closely related to the dynamical mass creation mechanism, which occurs indepen- 
dently of  the existence of  a topological number and is still poorly understood.  

Another  mismatch between the CP n-1 model  and QCD 4 is the fact that the 
latter is not straightforwardly 1/n expandable (n is the number of  colors), although 
some simplifications occur in the large-n limit. A topological explanation of  this has 
recently been given by Atiyah [13]. In case of  the CP n-1 model, the function space 
to be integrated over in the Feynman path integral becomes contractible in each 
instanton sector when n = ~ .  On the other hand, the space of  all gauge potentials 
modulo gauge transformations does not become topologically trivial for n = ,,~. 
From this point of  view one cannot expect  the n = ~ Yang-Mills theory to be repre- 
sentable in terms of  free fields. 

There are two very interesting questions concerning the CP n-1 models with 
quarks, which we could not answer so far. First, it is not clear to us how precisely 
the perturbat ion expansion (including instanton contributions) and the results of  
the 1/n expansion can be patched together so as to obtain a consistent physical 
picture for all energy ranges. Secondly, in the case of  more than one flavor and MB = 0, 
the l /n  expansion breaks down, because it is impossible to break the anomaly free 
SU(N) A chiral symmetry  spontaneously. On the other hand, the flavored axial cur- 
rents are free massless fields so that chiral symmetry is maybe almost spontaneously 
broken. We do not know whether such a non-Abelian Berezinski-Kosterlitz-Thouless 
phase exists and what its properties might be. 

Appendix 

Solutions o f  the Dirac equation in a CP n -  j background field 

In the geometrically most natural case where e = 1, N = 1 and MB = 0, the Dirac 
equation in an external CP n-1 field zc,(x) reads: 

(8c~ - z c j # ) D ~ #  = O, z • ~ = O. (A.1) 
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As usual, Dirac indices have been suppressed and 

~ = 3'u(au + iAu) ,  A , = ~ - £ ' ~ , z ,  I z l Z = l .  

Solutions of  eq. (A.1) split into eigenstates of  75: 

(A.2) 

(;) (1) 
= ~+ + - i  $ -  ' 

(A.3) 

( 6 ~  - z~g~)Ds~ ~ = O, g .  t~ + = O, (A.4) 

( ~  - z j ~ ) D ~ ¢ ~  = 0 ,  ~ .  ~ -  = 0 ,  (A.5) 

where 

D s = l ( D o  +iD1) ,  D f = ~ ( D o - i D , ) .  (1.6)  

The number of  solutions of  the Dirac equation, which are normalizable when pro- 
jected on the sphere, i.e., for which 

fdZx (1 + x 2 ) - l l ~ ( x ) [  2 < o o ,  (A.7) 

is related to the topological charge, 

Q= ~I f d2x euvOuA v 

of the background field z~ (x). More precisely, denoting by z+ and z_ the number 
of  solutions of  eq. (A.4), (A.5), respectively, we have 

Z+ - z_ = - n Q .  (A.8) 

This is a special case of  the Atiyah-Singer index theorem. A physicist's proof  of  eq. 
(A.8) can be given following Schroer and Nielson's argumentation [15]. 

In the case when zc,(x) is a multi-instanton solution, the Dirac equation can 
actually be solved explicitly. The most general q-instanton solution can conveniently 
be written in the form 

- P a  ( A . 9 )  
z~ (flops)l/2 , a= l ..... n .  

Here,p~ denotes a set of  polynomials o f s  =Xo - / X l  with no common root and 
maximal degree q. The general solution of eq. (A.4) is 

~+ = (ff~p~)l/2fc ~ , (A.10) 

where f~ is an arbitrary vector of  holomorphic functions of  ~ orthogonal to pc,: 
Pc~f~ = 0. On the other hand, the general solution of eq. (1 .5)  is 

q~- = (/5.r p.~)- 3/2 (6~ (06p  6 ) - p~p~)g~,  (A. 11) 
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with g~ an arbitrary set o f  ho lomorph ic  funct ions  o f  s. 

None of  the solutions (A. 10) is normalizable  so that we have a vanishing theorem:  

z+ = 0 ,  for instanton solutions.  (A.12)  

From the index theorem (A.8),  we then expec t  precisely n • q o f  the solutions 

(A.I  1) to be normalizable.  These solutions are obtained by choosing g# to be a poly- 

nomial  o f  degree o f  at most  q, the coeff ic ient  u s  o r s  q being propor t iona l  to that 
one o f s  q in Pc~. 

N o t e  a d d e d  

The CP n-1  models  wi th  quarks have also been discussed by E. Witten [14].  
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