## DISCRIMINATIVE DEEP INELASTIC TESTS OF STRONG INTERACTION FIELD THEORIES

M. GLÚCK

Institut fur Physik, Universitat Mainz, 6500 Mainz, West Germany

## E. REYA

Deutsches Elektronen-Synchrotron DESY, Hamburg, West Germany

Received 20 April 1979

It is demonstrated that recent measurements of  $\int_0^1 F_2(x, Q^2) dx$  eliminate already all strong interaction field theories except QCD A detailed study of scaling violations of  $F_2(x, Q^2)$  in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of  $Q^2$ 

## 1. Introduction

Recently, much new and accurate data on the structure functions of the nucleon were accumulated [1-3] in high-energy lepton-hadron deep inelastic scattering experiments. The  $Q^2$  dependence of the structure functions was found to be compatible with the predictions of QCD. Comparison of the new data with other conventional (fixed-point) field theories of the strong interactions was, however, not seriously undertaken. A first attempt in this direction was started in ref. [4] for the non-singlet structure function  $F_3^{\nu N}$  and it was stated that only QCD is compatible with the observed  $Q^2$  dependence. This analysis was repeated in ref. [5] where it was found that fixed-point theories with smaller fixed coupling constants  $\alpha^*$  than those taken in ref. [4] *are also compatible* with the observed  $Q^2$  dependence of  $F_3^{\nu N}$  at  $Q^2 \ge 5$  GeV<sup>2</sup>. Such results rest of course on the (so far unproven) assumption that there exists a fixed point coupling  $g^*$  as  $Q^2 \to \infty$ , i.e.,  $\beta(g^*) = 0$ , such that the effective coupling constant  $\alpha^*/4\pi \ll 1$ , a necessary requirement to get approximate scaling in such theories.

Fixed-point theories differ from QCD mainly in their singlet mixing properties [6,7] which explains why a study of the non-singlet structure function  $F_3(x, Q^2)$  over a *limited* range of  $Q^2$  does not suffice [5] to eliminate these theories as possible candidates for describing fundamental strong interactions. For this purpose one must turn to the structure functions  $F_2(x, Q^2)$  which contain singlet components.

This analysis was undertaken in refs. [6,7] for the older SLAC-MIT [8] and Fermilab [9] data. It was found that only asymptotically free (AF) theories survived the test of comparison with the data on scaling violations.

It is interesting to see how fixed-point theories compare with the recent and more accurate data [1-3] on  $F_2(x, Q^2)$ . Especially, the new data on  $\int_0^1 F_2(x, Q^2) dx$ enable one to eliminate the fixed-point theories by purely qualitative arguments in contrast to the detailed quantitative elimination undertaken in refs. [6,7]. In sect. 3 we shall concentrate just on the information obtainable from studying the lowest moment of  $F_2$ , i.e., the  $Q^2$  dependence of the area under  $F_2$ . We will see that the recent measurements [1-3] of  $\int_0^1 F_2(x, Q^2) dx$ , which decreases for increasing  $Q^2$ , already eliminate all fixed-point field theories. In sect. 4 the full x and  $Q^2$  dependence of the data will be compared with the predictions of QCD and their sensitivity to the gluon distribution in the hadron will be tested.

#### 2. Vector and scalar gluon theories

These are extensively discussed in ref. [7] and the reader is referred to this paper for details. Here we only recapitulate and extend those parts essential for our present analysis. The notation of ref. [7] will be followed throughout. The anomalous dimensions for vector gluon theories are given by

$$\begin{split} \gamma_{\rm FF}^{\rm E} &= \frac{\alpha}{2\pi} C_2(R) \bigg[ 1 - \frac{2}{n(n+1)} + 4 \sum_{j=2}^n \frac{1}{j} \bigg], \\ \gamma_{\rm VV}^{\rm V} &= \frac{\alpha}{2\pi} \bigg\{ C_2(G) \bigg[ \frac{1}{3} - \frac{4}{n(n-1)} - \frac{4}{(n+1)(n+2)} + 4 \sum_{j=2,j}^n \frac{1}{j} \bigg] + \frac{4}{3} T(R) \bigg\}, \quad (2.1) \\ \gamma_{\rm VV}^{\rm F} &= -\frac{\alpha}{2\pi} \frac{4(n^2 + n + 2)}{n(n+1)(n+2)} T(R) , \\ \gamma_{\rm FF}^{\rm V} &= -\frac{\alpha}{2\pi} \frac{2(n^2 + n + 2)}{n(n^2 - 1)} C_2(R) , \end{split}$$

with  $\alpha = g^2/4\pi$  and where  $C_2(R)$ , T(R) and  $C_2(G)$  are as follows.

(1) For QCD, i.e., eight colored vector gluons and three colored quarks (of each flavor, the number of flavors being f):

$$C_2(R) = \frac{4}{3}$$
,  $T(R) = \frac{1}{2}f$ ,  $C_2(G) = 3$ .

(ii) For non-colored (Abelian) vector gluons and three colored quarks.

 $C_2(R) = 1$ , T(R) = 3f,  $C_2(G) = 0$ .

(iii) For non-colored (Abelian) vector gluons and non-colored quarks:

$$C_2(R) = 1$$
,  $T(R) = f$ ,  $C_2(G) = 0$ .

For scalar gluons one has [10] \*

$$\gamma_{\rm FF}^{\rm F} = \frac{\alpha}{4\pi} C_2(R) \left[ 1 - \frac{2}{n(n+1)} \right],$$
  

$$\gamma_{\phi\phi}^{\phi} = \frac{\alpha}{\pi} T(R) ,$$
  

$$\gamma_{\phi\phi}^{\rm F} = -\frac{2\alpha}{\pi} T(R) \frac{1}{n},$$
  

$$\gamma_{\rm FF}^{\phi} = -\frac{\alpha}{2\pi} C_2(R) \frac{1}{n+1},$$
  
(2.2)

where  $C_2(R)$  and T(R) are exactly as before in the corresponding color situations (i)-(iii).

The crucial role in discriminating between different field theories is played by the flavor-singlet part of structure functions, which is uniquely fixed by the well-known mixing of the fermionic and gluonic singlet Wilson operators. This comes about by diagonalizing the singlet anomalous dimension matrix

$$\hat{\gamma}(n) = \begin{pmatrix} \gamma_{\rm FF}^{\rm F} & \gamma_{\rm FF}^{\rm V} \\ \gamma_{\rm VV}^{\rm F} & \gamma_{\rm VV}^{\rm V} \end{pmatrix},$$

by  $\hat{\gamma} = \gamma_{-}\hat{P}^{-} + \gamma_{+}\hat{P}^{+}$  with

$$\gamma_{\pm} = \frac{1}{2} \left[ \gamma_{\rm FF}^{\rm F} + \gamma_{\rm VV}^{\rm V} \pm \sqrt{(\gamma_{\rm VV}^{\rm V} - \gamma_{\rm FF}^{\rm F})^2 + 4\gamma_{\rm VV}^{\rm F} \gamma_{\rm FF}^{\rm V}} \right] , \qquad (2.3)$$

and where the projection operators are given by

$$\hat{P}^{-} = \begin{pmatrix} p_{11}^{-} & p_{12}^{-} \\ p_{21}^{-} & 1 - p_{11}^{-} \end{pmatrix}$$

and  $\hat{P}^+ = 1 - \hat{P}^-$  with

$$p_{11}^- = \frac{\gamma_{\rm FF}^{\rm F} - \gamma_+}{\gamma_- - \gamma_+}, \qquad p_{21}^- = \frac{\gamma_{\rm VV}^{\rm F}}{\gamma_- - \gamma_+}, \qquad p_{12}^- = \frac{\gamma_{\rm FF}^{\rm V}}{\gamma_- - \gamma_+},$$
(2.4)

\* Note that the anomalous dimensions for scalar gluon theories calculated by Bailin and Love [11] are wrong! Although these expressions have been adopted for the analyses in refs. [6,7], the results obtained there for the scalar gluons remain practically unchanged.

and similarly for scalar gluon theories. The  $Q^2$  dependence of the fermionic singlet component of  $F_2$ ,

$$x\Sigma(x, Q^2) \equiv x\sum_{q} [q(x, Q^2) + \overline{q}(x, Q^2)] , \qquad (2.5)$$

where the sum runs over all quark flavors f, is predicted to be [7]

$$\Sigma_n(Q^2) = [\alpha_n \Sigma_n(Q_0^2) + \beta_n G_n(Q_0^2)] e^{-sa_-(n)} + [(1 - \alpha_n) \Sigma_n(Q_0^2) - \beta_n G_n(Q_0^2)] e^{-sa_+(n)}$$
(2.6)

where for brevity we have defined  $\alpha_n \equiv p_{11}^-(n)$  and  $\beta_n \equiv p_{21}^-(n)$ , which govern the signlet mixing to leading order in  $\alpha_s$ , and the moments are defined by

$$G_n(Q^2) \equiv \int_0^1 \mathrm{d} x x^{n-1} G(x, Q^2) \, ,$$

etc., with  $G(x, Q^2)$  being the gluon distribution. For QCD the renormalization group exponents in eq. (2.6) are given by

$$a_{i} = \gamma_{i} / (\alpha b), \qquad s = \ln \frac{\ln(Q^{2}/\Lambda^{2})}{\ln(Q_{0}^{2}/\Lambda^{2})}, \qquad (2.7)$$

with  $\alpha b = (\alpha/2\pi) (11 - \frac{2}{3}f)$  and  $\Lambda$  being determined by experiment ( $\Lambda \simeq 0.5$  GeV). For an asymptotically non-free fixed-point theory these exponents read

$$a_t = \frac{1}{2}\gamma_t$$
,  $s = \ln \frac{Q^2}{Q_0^2}$ , (2.8)

where now the value of the UV finite fixed point  $\alpha = \alpha^*$ , appearing in  $\gamma_i$ , has to be determined by experiment. The flavor non-singlet (NS) component, governed by  $\gamma_{\rm FF}^{\rm F}$  alone, is easy to calculate since it does not mix with the gluons, and can be found for example in ref. [7].

One of the important advantages of the recent deep inelastic neutrino experiments [2,3] is that they can measure directly the singlet component in eqs. (2.5) and (2.6) since

$$F_2^{\nu N}(x, Q^2) = x \Sigma(x, Q^2)$$
(2.9)

(above charm threshold and always assuming  $s = \overline{s}$ ,  $c = \overline{c}$ ), whereas deep inelastic e (or  $\mu$ ) scattering off nucleons measures in addition the NS part, as for example

$$F_2^{\mu p}(x, Q^2) = \frac{5}{18} x \Sigma(x, Q^2) + \frac{1}{6} x \left[ u + \overline{u} - d - \overline{d} - s - \overline{s} + c + \overline{c} \right]$$
(2.10)

with  $u = u(x, Q^2)$  etc., and where the  $Q^2$  dependence of the NS expression in squarebrackets is determined solely by  $a_{NS} = \gamma_{FF}^F/\alpha b$ 

### 3. The lowest moment of $F_2$

According to eq. (2.6) the  $Q^2$  dependence of the lowest (n = 2) moment of the singlet component is given by

$$\Sigma_2(Q^2) = \alpha_2 + [\Sigma_2(Q_0^2) - \alpha_2] e^{-sa_+(2)}, \qquad (3.1)$$

where we have used  $a_{-}(2) = 0$ ,  $G_2 = 1 - \Sigma_2$  and  $\alpha_2 = \beta_2$ . This quantity, being the total fractional momentum carried by the fermionic constituents in the nucleon, is experimentally directly measured in neutrino scattering on matter

$$\int_{0}^{1} F_{2}^{\nu N}(x, Q^{2}) dx = \Sigma_{2}(Q^{2}), \qquad (3 2)$$

whereas for  $e(\mu)$  p processes we have

$$\int_{0}^{1} F_{2}^{\mu p}(x, Q^{2}) dx = \frac{5}{18} \Sigma_{2}(Q^{2}) + \frac{1}{6} [u_{2}(Q_{0}^{2}) + \bar{u}_{2}(Q_{0}^{2}) - d_{2}(Q_{0}^{2}) - 2s_{2}(Q_{0}^{2}) + 2c_{2}(Q_{0}^{2})] e^{-sa_{NS}(2)}.$$
(3.3)

At moderate  $Q^2 \simeq 2-4$  GeV<sup>2</sup>, corresponding to our input  $Q_0^2$ ,  $\Sigma_2(Q_0^2) \simeq 0.52$  [2,3] and hence, since  $a_+ > 0$ ,  $\Sigma_2(Q^2)$  is an increasing or decreasing function of  $Q^2$  depending on whether  $\alpha_2$  is larger or smaller than  $\frac{1}{2}$ , respectively. Substituting the different possible values of  $C_2(R)$  and T(R) into eqs. (2.1) and (2.2), it turns out that  $\alpha_2 < \frac{1}{2}$  only for QCD where  $\alpha_2 = \frac{3}{7}$ . Note that, although for n = 2 we have

$$\alpha_2 = \frac{\gamma_{\rm VV}^{\rm V}(2)}{\gamma_{\rm FF}^{\rm F}(2) + \gamma_{\rm VV}^{\rm V}(2)},\tag{3.4}$$

this expression is not sensitive to the triple-gluon coupling since the coefficient of

#### Table 1 Values for $\alpha_2 \equiv p_{11}(n=2)$ , assuming always four flavors (f=4)

|                                                |                                         | <sup><i>a</i></sup> <sub>2</sub> |  |
|------------------------------------------------|-----------------------------------------|----------------------------------|--|
| colored vector<br>gluons and quarks            | QCD                                     | <u>3</u><br>7                    |  |
| non-colored (Abelian)<br>vector gluons         | colored quarks<br>non-colored<br>quarks | 6<br>7<br>2<br>3                 |  |
| colored (non-Abelian) scalar gluons and quarks |                                         | $\frac{9}{10}$                   |  |
| non-colored (Abehan)<br>scalar gluons          | colored quarks<br>non-colored<br>quarks | $\frac{72}{73}$ $\frac{24}{25}$  |  |



Fig. 1 Comparison of the  $Q^2$  evolution of the area under  $F_2$ , predicted by vector gluon theories according to eqs (3 2) and (3.3), with the  $\mu p$  data of ref. [1] (•) and ref. [12] (°), and with the  $\nu N$  data of ref. [3] (•) and ref. [2] (°).

 $C_2(G)$  in  $\gamma_{VV}^V(2)$  vanishes. It is a unique feature of *all* other presently known field theories that  $\alpha_2 > \frac{1}{2}$ , as it is summarized in table 1, which forces  $\int_0^1 F_2(x, Q^2) dx$  to *increase* with  $Q^2$ . Since  $\int_0^1 F_2(x, Q^2) dx$  is experimentally observed [1-3] to *decrease* with  $Q^2$ , all theories except QCD are already excluded on the basis of this single *qualitative* observation.

In fig. 1 we compare the data [1-3] for  $\int_0^1 F_2(x, Q^2) dx$  with the predictions of QCD and of the Abelian vector field theory, for which we have taken the fixed point  $\alpha^*$  to be 0.5 in agreement with an analysis [5] of the moments of  $F_3^{\nu N}$ . The input for the small NS contribution in eq. (3.3) can be easily estimated from the  $e(\mu)$  p and  $e(\mu)$  n measurements [8,12] and the  $\nu$ N data [2,3] to be  $u_2 + \overline{u}_2 - d_2 - \overline{d}_2 - 2s_2 + 2c_2 \approx 0.12$  at  $Q_0^2 \approx 4$  GeV<sup>2</sup>. We clearly see how the data eliminate the Abelian vector theory where  $\alpha_2 = \frac{6}{7}$  (see table 1); the prediction of scalar gluon theories is in even worse agreement with the data since their values for  $\alpha_2$  are always larger than  $\frac{6}{7}$ .

# 4. Scaling violations in $F_2(x, Q^2)$ and their sensitivity to the gluon distribution

Besides confirming QCD it was also attempted in refs. [1-3] to extract the gluon distribution  $G(x, Q^2)$  in the hadron form the observed scaling violations of

 $F_2(x, Q^2)$ . For this to be a reliable method, the predicted scaling violations must be sensitive to  $G(x, Q^2)$ . To check this sensitivity we have calculated the scaling violations once with the standard gluon distribution  $xG(x, Q_0^2 \simeq 4) = 2.6(1 - x)^5$  and once with  $G(x, Q_0^2) = 0$ . This latter choice obviously violates the energy momentum sum rule and is intended only as a check on the abovementioned sensitivity to  $G(x, Q_0^2)$ . For the quark distribution we took at  $Q_0^2 = 4$  GeV<sup>2</sup>

$$\begin{aligned} x(u_{\rm V} + d_{\rm V}) &= 4.546 x^{0.624} (1 - x)^{2.657} ,\\ xd_{\rm V} &= 2.715 x^{0.773} (1 - x)^{3.7} ,\\ xs &= 0.17 (1 - x)^7 ,\\ xc &= 0.05 (1 - x)^{30} , \end{aligned}$$
(4.1)

which result from a fit to the data [1,3,8,13] at  $Q_0^2 \simeq 4 \text{ GeV}^2$  and  $x \gtrsim 0.04$ , assuming  $\overline{u} = \overline{d} = s$  and  $u = u_v + \overline{u}$ , etc. We have deliberately avoided the region x < 0.04 in order to avoid any sensitive dependence [14] on the charmed sea distribution. The negligibly small charm distribution, which has been included in eq. (4.1), results from the lowest two moments predicted by the virtual Bethe-Heitler process [14,15], i.e.,  $c_2(Q_0^2) = 1.6 \times 10^{-3}$  and  $c_4(Q_0^2) = 2.9 \times 10^{-6}$  corresponding to  $m_c = 1.25$  GeV. To further make sure that the results do not sensitively depend on our standard input gluon distribution chosen, we have repeated the calculations using a broad gluon  $xG(x, Q_0^2) = 0.88(1 + 9x)(1 - x)^4$  as suggested by the Caltech group [16]:



Fig. 2 Predictions of scaling violations in QCD for standard gluon input distribution (full lines) and zero gluon input distribution (dashed lines) as compared with neutrino data [3] (solid points) and ed data [8] (open points) multiplied by  $\frac{9}{5}$ .



Fig. 3. Comparison of the predictions for scaling violations with the 219 GeV  $\mu$ p data (•) of refs [1,13] and with the ep data ( $\circ$ ) of ref. [8] The theoretical curves are as in fig. 2.

within a few percent our predictions remain unchanged. The full  $Q^2$  dependence of  $F_2(x, Q^2)$  is then obtained by using the standard Mellin inversion techniques as described for example in ref. [7].

As one can see from figs. 2 and 3 the scaling violations with the standard gluon distribution (full lines) do not differ significantly (i.e., by less than a standard deviation) from the ones with a zero input gluon distribution (dashed lines). A distinction can be made only in the *small* x region at high values of  $Q^2$ , i.e.,  $Q^2 \gtrsim 50 \text{ GeV}^2$ . Thus any moment analysis of  $F_2$  with  $n \gtrsim 3$  for determining the gluon distribution is rendered meaningless.

#### 5. Conclusions

To summarize, we have shown that recent measurements of  $\int_0^1 F_2(x, Q^2) dx$  which *decreases* for increasing values of  $Q^2$  already eliminate all strong interaction field theories except QCD. This should be contrasted with the information extracted from measurements of  $F_3(x, Q^2)$  which, at present energies, can *not* be used to distinguish between the different field theories of the strong interactions [5]. Furthermore we have shown that attempts [1-3] to extract the gluon distribution in the hadron from the measured  $Q^2$  dependence of  $F_2(x, Q^2)$  are misleading since the scaling violations presently observed are rather insensitivite to the gluon distribution. Only precision measurements in the small x region, not accessible to any moment analysis, at higher values of  $Q^2$  could shed further light on  $G(x, Q_0^2)$ .

We thank G. Altarelli for a very helpful discussion

#### References

- [1] B A. Gordon et al., Phys. Rev. Lett 41 (1978) 615
- [2] P.C Bosetti et al., BEBC collaboration, Nucl Phys B142 (1978) 1.
- [3] J G.H. de Groot et al., CDHS collaboration, Phys. Lett 82B (1979) 456, Z. Phys. C (1979) 143.
- [4] J Ellis, SLAC-PUB-2121 and 2177 (1978)
- [5] E. Reya, DESY 79/02 (1979), Phys. Lett B, to appear.
- [6] M Gluck and E. Reya, Phys. Lett. 69B (1977) 77.
- [7] M. Gluck and E Reya, Phys. Rev. D16 (1977) 3242
- [8] E M. Riordan et al., SLAC-PUB-1634 (1975), unpublished.
- [9] C. Chang et al, Phys. Rev. Lett. 35 (1975) 901.
- [10] N Christ, B. Hasslacher and A.H Mueller, Phys. Rev. D6 (1972) 3543.
- [11] D Bailin and A Love, Nucl. Phys B75 (1974) 159.
- [12] H.L. Anderson et al., Phys. Rev Lett. 40 (1978) 1061.
- [13] H.L. Anderson et al., Muon scattering at 219 GeV, paper submitted to 19th Int. Conf on High-energy physics, Tokyo 1978, University of Chicago report.
- [14] M. Gluck and E. Reya, Phys. Lett. 83B (1979) 98.
- [15] E. Witten, Nucl Phys B104 (1976) 445;
  - M.A Shifman, A I. Vainshtein and V.I. Zakharov, Nucl. Phys. B136 (1978) 157
- [16] R.P. Feynman, R D Field and G.C Fox, Phys. Rev. D18 (1978) 3320.