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We use semiclassical methods to discuss the scaling behaviour of quarkonium level 
splittings up to M(QQ) = 200 GeV. Special emphasis is laid on the effects of asymptotic 
freedom which are found to be essential for M(QQ) >~ 30 GeV. The bound t (  system will 
almost look like the T system except that R = AM (3P 2 - 3PI)/AM(3P 1 - 3Po) is larger 
than 0.8. In the T system R will already be close to 0.8. 

1. Introduction 

Since the discovery of the first quarkonium system, namely the charmonium 
states J/qJ and if' in November 1974, these new states have been welcome as a labora- 
tory for asymptotic freedom and quark confinement. Although the first hopes of 
finding a large variety of perturbative tests of QCD already in the charmonium sys- 
tem were soon destroyed, the observation of the T and 7 '  resonances in an e+e - 
storage ring (DORIS) ** revived the hope of finding such tests in quarkonia which 
are heavier and therefore much less relativistic than charmonium. With the present 
(PETRA) and future machines it may well be that we will find at least one more 
quarkonium even heavier than T, T ' .  Since the complicated nature of the inter- 

quark forces seems not to allow its understanding with only one "hydrogen atom", 
these systems are highly welcome. In this paper we investigate the level splittings, 
fine structure and electronic widths as a function of the quark mass, so that a com- 
parison of different quarkonia may allow one to draw conclusions about the forces 
between quark and antiquark. 

We start with a discussion of a reasonable static potential for quarkonium in sect. 

2, which will be inserted in the Schr5dinger equation which in turn is solved numer- 
ically. All spin effects are treated via the Fermi-Breit Hamiltonian. In sect. 3 we 

* Supported by the Bundesministerium •r Forschung und Technologie. 
** For an experimental review of the T system, see, e.g., ref. [1]. 
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then try to make some very simple and crude estimates for the scaling behaviour 
of the 2S - 1S mass differences, the P-wave splittings, the S-wave splittings and the 
behaviour of  Peg of  the ground state. These estimates are then checked by detailed 
numerical calculations in sect. 4. This is done in three different models which all 
bear the characteristics of asymptotic freedom. For comparison we also study a 
model with an ordinary Coulomb component in the static potential (which is not 
asymptotically free). Our conclusions are summarized in sect. 5. 

2. The QQ potential 

In QCD, the coupling constant g = (4has) 1/1, renormalized at the relevant momen- 
tum transfer Q2 or the corresponding distance R, turns out to be a monotonously 
falling function of Q2 (or rising function of  R). It tends logarithmically to 0 as 
q2 ~ oo or R -+ 0: asymptotic freedom [2]. This implies that at small distances or 
large Q2 the chromomagnetic interaction between quarks becomes very similar to 
the electromagnetic interaction between electrons, because a s is small. At short 
distances the interquark potential is essentially of  the Coulomb type, 

4 as(Q~ ) (2.1) 
Vcou~(n)= 3 n ' 

where the 4 is a colour group constant. Eq. (2.1) is strictly speaking only an approxi- 
mation to the interquark potential at the momentum transfer Q~ where as(Qg) has 
been renormalized. Q~ will be different for bound states, whose sizes are different. 
One can, however, renormalize a s in X-space so that a s becomes a function of R 
rather than Q~ [3]: 

4 as(R) (2.2) 
VAn(n ) -  3 n 

is a unique function of  R with ~ 

127r 1 
as(R) - - -  (2.3) 

25 2 ln(g/R) 

with the renormalisation distance/a. Eq. (2.3) looks very similar to the corresponding 
formula in momentum space [2], 

12rr 1 
as(Q2) = 2 7  ln(Q =/A z ) "  (2.4) 

In principle/a is calculable from the renormalisation mass A = 500 MeV, as measured 
in deep inelastic lepton scattering. However, one has to go beyond the leading log 

% also depends on the number of effective (light) flavours, 4 for the T system and 5 for a 
30 GeV ff system. We use (2.3) for 4 flavours as an approximation for any quarkonium. 
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approximation and the calculation becomes very difficult. Celmaster, Georgi and 
Machacek [4] therefore construct the static short-distance potential between quarks 
as a Fourier transform of the gluon propagator 

as(q2 )/ q 2 , (2.5) 

with ~s(q z) given by (2.4). They find eqs. (2.2), (2.3) up to terms of  the order 
ln -3(1 /R)  and establish a relation between p and A :/~ = (A e'r) -1 with 7 = Eulers 
constant. Since e "Y = 1.78, p is of  the same order of  magnitude as A -1 . We will fix 
p to # = 0.5 fm as suggested from hadron radii, non-perturbative transverse jet mo- 
menta and the effective as of  0.3 to 0.4 in charmonium analyses *. From (2.3) it is 
immediately clear that (2.2) is only valid for distances R < < / l .  

For distances R > >  0.5 fm there is another picture which gives us hints about 
the nature of  the QQpotential.  For such large distances lattice gauge theories [5] or 
the string model [6] suggest that the QQ force is completely independent of  the 
interquark distance and the quark spin. It should also be independent of  the quark 
mass and flavour. This gives rise to a universal scalar and linear confinement poten- 
tial 

Vconf = a R .  (2.6) 

The Regge trajectories of  light meson spectra suggest that the interquark force at 
large distances is a "" 0.7 ...... 0.8 GeV/fm, when evaluated in BS type models, SchrS- 
dinger type models or the string model. We adopt a to be universal, a = 0.787 
GeV/fm [7]. 

For distances around 0.5 fm, however, we have no hints how the static potential 
should look. The QCD coupling a s is certainly large, so that perturbation theory 
breaks down. On the other hand, the interquark distance is not yet large compared 
to the scale parameter tl, i.e., the colour flux string between quark and antiquark is 
not yet long enough to result in a constant force. We have to guess the form of the 
QQ potential at these intermediate distances (0.2 to 1 fm roughly) and then check it 
in the charmonium and T system. 

The intermediate potential has to interpolate between the regions of asymptotic 
freedom and confinement. One might therefore speculate that the slope and the cur- 
vature of  this intermediate potential have to decrease faster with R than those of  
VAt- (2.2) and more slowly than those of  Vconf (2.6). 

This condition is certainly fulfilled by the potential of  Bhanot and Rudaz [7], 
although these authors did n o t  incorporate asymptotic freedom: 

{ - ~ ~s/R, R < R I  , 
VI(R)  = b l o g ( R / c ) ,  fo rR  1 < R  < R  z , (2.7) 

a R ,  R > R  2 . 

* We have checked that our results are insensitive to the exact value of ~ as can be expected 
from the logarithmic dependence on #. 



286 H. Krasemann, S. Ono / Heavy quarkonia and asymptotic freedom 

VIRJ , "  / 
. /  / : 

..... : ....................... ] - 

# 
R [F~] 

O.O1 0.'I i~.O 10.0 

Fig. 1. The potentials I to IV, compare table 1. 

R 1, R 2, b and c were uniquely determined from % and a by demanding V(R) to be 
continuously differentiable at R1 and R 2. The potential (2.7) successfully fits char- 
monium and it predicted the T '  - T mass difference to be 560 MeV. The fit param- 
eters are an effective a s of  % = 0.31 and a = 0.787 GeV/fm, which coincide with our 
prejudices about c~ s and a. To study the scaling properties of  the QQ system and espe. 
cially the influence of  asymptotic freedom as in VAV of  eq. (2.2), we use this poten- 
tial (2.7), referred to as model I, and a variation, referred to as model II, see fig. 1 .: 

{ -2-~-gTr(Rlog(la/R))-I +cl  , R < R 1  , 
Vn(R) = b log(R/e) ,  fo rR  1 < R  < R  2 , (2.8) 

aR,  R > R  2 . 

Here b, c, a, R 2 are as in (2.7), ~ = 0.5 fm, R l  = 0.07192 fro, and el = 0.3978 GeV 
guarantees that V(R) i s  smooth at R 1. For comparison we also study two potentials, 
referred to as model III and IV, of  the form 

VIII, I v (R)  = VAF(R ) + Vint(R) + a. R ,  (2.9) 

where VAF(R ) is given by (2.2), (2.3) for R < ta/exp (1) and set to be constant for 
larger values ofR.  Vint has the form (i = I I I ,  IV) (compare table 1): 

Vint(R ) = - b  i e x p ( - R / c i ) .  (2.10) 

Vint is of  limited variation and is similar to the potential used by Celmaster, Georgi 
and Machacek [4]. It is unimportant compared to VAF at small distances and zero 
at large distances. We have also tried a potential of  the form (2.9) with 

Vint(R ) = b log(R/c) ,  (2.11) 

but find no parameters b, e to describe charmonium with it. The reason is that 



Table  1 

The four  po ten t i a l s  inves t iga ted  

Model  m c (GeV) 

I b) 1.05 

V(R) 

- ( 4 / 3 )  as/R 
V(R) = b log(R/c) 

aR 

II 1.05 ( - 8 r r ( 2 5 R  log(/~/R))  - 1  + c 1 

V(R) = I b log(R/c) 
aR 

I I I  1.05 V(R) = VAF(R ) - b e x p ( - R / c )  + aR 

-81r  ( - (R  log (u /R) )  - 1  
IV 1.95 VAF(R)  = ~ × exp(1)/ t~ 

Compare  also fig. 1. Fo r  the  choice  of  pa r ame te r s  see t ex t .  
a) In all  mode l s  a --- 0 .787  G e V / f m , / a  = 0.5 fm 
b) Ref.  [71. 

f o r R  < R  1 

f o r R  1 ~<R ~<R 2 
f o r R  > R  2 

f o r R  < R  1 

f o r R  1 ~<R ~<R 2 
f o r R  > R  2 

f o r R  < /~  e x p ( - 1 )  
f o r R  /> ~ e x p ( - 1 )  

Pa rame te r s  a) 

a s = 0 .31,  c = (4as/3a)1/2, 
b = c aexp (1 ) ,  

R I = c e x p ( - 1 ) , R  2 = c exp(1) .  

c 1 = 0 .3978  GeV,  

R 1 = 0 .07192  fm,  
c, b, R 2 as in m o d e l  I. 

b = 1.394 GeV, c = 0 .185  fm. 

b = 1.219 GeV,  c = 0 .250  fm. 

.= 

t~  

OO 
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log(R) is too far-reaching and interferes with the a.  R part in the confinement regime 
R > I  fm. 

The quark mass is a relatively unrestricted parameter for light quarkonia, say below 
10 GeV, where M v ~ 2mQ needs not hold. This is demonstrated by various reason- 
able fits to charmonium with m c between 1 and 2 GeV [8]. The reason is that quan- 
tities like I'e~'(~')/I'e~-(J/~), which safely can be used in lowest-order formulae, are 
insensitive to m c. They essentially allow one to fix the shape of  the potential only. 
The experimentally known quantities most sensitive to m c are the absolute values of  
I 'eg(J /~ ) and Fe~-(q/). But at this point theoretical ambiguities enter. QCD knows a 
very large first-order (%) correction to the Schrbdinger wave function of  cg  at the 
origin [9] 

--f~- ! (2.12) 

which has to be inserted into the formula for the leptonic width [10] 

I~e~ (V) = (~2 e~ mR (0)12 (~Mv)-2  . (2.13) 

Because of  the large correction, (2.12), the first as well as the zeroth-order formula 
for Fee seems unreliable, and so does any determination of  m e via (2.13). Conse- 
quently we study models with two extreme values for m c. In models I to III, m c = 
1.05 GeV, as can be found from (2.13) with IR(0)l 2 in zeroth order. In model IV, 
m c = 1.95 GeV, as is consistent with (2.13) including the first-order correction, 
(2.12). 

We discuss S- and P-wave splittings in terms of  the Fermi-Breit Hamiltonian: 

H L S = A L ' S - = - ( A ' - C ) L . S ,  HT=B(361.k0"2.k 0"1a2), 

3 1 -1 1 
A' 2m~R dR Vspin(R)' C- 2m~R dR(aR)' 

-1 2 1 
B = 12m2Q(dR--~dR) Vspin(R), D=~--~-~AVspin(R), 

where the spin dependence of the potential is 

P g V F  # = "),4u Vspin'),'a + ~. Vconf I , (2.15) 

with Vspin(R ) = V(R) - aR. We neglect all spin-independent corrections in the 
Fermi-Breit Hamiltonian, since their net effect is small. 

HSS = Do- 1 • 0" 2 

(2.14) 

3. Scaling estimates by hand 

Before we turn to numerical calculations in sect. 4 we want to get a feeling for 
the aspects of  scaling by a very crude but simple calculation [ 11]. For this purpose 
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Fig. 2. Estimates of the scaling behaviour o[ AE(QQ) in: dashed curve, the "standard potential" 
according to eqs. (3.4), (3.5); dotted curves, the "standard potential" with as = const; dot-dashed 
curve, the logarithmic potential; full curve, this is our final hand-made guess. 

we take the "standard potential" 

v ( R )  = - as /R + , R ,  (3 .1)  

with the Coulomb part as a small spin-dependent perturbation to the spin-indepen- 
dent linear potential aR. We further use the scaling laws of E and R in a linear po- 
tential 

E ~  R ~ mQ a/3 . (3.2) 

This gives us for the potential (3.1) 

E ~ mQ 1/3 + e' (--~ as/R) , (3.3) 

and for the di f ference  of energies 2S - 1S 

zXE(2S - IS) ~ m ~  1/3 + e~s(mQ) m~/3 . (3.4) 

Fixing the constant e in the charmonium system now allows to estimate zXE for 
heavier quarkonia. The mQ dependence of a s is taken into account via eq. (2.4). 
For mQ ~> 100 GeV this perturbative ansatz breaks down: the Coulomb potential 
dominates. Here we have 

zSE ~ %2(mQ) mQ ~ mQ log-2(mo/~) .  (3.5) 

We thus ((3.4) and (3.5)) obtain the dashed line in fig. 2. The decrease of ,fiE up to 
mQ "~ 30 GeV is consistent with earlier numerical calculations by Eichten and Gott- 

fried [12]. If one keeps a s constant as mQ varies, the Coulomb singularity shows 
up much earlier, as is also indicated in fig. 2 (dotted line). The T '  - T mass difference 
suggests that the potential at intermediate distances is somewhat similar to a log 
potential, in which zkE = const. Such a logarithmic component added to V(R)  in 
(3.1) would tend to fill up the valley of the dashed curve for AE in fig. 2. Our hand- 
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made final guess for the scaling behaviour of AxE(23S1 - 13S1) is shown as solid line 
in fig. 2. 

We now estimate perturbative splittings within the standard potential (3.1). From 
there and (2.14) we have 

T LS ~ ( 1  . ~ )  as  a s _ s  (3.6) 
H , Hspin ~ R dR m~R 3 mQ' 

where HsLpSin = A'L • S is that part o f H  Ls arising from Vspin alone. The last relation 
in (3.6) holds as long as the wave functions are governed by the linear potential. 
The spin-independent (confinement) part of  the potential, however, contributes to 
the Thomas precession, HcLoSnf = C L -  S (compare (2.14)) 

LS 10(~  ) )  a a (3.7) ac°nf" -- dR(°R m~R m~/3" 

Using experimental masses as input we can fix A and B for charmonium *" 

Ap = 34 MeV,  Bp = 10 MeV,  in cc-P waves.  (3.8) 

A, B and C can now be estimated for heavy quarkonia using (3.8) as input and (3.6), 
(3,7) as the scaling laws. For mQ > 100 GeV the wave function will become more 

L S  ~ 1/mQ and more Coulombic, so that asymptoticcally H T, HsL.S m ~ otsm o and Hconf 
This estimate is displayed in fig. 3. 

An interesting ratio is 

_ M ( 3 P 2 ) - M ( 3 p 1 )  _ 2A - ~ B  
Rp M ( 3 p 1 ) _ M ( 3 P o  ) A + 6B (3.9) 

The expected scaling behaviour of  Rp via eq. (3.6) and (3.7) is also shown in fig. 3. 
It is clear that, asymptotically, R ~ 0.8. 

The spin-spin splittings are determined through parameter D of eq. (2.14). In the 
standard model D is a point-like operator since A ( - 1 / R )  = 47r 6(a)(R) 

( A V s p i n ( R ) ) = 2 ~ S  2 IR(0)I 2 . (3.10) 1 
D = 6---~Q ~ m o  

D therefore scales as R-3m~ 2. It is very hard to evaluate the scaling behaviour of  D 
without detailed calculations, since the wave function at the origin is sensitive to the 
Coulomb singularity. With the wave functions of  a pure linear potential D ~ mQ l , 
this is a clear underestimate. With Coulomb wavefunctions D ~ mQ, this is a clear 
overestimate. The truth lies in between. But asymptotically the wave functions 
become Coulombic, and D is given by the Coulomb wave function at the origin 

D ~ a t  (mQ) mQ ~ mQ log-4(mQ/a) .  (3.11) 

• In the standard potential A' = 6B, so that C = 6B - A = 26 MeV in charmonium. Thus the 
Thomas precession is very important for the magnitude of the P-wave splittings. 
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Fig. 3. Estimates of the parametersA, B, Cand the ratio Rp of (3.9) as a function ofmQ 
according to (3.6), (3.7) with charmonium (3.8) as input. 
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Fig. 4. Estimates of the scaling behaviour of PeE/e~: dotted curve, experimental evidence below 
mQ = 5 GeV; dahes curve, in a pure Coulomb potential; full curve, in the asymptotically free 
one-gluon exchange potential according to (3.12). 

Relating D to the leptonic width via (2.13) we find for I'e~- in asymptopia  

FeE (V)  ~ Ots3mQ ~ mQ log-3 (mQU)  . (3.12) 

This can be unders tood  as an upper  b o u n d  for the whole mQ regime and is dis- 
played in fig. 4. 

4. Model calculations 

We begin with a discussion of  model  I which has an ordinary Coulomb singulari ty 
at the origin and model  II, where this singularity is weakened by asymptot ic  freedom. 
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Fig. 5. Mass differences of the fkst S-, P- and D-wave excitations to the ground state in (a) 
models I and II, (b) model Ill and (c) model IV. 
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Fig. 6. Spin-orbit splitting o f  P-waves as a t u n c u o n  of  mQ.  (a) The mass  difference AM(3P2 - 3p0) 
and the ratio R of  (3.9) in models  1 and II. (b) to (d) The pa ramete r sA,  B and C a s  defined by 
(2.14) in all models.  R is given for the  models  III and IV. (b) shows models  I (dashed curve) and 
model  II, (c) shows model  III and (d) model  IV. 

0.1 
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All our potentials are displayed in fig. 1. We have calculated the mass differences 
between the first few S-, P- and D-waves and display these with respect to the 
ground state mass in fig. 5a. The influence of the stronger singularity of model I is 
clearly seen. In model II the logs associated with the coupling strength of the one 
gluon exchange weaken this singularity substantially: for mQ ~< 15 GeV the level dif- 
ferences to the ground state remain essentially the same as in the T system. For 
mQ > 15 GeV they increase only very slightly. To demonstrate that this effect is 
really due to the form of the short-range potential (2.2) and rather independent of 
the special ansatz for the intermediate potential or the choice o fm c and m b we inves- 
tigate the potentials VII I and Viv, see (2.9), (2.10) and the table 1. 

The mass differences in these models are shown in fig. 5b and c, respectively. In 
both cases we find that the level differences again increase much more slowly than 
in model I. This slow down of the increase of AE with mQ is due to the functional 
form of the short-range QCD potential (2.2), (2.3), i.e., to asymptotic freedom. For 
quark masses larger than 30 GeV the special choice of the intermediate potential 
(between 0.1 and 1 fm) becomes irrelevant, because the Bohr radius of the system 
becomes smaller than 0.1 fro. 

We now turn to perturbative spin-orbit splittings of P- and D-waves. We have cal- 
culated the parameters A, B, C as explained by (2.14) in all four models assuming 
(2.15). In fig. 6a we show the absolute P-wave splitting M(3P2) - M ( 3 P o )  together 
with the ratio Rp of (3.9) as a function ofmQ in models I, II. Figs. 6b to d show the 
parameters A, B, C and R in all models. 

From fig. 6 one reads off that in all four models the ratio Rp of eq. (3.9) increa- 
ses fast from charmonium to the T system, where it is almost 0.8. For 5 GeV ~< mQ 

30 GeV the value of R is influenced by the intermediate part of the potential whose 
details are unknown in principle. But for mQ/> 30 GeV also the intermediate part 
of the potential becomes unimportant and we can state a clear difference between 
model I and models I I - IV.  In model I, R approaches its asymptotic value of 0.8 from 
below. In models I I - IV ,  however, R approaches the asymptotic value of 0.8 from 
above. This is a direct consequence of the asymptotically free one-gluon exchange. 
The short-range QCD forces decrease slower with the distance than Coulomb forces. 
Therefore R has to be larger than 0.8! 

We found an interesting effect for the D-wave splittings in charmonium, which 
led us to plot (for D-waves) the parameters A and B, which are defined by eq. (2.14), 
as well as the ratio R, 

_ M(3 D3) - M(3D2) _ 3AD -- ~q~BD (4.1) 
RD M(3D2) -M(3D1)  2AD +4BD ' 

in fig. 7. The four models differ in rn c (mc = 1.05 GeV in I, II, III and 1.95 GeV in 
IV). This leads to substantially different Thomas precession contributions from the 
confinement potential. While for mc = 1.95 GeV the charmonium D-multiplet is nor- 
mal ordered, it is inverted for m c = 1.05 GeV. The reason is obvious: for a smaller 
mc the wave functions reach out farther in space and feel substantially more of the 
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Fig. 7. Spin-orbit splitting of  D-waves as a funct ion of  mQ in (a) models I (dashed curve) and II, 
(b) model  III and (c) model  IV. We also give R for the D-waves as defined by (4.1). The param- 
e tersA and B are again defined by (2.14). 

confinement forces. A measurement of any other charmonium D-wave than the ~D 1 
= ¢" (3.77) might be able to restrict the dynamical charmed quark mass much more 
than other experimental input. 

The behaviour of the D-wave splittings at high quark masses is already familiar 
from the behaviour of the P-wave splittings. Also here RD approaches the asympto- 
tic value of ~ from above. 

We continue by considering spin-spin splittings and PeE, both quantities which 
supposedly are only sensitive to the wave function at very short distances. While 
due to the lack of trustworthy experimental candidates for pseudoscalar quarkonium 
states * the computed spin-spin splittings cannot reliably be compared to experi- 
ment, PeE usually is the first known quantity of a quarkonium state, when produced 
in e+e - .  We will therefore discuss only one quarkonium decay: Fe~-. However, one 
should remember the large ambiguities in FeE introduced through the large first-order 
correction to the SchrSdinger wave function at the origin, as given by (2.12). In 

* The possible candidates suffer from the fact that  one cannot explain the magnetic dipole transi- 
tions to and from these states. 



296 H. Krasemann, S. Ono / Heavy quarkonia and asymptotic freedom 

5 Fe~/9e~ 
[ keV] 

IS 

I ~s 
El , 
I 2 

i / i i i 

/ 
/ 

/ 
/ / 

/ / 

/ 
/ 

m Q(GeV) - ,t Y 

(a) 

6 I 

5 

4 

3 

2 

1 

0 

. . . .  / '  ' 

,.v~p ,IY , 4S m, o (GeV).. i i i 
2 4 8 16 32 64 

(b) 

[ Feg/9e~ 
/ \  (keY) 

2 i \ \ \ \  
1 .5~  ~ 

L'%.'" ,~ ~ ~-........... _ lS 
1 t- \ \ ' ~  

/ ~ . ~ - - - ~  2s 
0.5[ % ~ - ~ : " ~ - . _  - -  35 

~j@ ty 4s - -  m~ (GeV)_ 
1 2 4 16 32  6& 8 

( c )  
Fig. 8. 



H. Krasemann, S. Ono / Heavy quarkonia and asymptotic freedom 297 

2 

1.5 

I 

O. c 

0 

q\ re@i9e z . . . . . .  

J /~  , J y , , 4 S , mQ(GeV:~, . 

2 & 8 16 32 6& 

(d) 

Fei~/9e~' 

(~eV) 

2 

1 N N  

0 . 5  ~ - -  

0 L** tY 
2 & 8 16 

(e) 

3S 

4 S  

32 6/, 

Fig. 8. reg-/9e ~ as a function ofmQ in all models. (a) A comparison of model I and II for the 
two lowest S-waves, (b) to (e) For the first four S-waves in models I (b), II (c), III (d) and IV (e). 
The dashed lines give reE(Mv/2mQ)2/9e~, a quantity proportional to h0 (0)[2/m~. For large 
mQ we have set M V = 2 mQ. In models 1 to III eq. (2.13) has been taken literally, while in model 
IV the correction (2.12) is applied. 

order to cover a wide range of possible procedures, we take formula (2.13) literally 
for models I, II, III and include the first-order (%) correction in model IV. For very 
heavy quarkonia this makes no difference anyway. I 'eg(mQ) is plotted in fig. 8. 

The spin-spin splittings are governed by H ss in eq. (2.14). While in model I 
2x Vspin(R ) essentially results in a 6-function, this is no longer true if one has the 
logarithmic weakening of the Coulomb singularity through asymptotic freedom as 
in models lI to IV. Here the Laplacian of Vsptn is a regular function and the matrix 
elements o f H  ss have to be computed using the wave functions of quarkonium 
states. For S-waves the spin-spin splittings in models II to IV are considerably smaller 
than in model I. This is understood as an effect of the overestimate of 14(0)12 in 
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Fig. 9. The hyperfine splittings of quarkonium as a function of mQ in (a) model I (dashed 
curve) and model II; (b) model III; (c) model IV. 

model  I because of  the too strong Coulomb singularity. The effective smearing of  
14(0)12 and the weaker singularity of  Vspin(R ) lead to the smaller spin-spin splittings 
in models II to IV; compare fig. 9. 

The scaling behaviour of  Fe~- and H ss gives no surprise, it follows the same trends 
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as that o f H  Ls, H T and the gross splittings. It is noteworthy, however, that the quan- 
tity most sensitive to asymptotic-freedom corrections is Fee of the quarkonium 
ground state. Without asymptotic freedom it would double between mQ = 5 GeV 
and  mQ = 15 GeV while the asymptotic-freedom nature of the one-gluon exchange 
potential guarantees that Fe~- does not double before mQ >~ 70 GeV! 

5. Conclusions 

We have calculated the level splittings and the fine structure for quarkonia 
between 3 and 200 GeV. We find that in a potential model without asymptotic 
freedom (model I) the Coulomb singularity of the one-gluon exchange becomes 
manifest for mQ )" 8 GeV. The wave function of the ground state at the origin 
increases rapidly for mQ > 8 GeV. At the same time the level splittings to the 
ground state start to increase, but a bit more slowly. At mQ = 15 GeV the mass dif- 
ference 2S - 1S = 700 MeV, but I'e6- has already doubled compared to mQ = 5 
GeV. If we compare model I to models II, III, IV, which include the effects of 
asymptotic freedom (especially model II differs from model I only in this respect), 
there is no difference for mQ below 5 GeV. The present quarkonia, charmonium 
and the T system, do not allow to test the idea of asymptotic freedom! But above 
mQ = 5 GeV without asymptotic freedom the ground state becomes Coulombic very 
soon, this is not the case in all three different models which incorporate asymptotic 
freedom. The logs in the short-range one-gluon exchange potential lead to a scaling 
behaviour of all quantities which is very similar to that in an overall log(R) potential 
for a wide mQ regime between 2 and 30 GeV. At the same time these logs are 
responsible for the fact that Rp = AM(3P2 - 3P 1 )/z3dl,/(3P1 - 3p0) becomes larger 
than 0.8: the short-range QCD potential is softer than the Coulomb potential. If 
quarkonia have something to do with QCD and asymptotic freedom, then the next 
quarkonium will at first sight look the same as the T system! Only for mQ larger 
than 30 GeV can the slow inset of the weakened singularity in the short-distance 
potential be observed. For mQ ~ 100 GeV, Pe~- will almost have doubled for the 
ground state. Also the 2S - 1S mass difference will almost have doubled by then. 
The fine and hyperfine splittings will still be considerably below their magnitudes 
in charmonium, and the spectrum in general will be much more Coulombic. 

We can summarize that, although the similarity of the T spectrum with charmo- 
nium is hardly related to asymptotic freedom, exactly this asymptotic-freedom 
feature of the one-gluon exchange is responsible for the fact that the next quarkonia 
up to 60 GeV will at first sight again look the same as the T or charmonium system 
except for Rp > 0.8. For the T P-waves, Rp will be close to 0.8. 

We thank T.F. Walsh for a helpful discussion on the manuscript. H.K. thanks the 
theory group at the RWTH Aachen for its hospitality. S.O. thanks P.M. Zerwas for 
his encouragement. 
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