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Abstract. We present a calculation of the nucleon 
isovector form factors for low momentum transfer. 
Our model is based on skeleton diagrams in pseudo- 
scalar ~N interaction where unknown parameters 
describing higher order corrections are fixed such 
that a p meson is generated dynamically with the 
correct properties. The normalization of the form 
factors and the radii agree well with experiment. 
For - q 2  up to i GeV 2 the contributions of the 
n~0-intermediate state do not fall off rapidly enough 
to give perfect agreement with the dipole formulae. 

1. Introduction 

The electromagnetic form factors of the nucleon 
contain highly valuable information on the dynamics 
of strong interactions, and any model for hadrons 
should be confronted with the accurate experimental 
data [1]. Unfortunately our understanding of the 
nucleon structure is rather poor and the general rules 
for an interpretation of the observations are unclear. 
There is consensus that the nucleon is a highly 
composite object, but it is an open question what kind 
of constituents are needed to describe its spatial 
extension. Is it reasonable, at least for moderate 
q2-values, to imagine the nucleon as being composed 
of itself and a certain number of mesons, similarly 
as one describes the extension of the electron in QED, 
or is its e.m. structure the manifestation of a wave 
function of three pointlike quarks? Or are also the 
quarks extended objects (especially via their coupling 
to vector mesons), so that we see the convolution of 
a wave function and the constituent's extension, 
similarly to the situation for light nuclei ? It would be 
natural to guess a p-pole behaviour for the quark 
form factor. If so, what is the wave function radius of 
the pion, the form factor of which is to a good approxi- 
mation dominated by the p-pole [2] ? 

In this paper we work out a consistent field theoretic 
picture for the nucleon isovector form factors in the 
framework, where the nucleon is assumed to be 

composed of itself and of mesons. We shall calculate 
Fi (q2) and fz(q  2) in the range 0 < - q2 =< 1 aeV2/c 2 
in various approximations. The simplest one is shown 
in Fig. la, which describes the one-nucleon exchange 
part of the meson current with the photon meson 
coupling taken as the full, renormalized vertex. (The 
distinction between meson and nucleon currents in 
higher order perturbation theory is a matter of 
definition. For a meson current we adopt the criterium 
of two meson reducibility starting from the side of 
the outgoing nucleons. Thus also the diagram of 
Fig. lb is called a meson current, although it could 
be regarded as a nucleon current as shown in Fig. lc). 
We shall see that the meson current Fig. la  gives 
large contributions to both form factors and that its 
q2-behaviour is already quite characteristic for the 
final result of the model, especially for F 2 (qZ). Since 
at least the on-shell pion radius is not much smaller 
than the nucleon radius (0.6 fm as compared to 0.8 fro), 
we need for the pion current a small radius of the 
"wave function" between the extended pion and the 
nucleon. This can qualitatively be expected [3] as 
the result of the standard pseudoscalar ~ N-interaction 
which becomes really strong only at momenta of the 
order of the nucleon mass. That the interaction of 
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Fig. 1. a Nucleon exchange diagram for the pion current, b box 
diagram for the pion current. The exchanged mesons are indicated, 
e nucleon current diagram, d A-exchange diagram 
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the constituents is of short range and that the apparent 
size of the nucleon is largely caused by the low masses 
of the intermediate vector mesons seems to be an 
appealing picture in view of the recent observation [4] 
that the transverse momenta of directly produced 
hadrons and #-pairs in pp-collisions are not much 
smaller than 1 GeV/c. 

The description of an extended pion in a field 
theoretic calculation is far from trivial. Although 
we have shown [5,6] that the coupling between 

z~, rcco and N ~  r states via N-exchange dynamically 
creates a p-meson, this p a priori need not dominate 
the e.m. pion vertex, especially if the pions are off-shell. 
Our model works very well in this respect. It will turn 
out that the off-shell pion form factor indeed decreases 
less rapidly with qa than on-shell, but for the nucleon 
form factors this is compensated by the wave function 
effects. In diagrammatic language these effects are 
a combination of the strong vertex functions and the 
propagators in Fig. la. These quantities are already 
fixed by our model for the p-meson. There we assume 
a specific form of the zcN vertex, and the scale para- 
meter of this function is adjusted to obtain the correct 
p mass. Then the pion e.m. vertex and from it the pion 
propagator are determined without further para- 
meters. The calculation of the nucleon propagator is 
much more complicated l~ecause of spin effects, and ' 
we rely on recent work by one of us [7]. Thus we 
can treat all Feynman diagrams as skeleton diagrams 
with dressed vertices and propagators. Whether the 
perturbation expansion for the Bethe-Salpeter kernel, 
which we need for the p-meson, is convergent in 
terms of skeleton diagrams is of course completely 
open. We hope that large classes of poorly converging 
diagrams can be absorbed into resonance exchanges 
like co-exchange etc. 

Since we claim that the N ~  r intermediate state is 
crucial for understanding the p-meson, we must 
correctly account for the couplings of the p to NN. 
These couplings manifest themselves in the normaliza- 
tion of the form factors and in their derivatives with 
respect to q2. Considering first the charge normaliza- 
tion, F1 (0), this if finite for the diagram of Fig. la, 
since our pion vertex will acquire a powerlike decrease 
for spacelike momenta. The nucleon exchange contri- 
bution will have almost twice the correct value. This 
is consistent with the fact that A-exchange and 
re-exchange between N N  (Fig. ld and lb resp.) give 
negative charge contributions. Already in [-6] we 
used a reduction of the zr zc - N N amplitude due to 
pion exchange. With respect to F 2 (0) it is well known 
[8] that the diagrams Figs. la and lc with pointlike 
vertices and free propagators give a good value for 
the isovector anomalous magnetic moment. By dres- 
sing the vertices and propagators the moment will 
be reduced considerably, so that higher order contri- 
butions are necessary to compensate this effect. 
Possible candidates are the ~zco-current, Fig. 2, 
A-exchange Fig. ld and co and e-exchange Fig. lb. 

Fig. 2. ~o-cur ren t  

Altogether these diagrams give the normalization 
for F 1 (0) and F 2 (0) within 10%. 

The e.m. radii agree with experiment within 10% 
for all approximations except the simplest one, 
Fig. la, for F 1 (q2) which is much too low. There the 
long tail in momentum space of the vertex diagram 
is still important. The full model can account for 
Fl(q 2) perfectly, whereas the ~co-current leads to 
certain problems for F 2 (q2) at the upper end of our 
q2-interval. The main source of this trouble is the 
zcco form factor F~,o~ itself, which falls off more slowly 
than vector dominance in our model. This question 
will have to be studied by ~co production in the 
timelike region. 

In section 2 we review our model for the p-meson 
and the pion form factor and discuss some modifica- 
tions relative to [6]. In section 3 we calculate the 
various pion current contributions, namely N- and 
A-exchange and the box diagrams of Fig. lb. Section 4 
deals with the ~co-current, and in Sect. 5 we re- 
capitulate our results and draw conclusions. 

2. The Pion Form Factor 

The theory for the e.m. off-shell pion vertex F~(q, k) 
(see Fig. la for kinematics) in our qZ-region is essen- 
tially a theory for the p-meson. We assume [-5,6] 
that N N interact predominantly via the annihilation 
into ~r~r, K/s and ~co states by N-exchange. In order 
to incorporate higher order effects we work with 
dressed vertices and propagators. Especially we 
parametrize the pseudoscalar ~N-vertex function by 
the following ansatz (see Fig. 3 for momenta) 

) ~,sI'5(p~,p~,p~)=~,5 1-i~l(p~-rn~)/A2 (2.1) 

where the scale parameter A will be fixed by the 
p-mass. The p is found as arc rc resonance in the solu- 
tion of the multichannel Bethe-Salpeter equation. 
The coupling between the Nb) and the rcco channel 
is determined by the vector coupling constant 9,oNe, 
which is adjusted to fit the decay co ~ z% y. The pion 
and nucleon propagators are those found by an 
application of the Ward identity in [6, 7]. In principle 
the model predicts the p-width. As it is natural for a 

Fig. 3. Definition of momen ta  for nN~r-vertex 
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few channel approximation to the real world, the 
coupling to the channels considered will be over- 
estimated, and consequently we have difficulties to 
reproduce the low value of /"p= 150MeV. We 
therefore tried to correct the deficiencies of our model 
by three modifications compared to 1-6] (quoted as 
GW henceforth): 

2. t. Modification o f  the Nucleon Box  

In GW we speculated that the repulsive pion exchange 
between N N would reduce the nucleon box diagram 
for n n  ~ n n  by about 35~. In appendix A we have 
set up a simplified BSE for N N  scattering where one 
sees that the reduction is about 20~. Furthermore the 
inclusion of other meson exchanges cancels this 
effect. However, one obtains a stronger q2-dependence 
as compared to the "empty" box, namely an increase 
of 9~  from q2= 0 to q2 =mo .2 These rough calcula- 
tions agree qualitatively with the full solutions of 
the BSE in [-9]. With these changes in the loop we 
find (including other corrections explained below) 
the width /"p = 173 MeV. In order to achieve the 
correct value we choose a reduction factor of 0.8 and 
a stronger q2-dependence. This may be justified by 
the presence of other repulsive forces like A-exchange. 

2.2. Modification of  the Pion Propagator 

Our strong vertex function (2.1) acts as a cut-off in 
momentum space, and it has to be checked whether 
our model still respects unitarity of scattering ampli- 
tudes. Of course the introduction of an effective 
n N-vertex function is perfectly legitimate as it 
represents the sum of vertex diagrams. It must 
however be accompanied by higher order meson 
production processes, since otherwise unitarity in 
the perturbative sense will be violated. Part of these 
production diagrams are contained in the dressed 
propagators but one can give qualitative arguments 
that this is not sufficient. 

Let us consider the N N  scattering amplitude in 
the quantum number state of the pion as a function 
of the squared CM-energy a. The amplitude has a 

2 and, from unitarity, a positive ima- pole at a = m s 
ginary continuum starting at o-=9m~ 2. The N N  
amplitude also has a "left hand" singularity, the 
beginning of which, o-L, depends on the exchanged 
and the external masses, which we treat as variable. 
The sign of the left hand cut contribution is model 
dependent, but in potential theory for attractive 
potentials it is positive for a > o-L, and it interferes 
destructively with the right hand cut for o-~ _+ oo. 

2 the amplitude Therefore in the interval a/~ < ~ < mR 
must exceed the pion pole contribution. We assume 
this property to hold also for off-shell nucleons which 
occur in our annihilation diagrams. For simplicity 
we consider only equal momenta squared p2 for these 
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nucleons. Then the left hand cut starts at 

aL (p 2) = 4p z -- m 2 (2.2) 

where m t is the smallest exchanged mass. For this 
we take the average between scattering diagrams 
(m 2 = 4m~) and annihilation diagrams (m 2 = 4M z, 
M = nucleon mass). We now simply add a pole term 
to the renormalized pion propagator A (a), 

A ef f (17)= A (o-) + c / ( 1 7  - -  M~) (2.3) 

where M~ is a typical multiparticle mass. We take 
M~ z = 3M z. The constant c is then adjusted such 
that there is no unitarity violation in the range 
0 > p2> _ M 2, which is representative for the box 
diagram. This means 

2 2 _2 /"5(/9 ,/~ , o')Aeff(o" ) ~> FZ(pZ, pZ, m2~)/(6 - m E) (2.4) 

for a > o- L (p2). We find c = 0.6, which changes ~] (a) 
by less than 15~o. The smallness of this correction is 
a consequence of dressing the meson propagator. 

2.3. The  co-Propagator 

In GW the scalar part of the m-propagator was taken, 
after shifting the mass, equal to the pion propagator. 
From I-9] we know that to a good approximation 
the co can be described as a bound N ~r-system with 
n-exchange as the dominant force. This allows us to 
define the product of two coN ~r vertex functions and 
the co-propagator as the sum of N_N scattering 
diagrams with z-exchange. It should be noted however 
that single z-exchange has to be left out from this 
sum, since it is equivalent, if inserted for the no)- 
intermediate state, to single n-exchange with a vertex 
correction. There is also some double counting for 
two-pion exchange, as it is part of scalar meson 
exchange within the nucleon box. In the simplified 
BSE for N~r scattering described in appendix A we 
have analyzed the scattering diagrams as functions of 
energy and off-shell momenta. Especially the sum 
without the first two terms can very well be represent- 
ed by the free propagator, with a vertex function 
dropping off slightly faster in p2 than (2.1). The 
coupling constant z go~N~/4~ is around 15 (see Fig. 8). 

The use of the free co-propagator instead of the 
dressed one will increase the p-width as compared to 
GW. This is the reason why we had to introduce 
the previous two corrections. We remark that none 
of these corrections is very large and that they are 
necessary to improve some of the deficiencies inherent 
in a model with few annihilation channels. 

2.4. The  Pion Form Factor 

The value of the vertex scale parameter is now 
1.73 GeV2/c 2. The pion form factor resulting from 
our model is shown in Fig. 4 in comparison with 
experimental data [2] in the spacelike region. 
Obviously the deviations from simple VDM are 
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. . . .  t . . . .  ~ Z N = nucleon renormalization cons tan t  
p = nucleon relative momentum 

k = pion relative momentum (3.3) 

kl/2 = q/2 +_ k 
z = c o s  (<): (k, p) )  

= _ q2/4MZ,  

0 , , , , I J , , , I , ~ r r_q[ z 
0.0 0.5 1.0 

(GeV2/c 2 ) 

(k i = m=) Fig. 4. P i o n  form factor  f rom the  BSE mode l  on-shel l  2 z 
and  off-shell (k~ --- - 1.3 GeV 2) in c o m p a r i s o n  to  the  p-pole  (VDM) 

and to data [2] 

described correctly, but already VDM would have 
been a nontrivial result as it is not put into the model. 
The data in the timelike region (q2> 1 GeV 2) are 
slightly underestimated by our calculations, which 
do not show a p'. In Fig. 4 we have also plotted the 
off-shell form factor F~(q,k)  for a value of k 2 =  
- 1 . 3  GeVe/c z where k is the relative momentum 
between the mesons. Clearly it drops more slowly 
than the on-shell form factor. This is typical for a 
field theoretic calculation. Since the theory describes 
the on-shell pion structure accurately in the spacelike 
region, we can now confidently try to calculate the 
pion current contributions given by Fig. 1. 

3. The Pion Current 

3.1. Basic Formulae  

The nucleon form factors are easily extracted from 
the diagrams of Fig. 1, if the off-shell (with respect to 
the pions) teN-scattering amplitude is decomposed 
into the usual A- and B-amplitudes. Convenient 
combinations of form factors for this projection are 
G M = F~ + F 2 and F 2 : 

G M ( q 2 ) _  1 _ y Z u  + ~f. l k l ( P o ( z ) - -  P2( z ) )B(p , k )  (3.1) 
k 

F2 (q2) 

1 ~ ( L V / ~ + , r p ~ ( z ) A ( p , k ) _  i k [ p z ( z ) B ( p , k )  ) 
l + z  k 

(3.2) 

with the following notation (three momenta and 
angles are in the Nfir-CMS): 

d4k  
I = - 8rci~(~)41k]F,~(q,k)Aere(kZ)Aef f (k2)  
k 

- ~ l k p d l k l d k o V ~ ( q , k ) A e f f ( k ~ ) A e f f ( k ~ )  (3.4) 

after partial wave projection. 
Our normalization of A and B is such that the nuc- 

leon exchange contribution reads (setting I -= (t9 - k)2): 

29 z 
BN( p, k) = - - ~ - r  1 ( /)r  5 (M 2, t, k~)F s ( M  z , l, k~) (3.5) 

and 

A N (p, k) - 292 M(ra (1) -- r 2 (t)) 
4re 

�9 F 5 (M 2, l, k~) F s (M 2, l, k~), (3.6) 

where the nucleon propagator is written as 

g(p) = pr  1 (p2) + Mre(P2) .  (3.7) 

In [7] it turned out that for pZ < M z (which is the 
relevant region in (3.4)), one has r e ( P Z ) < q ( p Z ) .  
A slightly simplified version of the parametrisation 
in [7] is 

M ( p 2 )  - M r  2 (p2)/rl (p2) = M / ( 1  - (p2 _ M 2 ) / 4 M 2 ) .  

(3.8) 
Consequently the AN-term (3.6) will give in (3.2) 
a negative and (since it has no pole) short range 
contribution to F :  (q2). 

We have not written down the necessary subtrac- 
tions for (3.1) and (3.2). They are performed at large 
spacelike momenta of order 10 GeV, so that the bare 
terms proportional to the renormalization constant 
Z N are almost neglegible (Z N ~ 0.03). We now shall 
discuss the results of various approximations to 
A(p ,k )  and B(p ,k )  for the form factors F l (q  2) and 
F2 (qe) and compare them to the experimental values 
in the region 0 > q2>  _ 1 GeV 2. For this purpose 
we regard the dipole formulae 

G~(q 2) = 1/(1 - q2/0.71 GeV2/c 2) 

Gf u (q2) = 2.793 Gf~ (qZ) 

G~(q 2) = - 1.913 G~(q 2) 
N 2 Ge(  q ) = "c/(1 + 4z)G~(q 2) 

(3.9) 

as valid, since the experimental errors of the neutron 
form factors [10] are larger than the deviations of the 
proton form factors from the dipole law [1]. 
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3.2. Nucleon Exchange 

In the dispersion analysis [11] the nucleon pole 
contribution to B plays an important r61e. Similarly 
we find here that nucleon exchange, (3.5) and (3.6), 
accounts for almost one half of the anomalous 
magnetic moment and overestimates the charge. 
We shall not describe the technical details for the 
evaluation of the integrals in (3.1) and (3.2). We only 
remark that, since we are working with complicated 
analytic forms for the propagator, there remain three 
nontrivial momentum space integrals which are 
performed numerically. The singularity in the propa- 
gator of the exchanged nucleon forces us, after 
introduction of hyperspherical coordinates in the 
N ~r rest system, to deform the momentum integration 
into the complex plane, the detour depending on q2 
(see [12] for details). 

In Table 1, column N we have listed the static values 
for F1 and F 2 and for the radii. It is consistent with 
our reduction of the nucleon box due to re- and 
A-exchange that Fa (0) is quite large. The lowest order 
contribution [8] to F2(0 ) (#~ = 1.65) is reduced by 
more than a factor of 2 by the combined effects of the 

~EV(q2 ) /F l v (o ip~  ~ 1 . ,  
,.2 " l  " 1 N ' u 2  *'r'= 

1 . 0 [  ~ -7---'-~ I . ,  , ' 

m~ I 
~ -  Dipole 

-6 ' ' ' ~ I , , , l I 
l o.~ ~ e v 2 1 d ]  ~.o .q2 

Fig. 5. Results for F~(q 2) in different approximations described 
in the text. ~ refers to (3.9) 
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Fig. 6. Results for F~(q 2) in different approximations described 
in the text. 'Dipole' refers to (3.9) 

hadronic vertex F 5 and of the AN-term (3.6). The 
latter is also important for the q2-dependence of 
F2(q2), as it lowers ( r2 )  by 15~ and reduces F2(q z) 
considerably at larger qZ. We show the results for 
F1 (q2) and for F2(q 2) in Figs. 5 and 6 resp. together 
with the dipole curves. We find that F 1 (q2) is close 
to VDM which is a nontrivial result as F~(q,k) 
differs appreciably from VDM, if the pions are far 
off-shell. Fz(qZ), if normalized, is actually not far 
from F2oipol ~ for - q2 < .5 GeV2/c 2 and has an 
acceptable radius. It falls well below VDM and leads 
in the timelike region q2 > 1 GeV2/c 2 to a negative 
imaginary continuum [12], 

3.3. N N Box with r~-Exchange 

The diagram of Fig. lb can be considered as a special 
case of Fig. lc. The yu-part of the nucleon vertex, 
which has been calculated on-shell in the last para- 
graph and found to be large, is from the lowest order 
calculation known to be repulsive for the charge, 

Table 1. 

exp. N N + B 1 N + B'I N + B' 2 N + B2 + A C 

FI(0 ) 1/2 0.905 0.310 0.451 0.717 0.540 0.540 

F2(0 ) 1.85 0.764 1.070 0.747 0.757 1.00 1.694 

Dipole Proton 
(rl)  

0.76 0.80 0.675 0.765 0.770 0.730 0.729 0.758 
[ f j  + .02 

O.86 0.92 0.901 0.84 0.920 0.938 0.902 0.831 
Ef, J + .02 

F] (q2) and F~ (q2): The static values and the radii for experimental and various approximations. Radii 
are from [1]. 
N = Nucleon exchange 
B = Nucleon + meson exchange (specified in section 3.3 and 3.4) 
A = A exchange 
C = N + B~ + A + ~zco-current 
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but it will increase [8] F 2 (0). This we expect to be 
the dominant character of the box diagram. 

In order to calculate the loop, we have decomposed 
i t  into A- and B-amplitudes and then partial wave 
projected with (3.1) and (3.2). The expressions to be 
inserted into the partial wave projected version of (3.4) 
are given in appendix B. We concentrate here only 
on the leading terms given by the S-wave projections 
of re- and N-exchange which are divergent for point- 
like couplings. If t is the relative momentum in the 
loop, we find for the integrand of the t-integral 

B B ~ Po(z)(M 2 - (M - M ( t ' 2 ) )  2 - 1/3t 2 + t2)Qo~Qou 

0.10) 

where Qo~ and QoN are the s-wave projections of ~- 
and N-exchanges in the box. In the nucleon mass 
term M(/"2) we have replaced the argument by the 
average momentum of the two opposite nucleon 
lines. The rx (19 2) factors are omitted. Similarly we have 

a ,  ",~p~ (z)M(~2)MI k I Qo~ QoN. (3.11) 

These two terms are just the dominant part of Fig. lc, 
if the 7 N b~-vertex is approximated by the 7u-coupling 
given by Fig. la. 

We now discuss the importance of the various 
terms in (3.10) and (3.11). In (3.10)M 2 is attractive 
and of long range with respect to the nucleon loop, 
whereas the remaining terms are of short range and 
repulsive. However, for momenta 7 2 ~ 0 the bracket 
( M -  M(t'z)) 2 is still small compared to M z for the 
parametrisation (3.8), so this term is not important. 
The A B expression (3.11) is a positive contribution 
to F 2, which is well convergent with respect to t, 
since its short range part is suppressed by the decreas- 
ing M(~). 

The same remarks as in (3.2) hold for the t integrals 
of the nucleon loop, but the contour deformation 
extends much farther into the complex t-plane. 
In column "N + BI" of Table 1 we combine the results 
from this diagram with those from N-exchange. One 
sees a drastic reduction of Ft(0) and considerable 
improvement in ( r  1 ). On the other hand F2(0 ) is 
increased and ( r  2 ) lowered, such that it no longer 
agrees with the measurements of ( r z ) for the proton 
alone. This is not unexpected, since the high inter- 
mediate masses of the loop will not lead to a rapid 
q2-fall-off, and one sees the influence of the too flat 
F1 (q2) as given by Fig. la (see Fig. 5, curve N). 

The mass terms M(t  "2) have to be discussed further, 
since higher order corrections probably cannot be 
neglected for them. The mass term of a nucleon line 
between two mesons in the isospin 0 state receives 
large negative contributions from meson exchange 
as shown in Fig. 7, their magnitude being roughly 
three times that of the repulsive B-term. This fact 
was already explained and used in the determination 
of the nucleon propagator [7]. The isospin decomposi- 
tion of fig. lb gives (0; 1)+ ( 1 , 0 ) -  (1 ; 1), where the 
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f "  

Fig. 7. Higher order corrections especially for mass term M(p a) 

two numbers in the bracket indicate the /-spin of 
the pion pairs on the r.h.s, and 1.h.s. of fig. lb resp. 
Therefore the repulsive force in the I = 0 state will 
dominate. Tentatively we use the same suppression 
factor for the mass term as in [7], namely 

M(p 2) = M/(1 - (p2 _ M2)/M2). (3.13) 

It is amusing to note that the suppression at p2= 0 
agrees with that given by the contact interaction of 
the chiral invariant Lagrangian of Gfirsey [13]. If 
we would apply (3.13) to on-shell teN-scattering at 
threshold, we would obtain twice the A § follow- 
ing from Adlers selfconsistency condition [14]. 

The form (3.13) clearly will reduce the A-term in 
(3.11). As can be seen in column N + B' 1 in Table 1, 
the effect is so strong that for F 2 (0) the nonleading 
terms become important. The decrease of the A-term 
will of course lead to an increase of the charge Fa (0). 
The q2-dependence of F 2 (q2) is improved drastically 
and the value for ( r 2 ) is in excellent agreement with 
experiment. We do not show the curves for F~ (q2) 
and F 2 (q2) in Figs. 5 and 6, since they are very similar 
to those obtained in the approximation with o9- and 
e-exchange in the nucleon box. These will be discussed 
in the next chapter. 

3.4. N N-Box with co-and e-Exchange 

The reduction of F 1 (0) due to n-exchange is certainly 
overestimated, as it is generally true for the Born 
term of a repulsive potential. Especially after A- 
exchange is included, F I (0) is quite low. One therefore 
should include multi-meson exchange diagrams which 
compensate part of the repulsive re-exchange. We 
want to avoid this, however, because of the spin 
complications and consider only co- and e-meson 
exchanges. For the coupling constants we shall use 
go~Iv~14~2 = 15 which can be justified from our simplified 
model of Appendix A. The coupling 9~N~7 is poorly 
defined as is the e-particle itself. At the moment we 
choose g~N~ = g~N~ and justify this a posteriori by 
the charge normalization. 

Again we shall work with free propagators for the 
reasons explained in Sect. 2.3. (note that single pion 
exchange as part of the o-propagator is forbidden 
and double exchange is already included). 

The formulae for the partial wave projected 
integrals are collected in appendix B. Essentially the 
same remarks as in the previous subsection apply 
for e- and co-exchange with the difference that the 
Fl-projection is attractive and that a suppression 
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of the M (pZ)-term will cut out a short range attractive 
piece. 

For the chosen values of coupling constants and 
for the mass term (3.13) we find AFt(O)= 0.27 (see 
Table 1, column N + B2). The q2-dependence for 
both form factors is quite good (see Figs. 5 and 6). 
For the mass term (3.8) the form factor F 2 (q2) is much 
too high a t  q 2  = _ 1 GeV2/c 2. It is mainly the A-term 
with its slowly converging k-integration which causes 
this difficulty. 

The elimination of the "hard component" by 
modifying the mass term is not the only correction 
which we have to apply. We have to be aware that 
the lowest order loop for Fl(q2), Fig. la is a poor 
approximation which is improved by the box diagrams 
independently of the mass term. Thus the ff2 (q2) part 
of the boxes will get corrections in higher order ladder 
exchanges between the nucleons, which we shall not 
attempt to calculate here. In general we regard the 
phenomenological parametrization of M(p 2) for the 
isoscalar n N-amplitude as a promising step towards 
a realistic model. 

3.5. A (1232)-Exchange 
Simple charge counting suggests that A-exchange 
gives a negative contribution to FI(0 ). The notion 
of A-exchange is certainly model dependent, but as 
the explanation of the A as a z N resonance generated 
by N exchange is a fairly successful theory [15], we 
can define A-exchange as the sum of nN ladder 
diat~rams, the simplest nontrivial of which is the 
NN box diagram Fig. lb. We adopt the treatment 
from on-shell nN-scattering [17], where the A-pole 
terms for the A- and B-terms are known to be a good 
approximation for the dispersion integrals. These 
pole terms can conveniently be calculated from the 
Rarita-Schwinger propagator [-16]. We find (A = A- 
mass, 6 = A 2 - -  M 2) 

2 9 *2 1 t 92 
A~ = 3 4n (p - k) 2 - A2 ~ (M + A)(k 2 - ~- - 6/3 

162 } 6A 21 (6 + k2)(6 + k2)) + ~ (  - k~kZ2) (3.14) 

2g *2 1 { ~  
Ba-34n(/9_k) 2-A 2 _~qZ+M 2 

+ ~-A (A2 -F M2) - ~ 2  (A4 + M 4) 

-3;2(AM-M2)(k2+q-- -4) -6@k~k~}  (3.15) 

We use g*2/4n = 0.26/m 2 according to [17]. 
The above pole terms we corrected first of all by the 
vertex functions F 5 in the same way as'the nucleon 
pole in (3.5). The justification for this is that the n N A 
coupling arises through the nN coupling in the 
nucleon exchange loops. Secondly we multiply Aa 

and B a by the vertex function (depending only on 
k 2 or k 2) which has been found in the study of the 

N A vertex as a function of the photon momentum 
squared in [15]. It is 

F~ (k 2) = 1/(1 - (k 2 - mZ~)/3M2). (3.16) 

This vertex, which is a special consequence of the 
P-wave state in the nN channel makes the A-contri- 
bution convergent. We shall work with the free 
A-propagator for similar reasons as we did for the 
co-propagator. Here it is the box diagram Fig. lb, 
which probably has the slowest fall-off in ( p -  k) 2 
and which has to be omitted from the nN-scattering 
amplitude, as it is already included. 

In Table 1 we see a substantial decrease of F 1 (0) 
and an increase of F 2 (0) with slight changes in the 
radii. A change in the cut-off in (3.16) from 3M 2 to 
2M 2 would increase FI(0 ) by 10% and F2(0 ) by 
- 5%. The q2-behaviour of both form factors is quite 
good, with a tendency to be high at large q2 for F 2 (q2) 
(see Figs. 5 and 6). Of course this description cannot 
be the final one, as the normalization of F2(0 ) is 
still very low. This will be cured by the no-current 
(Fig. 2), which on the other hand will bring difficulties 
at high q2. 

4. The rc co-current 
We shall treat the too-intermediate state only in the 
one nucleon exchange approximation of Fig. 2, i.e. 
w e  especially neglect meson exchanges between 
NN. The n o  7 form factor F ~ ( q  2) follows from the 
coupled channel BSE with nucleon loops as described 
in GW. The projection of the diagram Fig. 2 is, assum- 
ing as always a pure 7;coupling between co and N ~r: 

M ~(2Po (z) + P2(z))rl((p - k) 2) (4.1) G~ (q2) _ _ 3-  k 

2 M ~ ,  
F2 (q2) -- GM (q2) + ~ + z  ~ PE(z)rl ((p -- k)2) (4.2) 

The notation is the same as in (3.3) except for 

. d 4 k  k 2  - != 2ggo~N~Ji(~)4 ] F~o,~(q,k)Tt~(k~)Ao,(k~) (4.3) 

where again the free o-propagator is used. For 
simplicity we have neglected the difference rj (p2)_ 
r2 (p2) here since it would show up only in P-waves. 
There is a subtlety for the choice of the coupling 
constant g,~N~ in (4.3) as compared to the one which is 
used for the nn ~ n o  nucleon loop. We have argued 
in GW that the inclusion of the crossed nucleon box 
will increase the effective oNb~ coupling by a factor 
of 2. We therefore take in (4.3) only half of that value, 
which was determined by adjusting F.,o~(0 ). This 
leads to a lo_wer value than that used for o-exchange 
between N N, namely 

2 n g,~N~/4 8.6. (4.4) 
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From (4.1) and (4.2) we recognize that especially for 
F2 (q2) the k-integral behaves quite different from the 
pion current case: There is a S-wave projection of the 
nucleon propagator r l ( ( p - - k )  2) which would be 
logarithmically divergent for a pointlike vertex 
F~o~(q,k). Although F ~  is not pointlike since it 
arises from convergent fermion loops, its decrease in 
momentum space is not strong enough to make the 
integral (4.1) converge as quickly as the corresponding 
pion integral (3.2). The large co-mass will work in the 
same direction. It is therefore not surprising that the 
inclusion of the rcco-current lowers the radius for F 2 
considerably (last column of Table 1, version C). 
Furthermore the qZ-dependence is no longer com- 
patible with the dipole behaviour (see Fig. 6). On the 
other hand, the contribution to F 1 (q2) (which vanishes 
for q2 = 0), leads to a 15% decrease at q2 = _ 1 GeV2/  
c 2, so that Fa (q2) is already somewhat low there (see 
Fig. 5). The radius ( r  1 ), which depends only on 
F~o~ (0), is in very good agreement with experiment. 

The most likely source of this discrepancy is the 
behaviour of F ~ ( q  2) in our model. It drops less 
rapidly with q2 than VDM. Perhaps the F ~ - f o r m  
factor can be changed in our model. Preliminary 
calculations indicate, that the introduction of an 
attractive (rcco~co)-interaction will lead to a 
stronger decrease with q2. This force can be derived 
from the nucleon loop [18] and was neglected in GW. 
It may eventually lead to a second resonance in the 
rc co channel, which one naturally expects for a many 
channel problem with attractive potentials. 

We conclude that the size of the re co-current at 
q2= 0 is reasonable as the normalization of Fz(0 ) 
and the radius of F~ suggest. The k-integral for F 2 
however, has a tail extending to rather high k z, and 
the F~<vertex is neither sufficiently soft in k 2 nor 
in q2. The overall result is nevertheless in surprising 
agreement with experiment in view of the fact that 
in our model the nucleon form factors don't contain 
any free parameters. 

5. Discussion 

Let us repeat our basic assumptions. We believe that 
vector mesons can be described as resonances in a 
multichannel system made up by ~zc, K/( ,  rc~o, N N  
channels and by those physical states which build up 
the selfenergy continuum in the propagators of these 
particles. The main forces in the isovector case are 
nucleon exchange for N N  ~ ~r~ and N/V - ,  ~co, 
and in the isoscalar case pion exchange between NN. 
The most important parameter is the vertex scale 
parameter A, which is fixed by the p mass. 

A necessary consistency check is first of all, that 
the couplings of the various constituents to the vector 
mesons are described correctly. These include the 
p-width, which is typically high by 30% if we do not 
adopt some modifications (which is already a good 
result). Furthermore we have the p~co coupling or 
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F~,o~ which can be reproduced by a reasonable value 
for 9~oN~?. The couplings of the p to N N  follow from 
the form factor normalizations and the e.m. radii 
as calculated in this paper. 

The second test concerns the 'spatial' properties of 
the particles, i.e. the higher qZ-behaviour of the form 
factors. In detail our calculations give the following 
picture: 

The normalization of the anomalous isovector 
moment is partly shifted from the pure loop diagram 
[8] to higher order contributions, namely to the 
nco-current and to A-exchange. The reduction of the 
pion current is due to the hadronic vertex functions, 
the A-term according to (3.6) and to the mass sup- 
pression (3.13) in the nucleon boxes. There is some 
uncertainty for the precise values of these higher order 
terms, since e.g. the coNN coupling constant and the 
co-propagator are not well known. They can, however, 
be calculated in our model, as we have shown in a 
simplified BSE-calculation. 

The charge normalization is fulfilled via a large 
contribution from nucleon exchange for the pion 
current, further positive terms from co- and e-exchange 
and negative currents from re- and A-exchange. 
We remark that in principle the uncertainty in the 
co- and e-exchanges will not fully enter into FI(0), 
as it will also influence the nucleon loop and the value 
of A 2 necessary to reproduce the correct p-mass. On 
the other hand F1 (0) depends strongly on A 2. 

The two isovector radii are generally quite good for 
all calculated contributions. In detail the nucleon 
exchange term for F 1 (q2) has a long tail in momentum 
space, which gives a low value for ( r  1 ). This result 
is readily corrected by the other  diagrams. Except 
for the ~ co-current and for the boxes with unmodified 
mass term, there is a tendency for ( r 2 ) to  lie above the 
dipole values in agreement with the low qZ-measure- 
merits from Mainz [1]. 

Whereas the final version C for F 1 (qZ) describes 
the experimental results very well, there are definite 
difficulties for F 2 (qZ) at increasing q2, with deviations 
up to 35% at q2 = _ 1 GeV2/c z. This is due to the 
rcco-current. Since it is possible to extend this model 
into the timelike region [12], it will be possible to 
check the crucial rcoJ-form factor against the data for 
e + e- --, z~co. A simplified version of our model shows 
no p' below 2 GeV. Whether this can be changed by 
the inclusion of more elastic forces like direct r~ co ~ rc co 
couplings will be explored in the future. 

It is surprising that a field theoretic model with not 
superrenormalizable interactions and a vertex scale 
parameter A 2 ~ 2 GeV 2 (the influence of which is 
counterbalanced by the propagator modifications) 
can lead to the correct magnetic moment radius and 
to a form factor decrease with q2 definitely faster than 
a monopole. Although the position of the p-pole 
is an essential input parameter for the model, it is 
not trivial that the model first of all shows approxi- 
mate vector dominance and secondly gives deviations 
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from VDM of the correct sign and, approximately, 
of the correct magnitude. It is intuitively clear that 
in a field theoretic model the form factor decrease for 
high q2 does not come out in an easy way, since the 
lowest order contributions are pointlike for the 
charge and nearly pointlike [3] for F 2 (qZ). The ad 
hoc multiplication of the lowest order loops with the 
on-shell pion form factor [19] still does not give 
satisfactory results [12] and it is hard to justify, as 
the off-shell pion form factor deviates considerably 
from the on-shell values. Furthermore a model with 
a limited number of channels is likely to possess a 
small number of vector mesons, perhaps only one [12] 
as the consequence of our singular interactions. These 
arguments make it understandable that the theory 
approaches the final result from above. This is in 
striking contrast to the approach in the quark model, 
where one is led, by the observation of linear Regge 
trajectories, to smooth potentials between the consti- 
tuents [20], which guarantees a rapid decrease of the 
form factors for q2 ~ oe. 

Usually in constituent models the wave function of 
the constituents is the quantity of prime interest, 
whereas the form factor of the constituents attracts 
little attention. Here we suffer somewhat from the 
opposite danger. The wave function is (apart from the 
particle propagators) given by our vertex function 
Fs, the form of which is guessed with only its scale 
parameter determined. Since, however, the scale of 
2 GeV 2 is relatively large, it may be that for our small 
region ofq 2 we do not probe the details of this function. 
Nevertheless a better understanding of the basic 
vertex and of some other important dynamical input 
amplitudes, like e.g. the isoscalar mass term, are 
urgently needed. 

Appendix A 

Here we want to study both the form of the co- 
propagator and the effects of higher order meson 
exchange insertions in the nucleon loop for 7zrc- 
scattering. For both purposes we shall solve the 
Nb~-BSE in the spin-1 channel, handling the spin 
problem only approximately. As forces we shall 
consider re-, co- and e-exchange. 

A.1. N ffl-Scattering, Isoscalar Case 

We shall investigate how well the scattering amplitude 
for off-shell nucleons with momenta p2 in the range 
0 > p2> _ M 2 is dominated by the co-pole with a 
y,-coupling, if the forces are given by meson exchanges. 
First we have to simplify the spin problem. The 
dominant n-exchange amplitude Ys| can be 
decomposed by the Fierz transformation into 
-1/47~|  7, and other terms, where Yu now acts 
between N N-spinors. This 7, we take as the spin part 
of the inhomogeneous term of the BSE. Then it 
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reads for rt exchange 

392 u 1 
L ( P )  = - (p _ p,)2 _ 

.~ d4k 
- 392,j/5   r + M)r.(k) 
(~2+M)Ts/( k z -  2 2 _  M ) ( k  2 M 2 ) ( ( k - p )  2 rn~) (A1) 

with kl/2 = + q/2 + k 
We now proceed as if we could integrate sym- 

metrically with respect to k. This is exact forp = q = 0 
and for k ~ ov (Note that we are not interested in 
Tu(p) for pZ ~ M  z, where symmetric integration is 
rather poor. This region is not important for the 
co-exchange in the BS-kernel). Since we are interested 
into the q2-dependence, we cannot neglect the ano- 
malous magnetic moment terms, which arise from 
the combination 

in (11). We are therefore led to a system of coupled 
integral equations, if we introduce two form factors by 

1 T. (iv) = 7uF1 (p) + 7 [0, Y.] F2 (P), (12) 
3 g2 

F1 (P) -- - - 4 ~ Q 0  (P) 

- c .  MZ q ~ ~ F~(k)+q2MF2(k) ,  (A3) 

Fz(p )=c~[MF~(k )+  MZ +--4 F2(k), (A4) 
k 

Qo (P)= S-wave projection of pion propagator with 
final relative momentum p 

392 
c,~= 4~ 

i 2 = _ - ~ d k o d l k [ k  Qo(p,k)/(k 2 - MZ)(k22 - MZ). 
k 

(A5) 

It should be noted that the second order contribution 
to F 1 via the Fz-amplitude is linear in q2 and gives 
rise to a strong q2-variation. 

We also give the equations for co- and e-exchange: 

1 
4re Qo(p ) - 2 %  M 2 Fx (P) = 2 

I: 2 (p) = o 

and 

F I ( p ) -  

- c ~ ! ( M  2 + - - - - -  

1 2 
Qo (P) 44rc 

q2 k2) 

4 2 F l (k )+q2  

q2 k2) 

-~ 4 2 Fl(k) 

(A6) 

(A7) 

M F  2 (k) (A8) 
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F 2 ( P ) = - c ~ M F ~ ( k ) +  M 2 + ~  - F2(k ) (A9) 
k 

2 ~ 2 with % = 9o~N~/4 and e~ = g~N~/4 re. Note the different 
sign of the F2-integral as compared to n-exchange. 
The modifications due to dressing the propagators 
are straightforward. For simplicity we set 
M ~ M(k 2 + q2/4). 

We have solved the coupled equations with the 
choice g~,N~ = g~N~ = g with 92/4n left as parameter. 
The value for g~,N~ will be determined selfconsistently 
in the course Of this calculation and is not far from 
the above choice. The choice for g~Ni~ is motivated 
by the correct charge normalization for F~ as explain- 
ed in Sect. 3.4. Because of the large isospin factor and 
the small mass, pion exchang~ is still the dominant 
force. We obtain a bound state at the mass q2 2 
for the value 92/4n = 14.9, which gives credibility 
to our model. We now can examine the resulting 
N~r-scattering amplitude Fa without the inhomo- 
geneous term (see Sect. 2.3) for various external 
momenta p2, which we take as equal. In Fig. 8 we 
have plotted (as solid lines) the function 

2 2 2 F2  2 2 2 (q2-m~)Fl(q ,P )/ 5(P ,P ,q ) (A10) 

for three values of p2. The dashed lines are obtained, 
if also the second order diagram is omitted. If the 
expression (A10) were a constant, we could identify 

2 n it with the coupling constant g , ~ / 4  . We see a 
variation up to 20~ with q2 and a decrease by a factor 
of 2 with increasing [p2 I. If the second order is subtract- 
ed, the q2-dependence is negligible. This means that 
F~ (p2, q2) decreases somewhat faster than the pseudo- 
scalar vertex function F 5 which is not surprising in 
view of tire long range forces due to pion exchange. 

2 7~ For the value of the coupling constant g~N~/4 
one finds an average between 15 and 20 depending 
on p2 and the subtractions. This is an overestimation, 
since we have neglected all annihilation channels. 
The value of 15 is therefore a very reasonable estimate. 

4= 30 ~ p Z , = . 0 . 5 C , r  

zo ~ 0 2 = . 1 . 0  GeVZ 

i J , ~ [G eV 21 0.5 1.0 1.5 -q2 
Fig. 8. Effective coupling constant g2~r,#/4 ~ as function ofp 2 and q2 

In a first order approximation the decreasing 
vertex (as function of p2) will be counteracted by the 
increase of the propagator in q2 relative to the free 
one', and we can take the product of our vertex func- 
tion F s and the free propagator as a good working 
hypothesis for the off-shell N N  scattering amplitude. 
Possible deviations have to be studied in more detail 
in the complete model [9]. 

A.2. The Nucleon Box for 1rlr-Scatterin9 

The approximation discussed above enables us to 
calculate also meson exchange corrections for the 
nucleon loop, which is the dominant force in the 
tore-channel. We only have to change the inhomo- 
geneous term and the n-exchange isospin factor. 
First of all the nucleon exchange diagram for the 
amplitude zcrc ~ N N gives, if contracted with the 
pion "e.m. vertex, a 7u-current proportional to 
292Qo(p-p  ') (1) refers to pion momenta, Qo is the 
s-wave projection of the nucleon propagator). Then 
we introduce form factors in analogy to (A2) and 
find the equations 

Vl (p) = 292 Qo(p - p') !( q2 
-c'~ M2-F ~ ~ F~(k)+q2F2(k) (All) 

( * )  F2(p)=c'IMFI(k)+ M2+~ - F~(k) (A12) 
k 

with 

c'~ = - g2/47z. 

The o- and e-exchange terms are unaltered. The 
complete p-wave projection of the box(with respect 
to the pions) will be obtained from the solution of 
(All) and (A12) by adding the second nucleon 
exchange: 

TBox----2c;I M 2 +  Fl(k)+q2F2(k) (A13) 
kN, ' 4 2- 

Here ~k N refers to N-exchange. 

Solving these equations by iteration leads to the 
following results: If we neglect co- and z-exchange, 
the box diagram is reduced by about 20%, which is 
somewhat less than speculated in GW. If we include 
o9- and z-exchange, we find an enhancement of 10% 
relative to the 'bare' box and an additional q2  
dependence, which is almost linear and gives a varia- 
tion of + 9% between q2= 0 and q2 = too2. All this 
qualitatively agrees with the exact results of Chan [9]. 
Since we have neglected A-exchange, which reduces 
the isovector charge by 20~o (see Table 1), a certain 
reduction of the nucleon box will survive the net 
attraction of meson exchanges. 

In order to obtain the correct p-width, we also have 
speculatively increased the energy dependence of 
the box from 9 to 15~. This energy dependence 
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however has to be damped for large off-shell momenta 
of the external pions, as then the internal momenta 
in the loops (e.g. the term -k2 /2  in the kernel of 
(All)) become larger. We therefore use the following 
form for the effective rote-kernel, TBox(ki), where k i 

are the pion momenta: 

Taox(ki) 

=0.8 { l + O.15q2/m2(1-i~lk~/4OMZ ) } TBo,(ki) 

(A14) 

T~o x (ki) is the unmodified pseudoscalar Box diagram 
[6]. In conclusion we see that meson exchange 
corrections in the nucleon loop are not very large 
in contrast to the isoscalar case. The reason for this 
is the cancellation between attractive and repulsive 
forces. 

+ + q 2 _  )Qoo)QoN, [k[(2[tll;qlQl,~+(M~ 2 ~ - t  2 

Appendix B 

Here we collect the contributions to GM(q 2) and 
F2(q 2) which arise from the meson exchange box 
diagram of Fig. lb. These can be viewed as cor- 
rections to the nucleon exchange amplitude for 
rcn ~ NAr. We have decomposed the spin part of this 
amplitude into the familiar A- and B-parts with the 
help of the algebraic program REDUCE [21]. 
Then the partial wave projection was done with (3.1) 
and (3.2). The D-wave exchange was neglected in 
order to simplify the formulae. Besides the definition 
of ~ from (3.4) we use the abbreviations 

k 
--i  2 q 2 q 2 

~=-LT~t d[t[dtora((-+t']']rl((-~-t) ) 
t lr q2 \ \2  J J 
C t = m { - ~ -  t + 2k ot o 

(;) Mt=M t2+ . 

Then we have for ~-exchange: 

GM(q 2) = �89 I [tl(Q0=- Q==)(~lkl It [ QoN - C,Q~N) 
k t  

+ 21klltllqlQ,=Oo~ 
q2 N 

§ -- t 2 )  Qo~ QoN IkI(ZMM,- M 7+ 
/ 

f2(q 2) = ~ ~ IItIc, Q2~Q~N 
--t- k t  

+ ~[kl(IqlitIQ,~- t zQ2€ 
- M,/M(Iq}C,Q~=QIN-~Ik]IqlIt]Q~=QoN 

2 2 

4 ( g 2 ~  2 

x ' =  \ T ~ 7  
~-exchange: 

2 2,o Gu(q ) = ~-J'J'(Qo~ - Q2~)(lt[ CtQ1N - ~lkl t2 QoN) 
~ k t  
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2 )],co - 

+ ~lkllqlltl(2MJM-- a)Q~QoN 
_2. kit2 o r~ _2[qlMjMC, Q~Q~ ' 

3 - ~ 2 t ~  " ~ 0 N  

2o~ = 4g~sSg2 /(4 ~) 2 
e-exchange: 

2, 
G.(q 2) = ~- ! ! (Qo, -  Q~3(ltlc, Q,u -~lklt= QoN) 

- 

-~[k[qlltl(MJM- 1)QI~QoN 
M t  2 2 

- ~ [ k l t 2 Q 2 , Q o N  +~-(~ lk lq  Qo~QoN + [qlQ1,Q1N), 

2e 2 2 2 = 2g~N~g/(4~) 
The necessary subtractions are str~iightforward, and 
we do not list the formulae. 
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