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Abstract .  Constraints on the fermion and Higgs 
scalar content of grand unified gauge theories, 
imposed by the requirement of asymptotic freedom 
for the gauge couplings, are derived for models 
which have fermion representations with only color 
singlets and color triplets The constraint n < 16 

�9 . f ~  . 

on the number n: of flavors of color triplet quarks an 
pure QCD is removed�9 Definitive limits are placed 
on the representation content of theories based on 
the exceptional groups. 

I. Introduct ion  

Gauge theories of the weak and electromagnetic 
interactions [1, 2] and of the strong interactions 
[3, 4] have become the theoretical foundation of 
contemporary elementary particle physics. Not only 
have these theories passed many phenomenological 
tests (for recent reviews, see [5, 6]), but they possess 
general properties, such as renormalizability [7, 8] 
and asymptotic freedom [9, 10], which many theorists 
find attractive�9 Thus, it is not surprising that there 
have been many attempts [11-26] to construct 
a grand unified gauge theory of elementary particle 
interactions, in which only the role of gravitation 
is at present uncertain (for attempts to include 
gravitation, see [27] and the works cited therein)�9 

Gell-Mann et al. [27] have recently enumerated 
all possible simple gauge groups which contain a 
product G:~| SUe(3) of a flavor group Gf~ which 
contains the weak and electromagnetic gauge group 
G w _~ SU(2)@ U(1) and the color gauge group SUrf3) 
of quantum chromodynamics, and which in addition 
contains a ferrnion representation with only color 
singlets and color triplets (3 ~ and perhaps 3r They 
find that such representations can be divided into 
four classes, based on the structure of the flavor 
group G :I : 

Class I G ~= Gz| Gq| U(1) The leptons trans- . f 

form under G z, the quarks under Gq, and the U(1) 

factor distinguishes leptons and quarks. In this class, 
the fermions transform under the defining repre- 
sentation of one of the classical groups SU(n), SO(n), 
Sp(2n). 

Class 11. G:I = SU(nz)| SU(nq)| SU(nr)@ U(1) @ 
U (1). The fermions transform under the fundamental 
representation of SU(n), with n = n~ + 3 nq + 3 n r, 
and consist of nl color singlet leptons which transform 
under SU(n),nq q-type quarks (3 c) which transform 
under SU(%), and n,. r-type quarks (~c) which trans- 
form under SU(n,). 

Class III.  G:~ = O~+q| U(1). There are two repre- 
sentations which lead to this structure: 

1. If the fundamental representation of SU(n) is 
expressed as 
n = (1, 3 c) + (n - 3, V) (1) 

under SU(n-3) |  then the fermions can 
transform as one or more antisymmetric tensor 
representations;the flavor group is SU (n - 3)| U (1). 

2. The fermions transform as one or more spinor 
representations of SO (n), with flavor group 
SO(n - 6) x U(1). 

Class IV. G:~ = GI+ q. The fermions transform as 
one or more fundamental representations of one of 
the exceptional groups F 4 ,  E6,  E 7 . 
Only theories of class III and class IV provide a 
natural connection between the weak and electro- 
magnetic interactions of leptons and quarks, although 
the connection could arise as a necessary consequence 
of the symmetry breaking in theories of class I and 
class II. 

The present work examines the constraints placed 
on grand unified gauge theories by requiring asympto- 
tic freedom as a whole. It should be noted that such 
an extrapolation of asymptotic freedom may not 
be required by present experiment, in view of the 
Appelquist-Carrazone decoupling theorem [28], 
which states that heavy fields decouple from a theory 
at low energy, but there is recent work [29, 30] which 
suggests that there may be exceptions to this theorem. 
There is a conjecture by Fradkin and Kalashnikov 
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[31], based on an old observation of Landau [32], 
that asymptotic freedom is necessary for a consistent 
field theory, but that conjecture is by no means 
proven 1. On the other hand, attempts to resolve the 
Landau problem either by an ultraviolet fixed point 
[33-35] or by gravitation [36, 37] have not been 
completely successful, so the question of overall 
asymptotic freedom may be of more than academic 
interest. 

Here only the restrictions on the fermion repre- 
sentations and Higgs scalar representations imposed 
by asymptotic freedom for the gauge couplings alone 
are considered. The theory as a whole can be asympto- 
tically free, of course, only if the Yukawa couplings 
and scalar quartic couplings are also asymptotically 
free. It has been emphasized by Cheng et al. [38] that 
it is a non-trivial task to construct asymptotically 
free scalar quartic couplings, particularly when 
enough scalars are included to break a gauge symme- 
try down to U(1). In the examples they considered 
(see also [39]), asymptotic freedom and symmetry 
breaking to U(1) were, in fact, incompatible. 

Apart from the fact that for grand unified theories, 
the requisite unbroken symmetry is SUe(3)| U(1), 
and the representations of Higgs scalars can be more 
complicated than those previously considered, there 
is another interesting possibility: the Yukawa coupling 
constants and scalar quartic coupling constants may 
be functions of the gauge coupling constants [31, 
40-43], corresponding to an ultraviolet unstable 
fixed point of the renormalization group equations. 
This may correspond to a supersymmetric theory 
[41], or to a non-supersymmetric theory in which 
dynamical symmetry breakdown has been described 
an equivalent set of Higgs scalars [44]. These issues 
will be studied in detail elsewhere; however, asympto- 
tic freedom of the gauge couplings is a prerequisite 
for any of these prospects to materialize. 

The constraints on grand unified theories of class I 
and class II are minimal, as explained in Sec. II. The 
restriction 

n f ~  16 

on the number of flavors nf of color triplet quarks 
in pure QCD [9] is removed; it is replaced by a 
restriction on the number of times the fundamental 
representation can be repeated. For sufficiently large 
groups, Higgs scalars are forbidden to transform 
as tensors of rank higher than two. 

The constraints on class III theories are somewhat 
stronger, but not of immediate consequence: for the 
SO (n) spinor representations, no more than 64 quark 
flavors and 64 leptons are allowed, while for the 
antisymmetric tensor representations of SU(n), ten- 
sors of rank higher than two are forbidden for n > 15 
with four-component fermions; limits are also obtain- 

i The difficulty is that the singularity observed by Landau involves 
using the lowest order perturbation expansion for the renormaliza- 
tion group function fl(9) in the strong coupling region 

M.T. Vaughn: Asymptotic Freedom Constraints 

ed for the two-component assignments to anomaly 
free reducible representations, which are generali- 
zations of the 5 + 10" in the SU(5) model of Georgi 
and Glashow [13]. 

For theories based on the exceptional groups 
(class IV), definitive limits are obtained on the allowed 
multiplets of Higgs scalars. 

The reason that the present constraints are weaker 
than those of pure QCD is that there are massive 
colored fields in the grand unification models which 
tend to further stabilize the gauge couplings. Although 
this additional stabilization does not occur until 
the grand unification mass, which is superheavy 
in models which do not conserve baryon number 2, 
it is not possible to obtain stronger constraints on 
the mass spectrum of fermions and scalars 3. 

II. Asymptotic Freedom of  Gauge Couplings 

The standard renormalization group equation for 
the running gauge coupling constant has the one-loop 
approximation 

16Z~ 2 dg = _ bog3 (2) 
dt  

where t = In 22, with 2 a parameter which sets the 
momentum scale. The coefficient b 0 is given in terms 
of the gauge group representation content of the 
theory by [9, 10, 38] 

= ~ S  2 (G) -- b o ~ S 2 (F) - ~ S 2 (S) (3) 

where G is the adjoint representation of the gauge 
group, F is the representation of the fermions express- 
ed as two-component (Weyl) spinors, and S is the 
representation of the scalars expressed as real fields 4. 
S2(R ) is a quadratic invariant associated with the 
(possibly reducible) representation R of the gauge 
group; it is defined in terms of the representation 
matrices t A o f  the generators of the group by 

Tr (t a tB) = S 2 (R) 6AB (4) 

The theory can be asymptotically free only if 

b o > 0  

2 See [45-471 for a discussion of this point in SU(5) 
3 Even with a perturbation theory approximation to fl(g), the 
recent work of Maiani, Parisi and Petronzio [48] suggests that even 
16 quarks of relatively low mass, and a corresponding number of 
leptons, will not lead to strong coupling either in QCD, or in 
SU(2) | U(1), until the Planck mass or beyond 
4 The representation F, S are in general reducible, in which case 
S 2 is a sum over values of the quadratic invariant for irreducible 
representations. If the fermions can be expressed as four-component 
spinors and F is the gauge group representation of the four- 
component fermions, then the coefficient of Sz(F) is 4/3. For complex 
representations of scalars--for example the fundamental representa- 
tion of SU(n)--both the representation and its complex conjugate 
must be counted, or, equivalently the coefficient of $2(S) replaced 
by 1/3. Note that a pseudoreal, or symplectic, representation of 
scalars must be treated here as complex 
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(further necessary conditions on the Yukawa 
couplings, scalar quartic couplings, and requirements 
that the initial values lie in the domain of attraction 
of the origin, are not considered in the present study). 
The restrictions on the representation content of 
the fermions and scalars in the theory due to this 
condition are outlined here for the grand unified 
theories classified in [27]. 

The quadratic invariants S 2 (R) for the relevant 
representations of the classical groups are collected 
in the Appendix. These lead to the results given 
below. 

su(n) 
For the class I and class II embeddings of SUe(3) 
in SU(n), with p four-component fermions trans- 
forming according to the fundamental representation, 

bo--~--gVll 2__~$2(S) (5) 

(four-component fermions are required here to avoid 
anomalies). The Higgs scalar content is not severely 
restricted. If p - -1 ,  rank two tensors are always 
allowed; for n = 24 (6 color triplet quarks and 6 
leptons), one third-rank tensor (symmetric or anti- 
symmetric) is allowed. 

For the class III embedding of SUC(3) in SU(n), 
the vector-like assignment of the fermions to a single 
irreducible tensor of rank k is consistent with asymp- 
totic freedom for n < 9  i f k = 4 ,  for n < 1 5  if k = 3 ,  
and for any n if k = 2. Also, the two-component 
assignment to the self-conjugate antisymmetric tensor 
of rank rn in SU(2m) is allowed for m < 5. 

An interesting type of fermion representation in 
this embedding is the anomaly-free reducible repre- 
sentation, which is a generalization of the "Woolworth 
representation" (5+ 10") of the SU(5) model of 
Georgi and Glashow [13]. These representations 
allow a two-component fermion assignment with 
no fermion mass term, and have an unequal number 
of left-handed and right-handed neutral leptons 
(thus leading naturally to massless neutrinos). Here 
only a brief characterization is given of the repre- 
sentations of this type which are consistent with 
asymptotic freedom; for full details, see [49]. 

The representation 

( n -  4){1} + {12} * 

containing the fundamental representation n - 4  
times, and the conjugate antisymmetric tensor of 
rank 2 once, is anomaly-flee for n > 4. For n = 5 it is 
the 5 + 10" of SU(5); for n = 6, it is the 6 + 6 + 15" 
of SU(6) obtained from the 27 of E 6 under the 
reduction E 6 ~ SU(6)| SU(2). There are in general 
� 8 9  massless neutrinos in the repre- 
sentation, if only neutral and singly charged leptons 
are present. 

The number p of copies ("generations") of the 
representation is restricted by 
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l l n  p < - -  
2 (n - 3) 

For SU(5), this gives p <  13, which is certainly 
consistent with the phenomenological arguments 
[46, 47] which suggest p = 3 (or possibly 4). 

There are, in addition, anomaly-free reducible 
representations of groups as large as SU(16) consis- 
tent with asymptotic freedom; many of these are 
consistent with the cosmological bound [50] of 7 on 
the number of massless neutrinos. 

so(n) 

For the class I embedding of SUe(3) in SO(n), with 
p two-component fermions transforming according 
to the fundamental representation, 

b o = Z~(n - 2) - 4 5P - ~$2 (S) (6) 

The Higgs scalar content is here somewhat more 
restricted; for n = 24 (3 color triplet quarks and 3 
leptons), one third-rank tensor (symmetric or anti- 
symmetric) is allowed, as it is for n = 32; for n = 40, 
only one anti-symmetric third-rank tensor is allowed, 
while for n = 48, no third-rank tensors are allowed. 

For the class III embedding of SW(3) in SO(n), 
with fermions transforming according to one or 
more spinor representations, the constraint b o > 0 
allows 64 quark flavors and 64 leptons, but not more; 
if these are assigned as two-component fermions 
to a single irreducible spinor representation, the 
largest unified group of this type is SO (20). 

Sp(2n) 

For the class I embedding of SUe(3) in Sp(2n), with 
p two-component fermions transforming according 
to the fundamental representation, 

b o ZZ(n 3 +1) -2  _ s2(s) = gp (7) 

Here the Higgs scalars are quite restricted; for n > 16, 
no third-rank tensors are allowed at all. 

It remains to discuss the exceptional groups 
F 4 ,  E6 ,  ET, which have fermion representations with 
only color triplets and color singlets 5. The constraints 
on the Higgs scalar multiplets for these groups, 
with minimal fermion representations, are summari- 
zed in Table 1. 

For F4, up to 16 two-component fermions trans- 
forming as 26 are allowed (the Higgs scalar content 
must be reduced accordingly), corresponding to 
a maximum of 48 quarks and 144 leptons and anti- 
leptons. 

For E 6 [18-21], the restrictions on the scalars 

5 G2 has no flavor, E8 has a color octet in the fundamental represen_ 
tation 248. It turns out that representations of E 8 larger than 248 
(either for fermions or for scalars) are not consistent with asympto- 
tic freedom 
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Table 1. Maximal multiplets of Higgs scalars consistent with 
asymptotic freedom for the exceptional groups F4,E6,E 7 with 
minimal fermion multiplets. Here the letters A,B, C, ... refer to 
different maximal multiplets with b o > 0. 

F4(~rmionsin 26 + 26) 

R 26 52 273 324 

S2(R) 3 9 63 81 

A 57 0 0 0 
B 0 19 0 0 
C 0 5 2 0 
D 0 3 1 1 
E 0 1 0 2 
Note : One 52 is equivalent to three 26. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

E 6 (fermions in 27 + 27) 

R 27 (c) 78 (o 351 r 351 '(~ 

S2(R) 3 12 75 84 

A 39 0 0 0 
B 1 19  0 0 
C 0 7 1 0 
D 1 5 0 1 
Note : (r) = real representation, (c) = complex representation; one 
real 78 is equivalent to two complex 27. 

E~ (fermions in 56). 

R 56 133 912 1463 1539 

S2(R ) 6 18 180 330 324 

A 61 0 0 0 0 
B 1 20 0 0 0 
C 1 0 2 0 0 
D 0 2 0 1 0 
E 1 2 0 0 1 
Note: One real 133 is equivalent to three real 56; the representa- 
tions 56, 912 are pseudoreal, so that for scalars these representa- 
tions must occur in pairs. 

are significant, especially in the flavor-chiral version 
of the theory currently favored [20, 21]. Since 

27 x 27 = (27* + 351')s + 351A, (8) 

it follows that only scalars transforming as 78 or 
351 can be responsible for the superstrong symmetry 
breaking required to suppress proton decay, if no 
fermion masses are to be made superheavy. If a 
351 is used for this purpose (it may be possible with 
more than one 78), then only 27, 27* Higgs scalars 
are available to grow fermion masses. 

For E 7 [-22-24], the restrictions are even more 
stringent. In order to provide superstrong breaking, 
it is necessary to use a representation of Higgs scalars 
larger than 56, as explained in 1-24(b)]. But 

56 x 56 = (133 + 1463)s + (1 + 1539)A (9) 

SO that use of 133 or 1463 for this purpose will make 
some fermions superheajcy 6. The representation 912 
is pseudoreal, not real, so that a Higgs scalar in this 
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representation is necessarily complex; from Table 1 
it can then be seen that there can be no scalars with 
Yukawa couplings to the fermions. This leaves 1539, 
but then the fermion masses must be generated 
by at most two 133 scalars, which is apparently 
not enough to reproduce the known pattern of 
quark and lepton masses [24(b)]. 

Thus an asymptotically free E 7 model with a 
single 56 of fermions is presently excluded. However, 
it might be possible to construct a theory with two 
56-plets of fermions (then baryon number could 
also be conserved [27]), with symmetry breaking 
via Higgs scalars in 1463. 

Appendix 

Evaluation of the Invariant S z (R) 

Appearing in the coefficient b o in the renormalization 
group equation (2) is the quadratic invariant S2(R ) 
defined for a group representation R by 

Tr (t a tB) = S 2 (R) 6AB (A. 1) 

where the t A a re  the matrices representing the group 
generators in R. These invariants can be evaluated 
recursively using the relations 

S2(R 1 + R2) = S 2 ( R 1 ) +  $2(R2) (a.2)  

S2(R ~ x R2) = d(R,)S2(R2) + S2(R,)d(R2) (A.3) 

w h e r e  d ( R ) = d i m e n s i o n  o f  R.  T h e  n o r m a l i z a t i o n  
can  be  de f ined  by  spec i fy ing  the  va lue  o f  S 2 (R) in 
the  f u n d a m e n t a l  r e p r e s e n t a t i o n .  

Va lues  o f  S 2 (R) for  se lec ted  i r r e d u c i b l e  r ep re sen -  
t a t i ons  o f  the  c lass ica l  g r o u p s  a re  g iven  in T a b l e  2, 

Table 2. The quadratic invariant S2(R ) for selected irreducible 
representations of the classical groups. The representation R is 
denoted by the partition {Pl . . . . .  p~} with which it is associated 
(for a standard review, see [51]); S~-m,+ S~,.+ 1 denote the spinor 
representations of SO (2 m), SO (2 m + 1), respectively. 

R SU(n) SO(n) Sp(2n) 

{1} �89 2 1 

{2} �89 + 2) 2(n + 2) 2(n + 1) 

{12} �89 2 (n -2 )  2 ( n - 1 )  

{3} J(n + 2)(n + 3) (n + 1)(n + 4) (n + 1)(2n + 3) 
{21} *(n 2 - 3 )  2(n 2 - 4 )  4(n 2 - 1 )  

2 

{I 3 } � 88  ( n - 2 ) ( n - 3 )  ( n - Z ) ( Z n - 1 )  

lgn+k) 2n+2k-2fn+k- l )  (2n+k~ {k} 

1_(n-2~ 2(n-2"] n - k + l (  2n "] 
{lk} 2 \ k - - l J  2 k - l J  n \ k - l ]  

$2,, __ 2,~- 3 __ 
S2m+ 1 - -  2 m - 2  - -  

6 This might not be a disaster if only the 175 of SU(6) contained 
in 1463 developed a large vacuum expectation value--then only 
some unwanted leptons would be made superheavy--but it is 
hard to see how to arrange this in a natural way 
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with normalization according to the following con- 
ventions: 

SU(n) 
S 2 (n) = I- (A.4) 

1 corresponding to t A = ~2 A in the fundamental repre- 
sentation (the 2 A are the generalized Pauli-Gell-Mann 
matrices). 

SO(n) 

S 2 (n) = 2 (A.5) 

chosen so that the generators of SO(3) coincide 
with those of SU(2). 

Sp(2n) 

$2(2n ) = 1 (A.6) 

chosen so that the generators of Sp(4) coincide with 
those of SO(5). 

The quadratic invariants for the representations 
of the exceptional groups shown in Table 1 are 
computed using the standard SU(3) normalization 
for the generators of the color group, and the known 
reduction of the representations under G--> Gyt| 
SUC(3) (see [19, 20, 22-24, 27]). Note also that S 2 (R) 
coincides (apart from normalization) with the Dynkin 
index computed by Wybourne and Bowick [52], 
who also give many additional useful properties 
of the exceptional group representations. 
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