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We study the two-dimensional C P  n I non-linear o--models at a finite temperature, 
T, within the 1/n expansion. We show that permanent confinement of their 
fundamental particles is a strictly zero-temperature phenomenon. The quantum 
statistical fluctuations suppress the non-trivial topological structure of the classical 
Cp~ 1 models and consequently the background topological density vanishes at T ~ 0 
for an infinite space "volume". These models do not depend on the vacuum angle 0 at 
any T~0.  

1. Introduction 

Recently, a great amount of interest has been spent on the properties of the 
CP n-1 non-linear o--models in two space-time dimensions. These models have been 

introduced by Eichenherr [1] and their most attractive feature is their similarity 
with the four-dimensional SU(n) gauge theories. At the classical level, they are 
conformally invariant and exhibit a non-trivial topological structure. In their quan- 
tum version, effects due to instantons are accessible [2] to the powerful 1/n expan- 
sion, a method far more rigorous than the infrared-divergent dilute-gas approxima- 
tion. Using this expansion, it has been proved [2] that the CP n 1 models are 
asymptotically free and exhibit dimensional transmutation as well as a non-trivial 
vacuum structure characterized by a parameter 0. Moreover, it has been shown [2], 
that their fundamental particles are permanently confined by a topological Coulomb 

force. 
In this article, we will study the properties of the CP n 1 models at finite 

temperatures within the 1In expansion. We find that the quantum statistical 
fluctuations profoundly alter the main characteristics of these theories. In particular, 
at every non-zero temperature, their topological structure is suppressed and 
consequently they become 0-independent. In addition, their fundamental particles 
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30 G. Lazarides / Statistical fluctuations 

cease to be permanently confined. These results are strictly quantum statistical, 
since at every non-zero temperature there exist topologically non-trivial classical 
field configurations with finite action. 

We point out that the critical temperature above which the unconfined phase is 
realized is exactly zero in agreement with the general arguments [3] on phase tran- 
sitions for infinite systems in one space dimension. In spite of that, the energy 
needed to separate a particle and an antiparticle is extremely high for low 
temperatures, so, in practice, one only sees their bound states. On the contrary, at 
temperatures of the order of the hadronic masses, i.e., T = 1013 K, which were 
realized in the early stages of the evolution of the universe, an appreciable thermal 
liberation of particles should occur. 

0-independence of the CP "-~ models at every non-zero temperature suggests 
that the 0-angle is physically irrelevant. The expectation value of the topological 
density for an infinite system is exactly zero even at infinitesimally small tempera- 
tures. This fact does not exclude the possibility of creating a non-zero topological 
density locally. 

This article is organized as follows. In sect. 2, the basic properties of the CP "-~ 
models are summarized for later use. In sect. 3, we study the CP ~ 1 models at 
finite temperatures and discuss the physical consequences. In sect. 4, we give the 
physical interpretation of our results. Finally, in sect. 5, we summarize our 
conclusions. 

2. The C P  n - 1  model in two dimensions 

This model [2] is an SU(n) invariant theory of fields, [z](x), in two-dimensional 
space-time, which take values in the n -  1 dimensional complex projective space, 
CP" 1, i.e., the space of all equivalence classes [z] of complex vectors z = 
(Zl," • ' ,  zn)¢  0, two of which being equivalent, if z ' =  Az, a ~ C. The action of 
SU(n) on CP" 1 is defined by 

g[z]=[gz];  (gz)~ =g,~ozt3, g~SU(n) .  (2.1) 

The sphere S 2n-1 of vectors z, ,~z~ = l (a  = 1, • - •, n), can be looked upon as a 
U(1) bundle with base space CP n-1. The corresponding projection is the Hopf map 

rr:S 2" ' -- ,CP "-1 , r r ( z )= [z ] .  (2.2) 

A smooth field [z]: R 2 + C p  "-~ can then be used to pull back this bundle to a U(1) 
bundle o v e r  R 2 which is always trivial and consequently admits a smooth section 
Z: R 2 + S  2" 1. Thus, any field [z](x) can be represented by a field of complex unit 
vectors z(x) keeping in mind that two such z's should be considered equivalent if 
they are related by a gauge transformation 

Z2(X) = ei X(~}z~,(x). (2.3) 
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The Euclidean action of the model can then be written as 

where 

(2.4) 

D ,  = O, + i A ,  , 

A .  l i~ ~ . z  1. - = = 21{Zo~O.ZoL - (O.Zo~)Z~} ,  (2.5) 

and is invariant under the gauge transformation (2.3). 
The smooth fields [z](x) with finite action can be classified by the topological 

charge 

f ' ;  0 = - d e x q ( x ) = ~ - ~  d 2 x e . ~ D . z D . z ,  e l 2 = l .  (2.6) 

The quantum version of this model in the 1/n expansion describes an SU(n) vector 
z of scalar, charged particles with mass m. These particles, called "partons", inter- 
act by exchanging scalar (a) and vector (,t~,) quanta. The non-zero parton mass is 
entirely due to quantum fluctuations. 

The a-interaction is short ranged and does not correspond to an exchange of a 
physical particle. On the other hand, the ,t ,  propagator, 

has a pole at pZ = O, i.e., 

(2.7) 

127rm 2 
D~'(P) p2~o p2 (2.8) 

Therefore, in the static limit, the &, exchange gives rise to a linear Coulomb 
potential that confines partons permanently. This phenomenon is also strictly quan- 
tum mechanical. We should point out that the pole in eq. (2.8) does not correspond 
to a physical zero-mass particle, since it does not appear in the two-point function 
of the gauge-invariant operator e,~0,,,~,. 

The theory constructed on a 0 ~ 0 vacuum is defined by the modified action 

S o = S - iO0.  (2.9) 

It is important to notice that the corresponding quantum theory in the 1In expan- 
sion depends on 0 only because of the existence of the pole (2.8) in the ,~,, pro- 
pagator. In particular, the topological density q(x)  has a non-zero vacuum expec- 
tation value for 0 ~ 0. 
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3. The statistical fluctuations and their consequences 

The transition from zero to a finite temperature T is effected [4-6] by the 
substitution Xo-*-ix2, where Xo is the real time and x2 an angular variable, which 
ranges from 0 to/3 = 1 / k T  (k is the Boltzmann constant) and covers simply an S 1. 
The fields [z](x) are restricted to be periodic functions of x2, i.e., 

[z](xl, x2 +/3) = [z](xl, x2). (3.1) 

Thus, they are defined on the Euclidean manifold R x S  1. A smooth field [z]: R x  
S 1 --~ Cpn 1 can always be represented by a smooth unit complex vector field z: R x 
S 1 -,). S 2n-1.  This can easily be seen by repeating the corresponding argument of 
sect. 2 and using the fact that the U(1) bundles over R × S  1 are always trivial. Of 
course, two fields z and z' should be considered equivalent if they are related by a 
gauge transformation, 

z'(x) = g(x)z(x)  =- eiA(XtZ(X), (3.2) 

where 

g: R x S 1 -~ U(1). (3.3) 

The periodicity of g(x)(g(x~, x2 +/3) = g(xl, x2)) implies that 

A(xl, x2+/3)=A(xl ,  x2)+2zrk, k e Z .  (3.4) 

Therefore, the space of all gauge transformations (3.3), G, consists of a denumer- 
able number of homotopy classes, Gk(k e Z). 

The generating functional for the temperature-dependent Green function is 
given by [2, 4] 

where 

S=L ) /36, 

Here, the fields z~(x) have been rescaled by a factor (n/2f) 1/2 and the integrals are 
understood over the Euclidean manifold R x S 1. 

Field configurations [z](x) on R x S ~ with finite action must obey the following 
boundary conditions 

[z](x) ' [zl] = const., 
X l ~ O O  

[z](x) ' [z2] = const.. (3.7) 
X l ~  oc? 



G. Lazarides / Statistical fluctuations 33 

Thus, R x S 1 can be compactified to a sphere S 2 by identifying its points at xl = cc 
and Xl = - o e  separately. The fields [z](x) can be considered as mappings 

[z]: S 2 ~ C p  "-1 (3.8) 

and by virtue of the relation [2] ~'2(CP n-l) =Z (~2 is the second order homotopy 
group) are classified in a denumerable number of homotopy classes labeled by an 
integer topological charge O. 

Eq. (3.7) implies that 

z(x) ) eiA'(X2)Zl , Z~ =const ,  
Xl~OO 

Z(X) ) eiAz(X2)Z2, Z2 = const, (3.9) 
X l ~ - - o o  

where Ai(x2)(i = 1, 2) satisfy the relations 

Ai(xz+~8)=Ai(xz)+27rki, k i ~ Z .  (3.10) 

The topological number O can be written as 

1 fR 2 fiR. Q--~--~-- ×S ~d xe~O~A~-~ × s ' d 2 x q ( x ) = k 2 - k l '  

A,, = f i~ 'g , z .  (3.11) 
n 

It is easy to show that there exist classical field configurations z(x) on R x S a with 
finite action and any topological number. Thus, the non-trivial topological structure 
of the classical CP "-a models persists at any finite temperature at the classical 
level. 

The partition function for the quantum CP" a models in the 1In expansion can 
be constructed from eq. (3.5) by introducing Lagrange multiplier fields a(x) and 
,~,(x) defined on R x S a to make the action quadratic in z. Performing the Gaussian 
z-integral, we obtain [2] 

77 ~ 7/(J =/7= 0) = ff ~a..@A~ exp {-S¢n(a, A,~)}, (3.12) 

where 

iG f 
S~n(a, A,,) = n Tr lnR×s' (A) +-~--  JR×S' d2x a(X), 

2 i i 
A = -D .D , .  + m ~  - 4---~a, D .  = 0. + ~nA. ,  (3.13) 

and the operator A is restricted to act on functions z(x) defined on R x S a. The 
invariance of the theory under the transformation in eq. (3.2) is now reflected by 
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the invariance of Se~ under the transformation 

c~(x)-~ ~(x)  , 

A~(x)~A, (x )+~nig  long, g=ei'X'x): R x S I - > u ( 1 ) .  (3.14) 

Sen can be expanded in a power series of 1/~/n 

Se~= ~ (n) 1 "/2SI~). (3.15) 

The coefficient of the first term is given by 

S~11 =2-fi IR×S' d2x a ( x ) -  i TrR×s' {(-[Z]+ m~) - l a}  

= id(0  _ f l - I  ~ m w~) I wt=2rrfl  11 
1 =  oo . cc 

where (3.16) 

d(p, wt) = f d2x e ivx, e i~,, X~a(x). (3.17) 
JR × S  1 

The sum appearing in eq. (3.16) can be evaluated by the usual trick [7] 

I <' do) 3 1 2 f(O)l) = ~ f ( O )  ) 
l =  oo oo 

1 f i~+~dzf (z )+ 1 f . . . .  dzf (z )  
+ - -  . _ ~ - ,  , O < e  < m t ~ ,  ( 3 . 1 8 )  

2~" _~ ~ e~a~-I  2~'-G ~ e - ~  

where the first term in the right-hand side of the equation coincides with the cor- 
responding zero-temperature expression with m replaced by m e and the rest is the 
finite-temperature contribution which is always finite. Then, regularizing the zero- 
temperature part of eq. (3.16), calculating the second and the third integral in the 
right-hand side of eq. (3.18) by distorting the contour of the z-integration so as to 

• 2 2 1 / 2  i(m2 + q 2 ) l / 2  pick the contribution of the poles at z = - t ( m ~ + q  ) and z = 
respectively, and imposing the saddlepoint condition [2] S ~1) = 0, we obtain the 
effective parton mass at a temperature T, ma: 

P oo 

[ m ~  : 4 J (  (m~+q2)l/2>O (3.19) 
dq 

In \m2}  ~ y[exp ( f ly ) -  1] > 0 '  Y= 

Here, m = moo is the parton mass at T = 0. Eq. (3.19) implies that 

m t~ >~ m , m e ) oo , 
13 ~0  

flmt3 , O. (3.20) 
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The coefficient of the second term in the expansion (3.15) can be written as 

S (2)=1 fir d2x [ d2y {~(x)F~(x- y)a(y) + a . (x)F~.(x-  y)a=(y)}, 
x S  1 a R x S  1 

35 

(3.21) 

--ie +oo oc 

A~:,(p,~o,)=~ I dz I do{ 26,~ 
eit3z-I ~ m2B+q2+z 2 

ie --o0 --oo 

ie + oo co 

1 dz dq 2a,.~  {mg e '°~-1 +q2+z2 
ie - o o  - o o  

(p,.+ 2qu)(p~ + 2q~) } 
-(m2 +q2+z2)(m2 +(q+p)2+(z+w,) 2) 

(p. + 2qu)(p~ + 2q.) ] 
2 2+z2)(m~ +p)2+ l (mB+q +(q (z+wl) 2) 

q, = (q. z), (3.24) 

is the finite temperature contribution to I'* 
AF~,~ is finite and can be calculated by distorting the contours of the z-integrals 

in eq. (3.24) so as to pick the contributions of the poles at z = ±i(m2~ +qZ)~/2 and 

and 

where the Fourier transform of F~. is 

['*.~(p,w,)=26,..~ -1 ~ ~oo dq, 2 

~' f ~ dq (p,. + 2q~.)(p. + 2q~) 
- -  ~ l k=~-oco oo ~ (m2~ + q2 + oa~ )(m2o + (q + p )Z + (o)k + wt)2) " (3.22) 

Here, wl = 2rr/3 1l, Wk =27rfl lk, k, l eZ,  p~, = (p, wl) and q, = (q, ~ok). Using eq. 
~A (3.18), we now write F,.,(p, ~ot) as follows: 

r 'L(v,  .,,) = "  ~,o - .  r . ~  (p, ~o,) + ar .~(p ,  . , ,) ,  (3.23) 

~ A O  where Fd~ is the zero-temperature polarization operator with m replaced by m~ 
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• 2 +p)2)1/2. Z = -o) l±l (m o +(q The result is 
oo 

AF.~(p, wl)= 2~" y(e°~ ' - l )  28.~ 
co 

2 • - -  wt + 2tw~y+p(p+ 2q 
2 2 I / 2  y=(mt3+q ) >0,  I ]11=(p+2q)  2, 

1-[2 2 = ( W  l - -  2iy) 2 ' 

It is easy to see from eq. (3.25) that 
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w~ - 2iwty + p(p + 2q) 

1112 = [I21 = (p + 2q)(wl - 2iy), 

(3.25) 

(3.27) must be of the form 

PUP,. "~,~, , 
[~ (p ,  wt) = 8,~ w-~-~p2 },  /p,w,), ( p , ¢ 0 ) ,  

P~(O, O)= 8,26v2F ~ (0, 0). (3.29) 

Eq. (3.25), then, gives 
oc, 

A[.A(p, wt)= f dq 1 {4 (p+2q)2+(wt-2iy)2 
27r y(e¢~" - 1) wz-2iw~y+p(p+2q) 

- o o  

(p + 2q) 2 + (wt + 2iy) 2 "[ 
~-~z2 ~ ~ p p  ~ + ~q-q)/. (3.30) 

In the static limit, w~ = 0, we obtain 
co 

AF'~(P'wt=o)-p2+4m2~p I dq 1 
p 27r y(e ~" - 1)(q +½p)' (3.31) 

- o c  

~A p,~2xF,,.(p, wt) = 0. (3.26) 

Se~ must be invariant under infinitesimal gauge transformations (see eq. (3.14)). 
Thus 

~ A  p,F,~,~(p, wt) = 0,  (3.27) 

which implies that 
h A , O ,  

p . l . ~  tP, wt) = 0.  (3.28) 
~ A O  F2. contains two divergent loop integrals and, therefore, must be renormalized so 
as to obey eq. (3.28). This leads to the unambiguous expression of ref. [2] with m 

~ A  replaced by mr3. F.~ is not a Lorentz tensor for T ¢ 0 [8]. However, the lack of 
transverse directions in one-dimensional space implies that any object satisfying eq. 
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where P denotes the proper part of the integral. For p = O, this equation becomes 
co 

~I'*(P=w~=O)=2m2~ I dq 1 
2~r y3(e°V - 1) 

--oG 

oo 

f dq f l e  °~ 
+2m~ J 2rr y2(e-~TZ 1) 2" (3.32) 

-ac0 

Therefore l"* (p = wl = 0) # 0 for T ¢ 0. This can be understood by noticing that 
condition (3.27) allows for a non-vanishing F 2 2 ( P  = ¢.OI = 0 ) ,  since the energy vari- 
able, wt, is discrete. 

Now, we would like to comment on gauge invariance of the renormalized &er. A 
typical term of Sefr can be written as 

I d2xa'*(x)'"F'*(x .... )" (3.33) g =  

R x S  1 

The condition a,,F,,...(x .... ) = 0 is not sufficient to automatically insure invariance of 
Seer under gauge transformations (3.14) which are not homotopic to the identity, 
since 

eiA(x): £~£ -~ /n (2z rk f l  1)... ['2...(P =tot = 0  .... )+ .... 

ei"")CGk, F2...(P =wl = 0  .... ) # 0 .  (3.34) 

In the diagrammatic language, this means that the gauge transform of any diagram 
representing a term of Sen will consist of the original diagram plus all diagrams 
obtained from it by replacing an external A, line, ~a×s' d2x A~.(x), by 
- , /n{2, rka~- l )&2,  Fourier transforming with respect to x and putting p = o~t = 0. 
Therefore, to each order in 1/,/n, we will have an infinite set of diagrams. The 
zero-temperature part of F2...(P = wt = 0 .... ) is always zero. Thus, we can restrict 
ourselves to the finite-temperature parts of these diagrams which are given by con- 
vergent expressions of the type (3.24). One can, then, convince himself that all 
these parts sum up to give us the finite-temperature part of the original diagrams 
to the given order in 1~,In with the internal energy variable z replaced by 
z-2rrfl-lk. Changing variables, z ' =  z - 2 r r f l  lk, we see that the renormalized Seer 
is invariant under all gauge transformations. 

To calculate the partition function (3.12) in the 1/n expansion we must integrate 
over the Gaussian fluctuations of a(x) and &,(x). One can show-that a,, configura- 
tions with a non-vanishing topological charge, 

' I  
O - 2rr~/n d2x e~,,,a~,)t~(x), (3.35) 

R x S  1 
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do not contribute to this integral for T # 0, since they give an infinite S (2). To see 
this, let us notice that eq. (3.35) implies that 

21r',/nO 
]2(P, w~ = O) - -  + .... (3.36) 

p~o ip 

S (2~ contains a term 
co 

o~=~/3-'  f dp £2(-P, ~o~ = 0)['~2(p, oJ~ = 0)£2(p, wt = 0). (3.37) 

--c(3 

So, eqs. (3.36) and (3.32) imply that ~ = +oc for O ¢ 0. Therefore, the non-trivial 
topological structure of the classical CP " - '  models is suppressed by the quantum 
statistical fluctuations in the 1In expansion for every T # 0, and consequently we 
can restrict the functional integral in eq. (3.12) to 1 ,  configurations with O = 0. 

Now we are ready to fix the gauge in eq. (3.12) for the partition function. We 
split the space of ,~, configurations into a denumerable set of classes, Lk(k e Z), 
defined by 

&,(x)~ Lk, if and only if a ,  
Xl~OO 

A(x2 +/3) = A(x2) + 2 r k .  

Gauge invariance of Se~ implies that 

-~,/nc)~ A ( x 2 )  , 

(3.38) 

~-= ~ I ~&,~a  e s°"= f @A~,~a e-S°~ (3.39) 
k =  c~ 

Lk Lo 

(we do not keep track of infinite constants). We are now left with the freedom to 
perform gauge transformations which are homotopic to the identity. Therefore, the 
gauge condition a,A, = 0, supplemented with the assumption that A(x) tends to a 
regular function of x2 as ]x,t ~ co, fixes the gauge completely. The partition function 
reads 

f - S  ~(c~ ,X ) Z = @a,~ce e ° ' " I-[ 6(O,,a,). (3.40) 
x 

Lo 

The temperature-dependent a ,  propagator 

* ( P"P" '~D a , D*= )-1 D,,u(p,  O.)l) = ~ta.u p~+-~2 ] (p, wt) (px , (3.41) 

does not have a pole at p = w~ = 0 for T • 0. Thus, the topological Coulomb force 
due to the quantum fluctuations at T = 0 is screened by the quantum statistical 
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fluctuations at any T # 0. In particular, in the static limit, wt = 0, and for tim~3 >> 1, 
eqs. (3.32) and (2.8) give 

~,x (p, wt = O) P 2 f dq f le  ~ 
2 +2m~ 72(et~ . (3.42) p~ol2rrmt~ 2rr - 1 )  2 

- o o  

Therefore, the screening radius, r, for tim/3 >> 1 is given by 
CX3 

,'~ 2 ~  /3-,, 

2 121rm~ f dq zm/31Je r ~ 
2rr ~2(eB~ - 1) 2 

2 v 1 cm/3(flrn/3) e ~'~, c > 0 ,  0~<v~<~. (3.43) 
/3 rrlt~ ~ o o  

The transition from the 0 = 0 to a 0 # 0 vacuum is effected by the replacement 

o 0 I 
S e r f  ~ S e r f  = S e r f - -  i ~  d2x eu,,OuA,(x). (3.44) 

R x S  1 

The temperature-dependent &, propagator does not have a pole at p = ~o~ = 0. 
Thus, the quantum CW -1 model in the 1/n expansion is 0-independent at any 
T ¢ 0. In particular, the expectation value of the topological density is always zero 
for T#O,  i.e., 

(q(x))o = O, VO, T # O. (3.45) 

4. Physical interpretation 

The long-range behaviour of the quantum CP "-1 model in the 1/n expansion at 
T = 0 can be mimicked by the phenomenological Euclidean Lagrangian density [9] 

l /1 2\ 
~ =  D~zD~,z + m2ez + l ~ m 2 ~ F  ) ,  

i 
D,, = ,9,. + 7-~n A,,, F = e,,~O,,Av, n ~ o0. (4.1) 

So, we have a system of n partons (antipartons) with mass m and electric charge 
1/,/n (- 1/4n) interacting through an instantaneous Coulomb force. 

The following rough argument can give us some insight into our result. One can 
say that, at a non-zero temperature, the mean parton (antiparton) density, which in 
the absence of interaction is 

co 

N f dq 1 --=n j , y=(mZ+q2) 1/2 , n-+O~, (4.2) 
L 2rr e t~" - 1 

--CX3 
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provides a screening of the Coulomb potential between two external static 
oppositely charged particles. The screening radius, for n -+ ~ ,  is given by the classi- 
cal Debye-Hiickel formula [6] 

--2 e2[O(njL)] 
r = ~  i l _ ~ j ~ , , = o ,  (4.3) 

where we sum over all species of particles in the system, ei is the charge, ni the mean 
number and/z~ the chemical potential of the particles of the ith kind. Eqs. (4.2) and (4.3) 
give 

c c  

-2 f dq 2f ie  t3~' 
r = 127rm2 a 2~" (e t~ ' -  1) 2 '  (for n ~oo),  (4.4) 

o c  

which agrees with eq. (3.43) for q2<< m~. The electric field between two oppositely 
charged condensor plates placed at Xl = oo and Xl -- -co vanishes. Thus, for T # 0, there 
exists no background electric field (topological density) in the "vacuum". 

It is physically instructive to study the spectrum of excitations of our system at T ¢ 0. 
For that, we need the retarded time-dependent a,, propagator [5, 6]. This is constructed 
from the temperature-dependent a ,  propagator, Da(p,o)t) (wt>0), by analytic 
continuation with respect to the energy, o)L + -io) (o) e C), and is analytic for Im o) > 0, 
Its poles for Im o) ~< 0 provide us with the energy and attenuation of the excitations. 

To this end; let us analytically continue (o)t -~ -io), Im o) > 0) Ar'x (p, o)t). Eq. (3.30) 
gives 

f dq 1 AI'a'R(P,O))= 2(p2 +4m20 -o)2 ) ~-~ .y(et3V_ 1) 

c o  

p(p + 2q) - o)2 
x (P(P + 2q) - o ) 2 ) 2  _ 4 o ) 2  2 • (4.5) 

It is easy to see that, for p2< o)2< 4m~ + p2, this function is analytic and 
Im A[ '*'R = 0. In the long-wavelength limit, p = 0, and for o)2<< m~, tim o >> 1, one 
obtains from eqs. (4.5) and (2.8) that 

_o)2. ~- f dq 2m~ 
FA'R(o)'P=O)o~+o127rm~ J 27r y 3 ( e ° ' - l )  ' (4.6) 

Therefore, in the long-wavelength limit and for T # 0, there exists an undamped 
plasma oscillation [8] of our system whose frequency is given by 

o o  

2 f dq 2m~ 
o)2 = 12rrm~ J 2rr y3(et3"/- 1) 

c o  

c'm2~(flmo) o e a~B, c ' > 0 ,  ½<~p~<l. (4.7) 
/ 3 r n t ~  ~ c o  



G. Lazarides / Statistical fluctuations 41 

This is a real mode of the system, since the corresponding pole appears in the 
retarded time-dependent two-point function of the gauge-invariant operator F = 

One can easily understand this plasma oscillation by an elementary argument 
[10]. To this end, we return to the phenomenological description of the CP "-1 
model (see eq. (4.1)) and we confine our system in a box of length L. Displacement 
of the partons by x and the antipartons by - x  creates an effective electric field 
through the system 

2x[N]  12¢ rm2 
F = -  \~-]  ~n " (4.8) 

Then, the equation of motion of a parton (antiparton), 

1 d2x 
~nn F = m~-~2, (4.9) 

implies that the system oscillates with a frequency tOo given by 
c o  

2 I dq 2 
tOo = 12n'm 2 2rr m(e B'~ - 1)" 

- - c o  

(4.10) 

This equation coincides with eq. (4.7) for q2<< m~. The plasma oscillation can be 
thought as an oscillation of the dipole moment of the system with frequency too and 
exists only for T # 0. One can say that two particles interact in the presence of the 
system by exchanging a virtual plasmon. 

5. Conclusions 

We have studied the properties of the two dimensional CP" 1 non-linear o--models 
at finite temperatures within the 1/n expansion. We showed that permanent 
confinement of their fundamental particles is a strictly zero-temperature 
phenomenon and that these theories become 0-independent at every T # 0. These 
conclusions depend heavily on the fact that the a ,  propagator does not have a pole 
at p,~ = 0 for T # 0, i.e., temperature acts like an infrared cutoff so there are no 
infrared singularities at T # 0. 

The non-trivial topological structure of the classical CP "-1 models is now 
suppressed by the quantum statistical fluctuations at T # 0 and the topological 
Coulomb force is screened. Consequently, the background effective electric field 
(topological density) vanishes for an infinite system at T # 0. All these results are 
strictly quantum statistical. 
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In addition, we have argued that at T ~ 0 there exists a real undamped plasma 
oscillation. One can say that particles interact in the presence of the system at 
T # 0 by exchanging a virtual plasmon. 

Our results can be understood qualitatively as follows: an external static charge 
impurity in the system at T ~ 0 is clothed by an oppositely charged statistical 
parton cloud, which extends up to a distance r. Thus, the effective Coulomb field of 
this impurity is screened. Two oppositely charged condensor plates placed at xl = az 
and xl = - o o  produce no effective electric field at any finite space point for T # 0. 

Consequently, the expectation value of the topological density is zero and the 
theory becomes 0-independent for any T ~ 0. The parameter 0, which appears at 
zero temperature, now becomes physically irrelevant. 
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