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Abstract. The standard S U(2) lattice gauge theory 
model without fermions may be considered as a Z 2 
model with monopoles and fluctuating coupling 
constants. At low temperatures fi-1 ( =  small bare 
coupling constant) the monopoles are confined. 

1. Introduction and Summary of Results 

We consider the standard model of an S U(2) gauge 
field theory without fermions on a hypercubic lattice 
A in 4-dimensional Euclidean space time. It was 
introduced by Wilson [1] and is defined as follows 
(notations and definitions as in [2]). 

The (random) variables of the theory are the socalled 
"string bit variables" U [b] e G = S U (2) : A configura- 
tion U is a map which assigns an element U [b] e G 
to every directed link b between nearest neighbour 
vertices x ,y  on the lattice in such a way that 
U I-b] --> U [b]-  1 under reversal of direction of the 
link b. 

If C is an oriented path (with prescribed initial 
point if it is closed) which consists of links bl ... b then 
we write 

U[C] = U[b, l  ... U[bt] (1.1a) 

In particular, a plaquette p( = 2-dimensional unit 
cell) has a boundary/3 = 0p consisting of four links 
b 1 ... b 4. So 

U[_p] = U[b4] ... U[ba] (1.1b) 

U [C] is called the parallel transporter around C. 
The Euclidean action of the model is 

L(U)= ~q~(U[D]) w i t h ~ ( V ) = f l t r Y  
p 

for VeS U(2). (1.2) 

Sum over p is over all plaquettes in the lattice. Their 
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orientation is immaterial since ~Q~(V)=~(V-I). 
Boundary conditions will be specified in Sect. 2. 

Observables are (real) functions F (U) of the random 
variables U[b]. Their expectation value in the 
standard model is 

( F)  = Sd#F(U), (1.3) 

1 LtJ d#=-~e ( )I~dUEb]; Z=IeL(V)I~dU[b ]. (1.4) 
b b 

Integrations over U [b] are always over G; d U [b] 
is normalized Haar measure on G. (Normalized 
means ~GdU[b] = 1). The product over b runs over 
all links in the lattice. 

The center of the gauge group G will be denoted by 
F. It consists of matrices _+ 4. We will not distinguish 
them in notation from numbers _+ 1. F ~ Z 2 (the 
integers 0, 1 with addition modulo 2). 

We will show that the model can be reinterpreted as 
a Z 2 gauge theory with monopoles and fluctuating 
coupling constants.* This new theory has as its 
variables 

(2[b]eG/F and a[p]= + l e r  (1.5) 

They are associated with links b resp. plaquettes p. 
They are not completely independent. The variables 
U[b] specify the values of a function p[c] = +_ I~F 
for every 3-cell (cube) c of the lattice. Given 0, the 
variables a[p]  must satisfy 

I ]  a [p] = p [c] for every cube c (1.6) 
peOc 

Product is over the 6 plaquettes in the boundary ~3c of a 
cube e. The meaning of this equation becomes clear 
if we go over to additive language. Let e be the unit 
lattice vector in #-direction, and e = -  %. Let 
p=pu~(x) be the plaquette with corner points 
x , x + e , x + e  + e , x + e . S i m i l a r l y ,  l e t c = c , ~ ( x )  
be the cube with corner points x ,x+e, ' . . . ,  

* Another model with monopoles has recently been studied by 
Yoneya [3] 
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x + e  + e ~ + e ~ .  We define field strength F and 
current j taking values in the field Z a = {0, 1} by the 
formulae 

a[p] = exp in F u~(x ) ifp = p~,~(x) (1.7) 

p [c] = exp irc ju~z (x ) ifc = c u~z (x ) 

Then (1.6) takes the form 

A F~ + AzF,~ + A F~u =ju~(x)  (1.6') 

A is the difference operator on the lattice (viz. 
z~f(x) =f (x  + e~,)-f(x)). Equation (1.6') is to be 
regarded as an equation between elements of Z 2, 
i.e. integers modulo 2. 

Equation (1.6') is of the form of 2nd Maxwell 
equations in the presence of a magnetic currentj. This 
current is a gauge invariant function of the variables 
U[b]. It is conserved. The conservation law reads 

[I p[c] = 1 for every hypercube h (1.8) 
cEOh 

Or, equivalently, if we set ju~(x)=f0(x) for pv2p a 
cyclic permutation of 1234. then 

A = 0 (1.83 

Explicit expressions for p or j and for the  path 
measure in terms of the new variables will be derived 
in the next section. 

Let us draw some tentative conclusions from the 
observed existence of monopoles in the standard 
SU(2) model, and compare with the modified SU(2) 
model studied in [2]*. 

The modified model is obtained by ruling the 
monopoles out of existence. This is done by including 
in the path measure a factor I J 0 ( I q t r U ~ ] ) .  

c pc~r  . 

Product over c runs over all cubes in the lattice. This 
amounts to admitting only configurations U such 
that p [c] = 1 for all cubes c, cp. (2.3) below. 

Both theories have formally the same continuum 
limit, and the monopoles in the standard model be- 
come unimportant as/?--* ~ in the following sense. 
Let X be any nonempty set of l s l  cubes. Then 

( [ I  0( - p [c] ) )  < O (fi) (1/4)]XI (1.9) 

with D(fi) < const 'e -~/13 -+ 0 as fi -~ oo. 
This follows from inequalities (1.23) of [2] since 

p[c] = - 1 implies by (2.3) below that tr U [p] < 0 
for at least one plaquette pEOc, and at most four cubes 
in X can have a common plaquette in their boundaries. 

Next, let us look at the 't Hooft disorder parameter 
[51. Let Z be the time t = 0 hyperplane in the lattice 
A and S a set of links in Z. Its coboundary t~S consists 
of those plaquettes p in S which have an odd number 
of links of S in their boundary ~p. We are mainly 
interested in S, ~S of the form shown in Fig. 1; ~S 

* The proof of inequality (1.12) of [2] for the modified model 
has been extended to the standard model by Fr6hlich [4] 
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is a closed loop bounding the surface S in the dual 
lattice of S. The 't Hooft disorder parameter ( B [S] ) 
is defined as in [2]. We give another definition which 
will be shown to be equivalent. The 't Hooft disorder 
parameter is equal to the expectation value of the 
Wilson loop integral [1] for a monopole transported 
around ~S. Equivalence is proven by performing a 
duality transformation on the Z z theory. In place of 
the variables a[p] one is then dealing with new 
variables co [c] = _+ 1 attached to cubes c of the lattice 
A. These cubes may be considered as links on the dual 
lattice of A. We may go over to additive language as in 
(1.7). To this end one introduces vector potentials 
Au(x ) taking values in the field Z 2 = {0, 1} by 

c0[e I = exp in ,iu(x ) - exp in A[c] (1.10) 

if c = c~zo(x), #v2p = permutation of 1234 

(Signs are unimportant since - A  = A for elements 
A of Z2). The duality transformation interchanges the 
role of electric and magnetic fields. As a result, 
the currentj  now appears as an electric current coupl- 
ed to the vector potential A, cp. (3.10b) of Sect. 3 for 
the new action, and the discussion following it. 

Let C be the set of cubes protruding from plaquettes 
pc ~ S in positive time direction. C is a closed path on 
the dual lattice of A. It will be shown that the 't Hooft 
disorder parameter takes the form 

(B[ S] )  = (exp in ~c .3) (1.11) 

where 

c~C 

Let the closed path ~S bound a rectangular area 
S of L" T lattice squares as in Fig. 1, with T >> L. 
The Wilson loop formula (1.11) implies--according 
to arguments due to Wilson I l l - - t h a t  

( B [ S ] )  ~ const e -TV(L) for T>> L, (1.12) 

and V(L) may be interpreted as potential energy of a 
pair of external monopoles a distance L apart. 

Since dynamical monopoles exist in the standard 
model, it seems reasonable to expect that V(L) stays 
bounded as L ~ oo. For even if strings form that tend 
to confine the external monopoles, they can break, 
creating a monopole pair out of the vacuum. Since 
the number of plaquettes in ~S is J OS[ = 2L + 2T this 
would amount to a bound, valid for all values of fl, 
of the form 

( B [ S ] )  => e(L)e -~lbsl for T ~  oo (1.13) 

i.e. a perimeter law. a may depend on ft. 
't Hooft has argued that bound (1.13) together with 

a mass gap should be a sufficient condition for con- 
finement of static quarks [5]. Unfortunately it is not 
at all clear that this assertion applies to theories with 
dynamical monopoles. Therefore, even if the bound 
(1.13) is indeed true for the standard S U (2) latticegauge 
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Fig. 1. A set S of links (heavy lines) in the time 0 plane X and pla- 
queues in 3 S (squares) 

theory model, nothing can be concluded from that. 
For the modified S U(2) model mentioned above 

it was shown in [2] that the bound (1.13) is not 
satisfied for large enough ft. Instead one finds an area 
law 

( B IS] ) __< c'(L)e- ~'lsl (1.14) 

for large enough fl in the modified model (low 
temperature phase). 

One may ask how validity of (1.13) for the standard 
model and (1.14) for the modified model can be 
compatible with the assertion made earlier that the 
monopoles become unimportant as fi ~ oo. A likely 
answer is that V(L) increases linearly with L in the 
standard model before it bends over, and is approxi- 
mately equal to V(L) in the modified model so long 
as L <__ Lo(fi) , and Lo(fl) ~ oo as fl ~ oo. 

One may also ask whether the Z 2 monopoles are 
confined or not in the low temperature phase of the 
standard model (fl large). It is instructive to inquire 
first whether the analog of the Wilson criterium for 
quark confinement is satisfied. This amounts to 
looking at the corresponding theory without the 
monopoles and determining the behaviour of the 
expectation value of the Wilson loop integral (for 
external monopotes) in this theory. The theory with- 
out monopoles is just our modified model. In view of 
(1.11), the question is then answered by the bound 
(1.13) for that model: The monopoles are confined. 
Appeal to a Wilson criterion seems reasonable for 
large fi since the result (1.9) assures then that the 
monopole pairs are dilute. 

It remains yet to be investigated whether the onset 
of dissociation of monopole pairs corresponds to a 
phase transition in the classical sense (point of 
nonanalyticity in fl of the Gibbs potential). We remark 
that one may interpolate between the standard model 
and the modified model by using action 

L = f i { ~ t r U [ D ] + ~ t n } ( l + t a n h 2 [ I t r U [ p ] ) }  
p~Oc 

For large values of/l  the monopole pairs will still be 
dilute when they start to dissociate. It should be 
remembered, however, that an elaborate argument 
was needed for the two dimensional plane rotator 
model [6] to show that the onset of dissociation of 
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vortex pairs produces observable consequences of a 
phase transition. 

In his recent paper [7] 't Hooft  argues that one 
cannot have both electric and magnetic confinement. 
However, confinement of the monopoles discussed 
here until now does not imply magnetic confinement 
in the sense of ' t  Hooft, and as we have pointed out 
already in our papers [2, 8 J - -one  cannot conclude 
from our result that static quarks are not confined 
when fi is sufficiently large. In fact, the monopoles 
discussed so far are merely the smallest ones of a 
family of monopoles of increasing size. This will be 
discussed in Sect. 5. It turns out that monopoles of 
any given size are confined (in a sense that will be made 
precise in Sect. 5) for sufficiently large ft. But it 
depends on the monopole's size how large/? has to be 
and the possibility remains open that for any fi 
monopoles of sufficiently large size (depending on fl) 
are not confined. 

2. Z 2 Theory with Monopoles 

Let U be a configuration of the standard model. We 
introduce auxiliary variables 

(J [b] = U[b]F~ G/F ~ SO(3) (2.1a) 

o-[p] = sign tr U[p] = __+ l e t  (2.1b) 

We admit free boundary conditions, or a mixture of 
free and cyclic boundary conditions in which ~)[b] 
satisfies cyclic boundary conditions, (and also a [p ]  
if one so chooses) but not the variables U [b] them- 
selves. 

The variables (2.1) are invariant under gauge 
transformations by elements of F, viz. 

U[b]~Y[x2]U[b]7[xl] -~ for b=(x2,xl)  (2.2) 

~[x]  = + l e t  

Let us introduce 

p[c]  = 1[-[ sign tr U [p] (2.3) 
peOc 

It follows from the definition (2.1b) of a [p] that 

[ I  a [p] = p [c] (2.4) 
psc~c 

We will show that p [c] depends on the configuration 
U only through cosets U [b]. This implies that (2.4) 
is a relation between variables a [p ]  and U[b] .  As is 
explained in the introduction, it is of the form of a 
field equation for field strengths a [p]. 

Let U and U' be two configurations such that 
C [b] = U'[b]  for all b. Then U'[b] = U [b] 7 [b] with 
7[b] eF. Therefore U'[/5] = U [ / 5 ] ~ ]  with 

y [iO] = I-[ Y [b]  (2.S) 
b~Op 

It follows from this definition that 

[ I  Y [P] --- 1 for every cube c. (2.6) 
pcOc 
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Upon substituting U' for U, p[c] changes to 
p[c] I~ 7[/~] = pie]. Thus p[c] remains unchanged 

p~Oc 

and depends therefore on the configuration U only 
through the cosets U[b], as was to be shown. 

It follows from the definition (2.3) of p [c] that 

I-[ p[c] = 1 for every hypercube h. (2.7) 
c~Oh 

since every factor sign tr U [/~] appears twice. As was 
explained in the introduction, this expresses conserva- 
tion of the magnetic current. 

Let us now suppose that we are given any collection 
of elements U[b] of G/F and alp] o f f  which is such 
that relation (2.4) is satisfied for all cubes c. We show 
that there exists then a configuration U--i .e.  a 
collection of elements U [b] ~ G - -  such that (2.1) hold, 
and U is unique up to gauge transformations (2.2) by 
elements of F. 

To compute p [c] from given ~;, one selects in an 
arbitrary way representatives U 1 [b] e G of the cosets 
U[b] so that U[b] = U 1 [b]r. Then p[c] is computed 
from (2.3), with U 1 substituted for U. The result does 
not depend on the choice of representative by the 
argument given earlier. 

Let a 1 [p] = sign tr U 1 [/~], whence p [c] = 
1-[ at [P]. By hypothesis, (2.4) is fulfilled. Therefore 

peOc 

I-l a [p ] = 1-[ a l [p ] 
p~cnc peOc 

Let us write 

a[P]=al[P]T[P] 

with 7[P] = -+ l e F .  Then 7[P] satisfies the relation 

l-] 7 [P] = 1 for every cube c (2.8) 
p~gc 

It follows that there exists for every link b a 71 [b] = 
+ 1 e F  such that 7 [P] = I~ 71 [b] for all plaquettes 

beOp. 
P. 71 [b] need not satisfy cyclic boundary conditions 
even if 7 [P] do. Obviously, U [b] = U 1 [b] 71 I-b] 
fulfills relations (2.1). This proves existence of the 
configuration U. 

Now we turn to uniqueness. Suppose configurations 
U and U' produce the same values of the auxiliary 
variables defined by (2.1). This requires that U'[b] 
= U[b]7[b] withy[b]  = _+ l e F ,  and 

17[ 7 [b] = 1 
bE~p 

for every plaquette p. The last requirement implies 
that 7 [b] is a pure gauge, and therefore U and U' 
are related by a gauge transformation (2.2) by ele- 
ments of F as was to be shown. The gauge transfor- 
mation need not obey cyclic boundary conditions. 

Let us also note that p[c] is invariant under 
S O (3) gauge transformations 

U[b] ~ 12 Ix2] U[b] l?[xl] -1 with 

l / Ix]  e G/F ~ SO (3) (2.9) 
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With a one to one correspondence between old 
and new variables established, we can rewrite the 
path measure. We introduce 

K ( / ] )  = fl] tr U [/~][ > 0 (2.10) 

Clearly, because of the absolute signs it depends 
only on cosets 0 [b], and it is invariant under SO (3) 
gauge transformations (2.9). 

The action (1.2) becomes 

L = L((J, a)= ~Kp((Y)a[p] (2.11) 
P 

Of course the path measure also has to include g- 
functions to take care of the constraint (2.4). 

Any gauge invariant function F (U) may be regarded 
as a function of the new variables 

F(U) = FI((J, a) 

(For local observables, defined as in [2], this is always 
true. For more general functions, which may depend 
on variables attached to cells on the boundary of the 
lattice A, it follows from our choice of boundary 
conditions). Expectation values take the form 

( F ) = ~ d p Fl ((J, a) (2.12) 

with 

d# = 1_ eL(t?'~)[I 6(p[c]- t  I~ a [ p ] ) I - I d l ] [ b J [ I d a [ p ]  
L c peac b p 

(2.13) 

A new expression for the partition function Z results 
from ( 1 ) =  ~d#= 1. Notations are as follows. 
The g-function is a Kronecker-5 defined by 

6(1) = 1, g( - 1) = 0 (2.14) 

d ~2 is normalized Haar measure on G/F, and 

Y (...). (2.15) 
r  

Products over b,p, c in (2.13) run over all links, 
plaquettes, and cubes in the lattice A, respectively. 

3. Duality Transformation 

Electric-magnetic duality has been extensively studied 
in the literature, see e.g. Mandelstams recent paper 
[9, 113]. It was also noted there and before that the 
't Hooft disorder parameter may be viewed as expecta- 
tion value of a Wilson loop integral for monopoles. 
Nevertheless it appears necessary to give proof of 
assertion (1.11) in the introduction. It is based on 
performing a duality transformation on the Z 2 
theory of Sect. 2. The duality transformation is per- 
formed in the same way as for the modified model 
of [2]. It amounts to a Fourier transformation on 
the Abelian group F. 

The variables of the dual model take values in the 
dual group f = group of characters of unitary irredu- 
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cible representations of F. For F ~ Z 2 there are 
two such characters, and/~ ~ Z 2 again. We identify 
them with numbers e )=  + 1. The corresponding 
characters are functions on F given by 

~1 if e) = 1 
N ( 7 ) = [ y i f e )  - 1  f o r ? = _ _ _ l ~ F  (3.1) 

A variable co [c] is assigned to every 3-cell c of the 
lattice. It takes values co [e] = _ 1. The corresponding 
characters will be denoted by (5(7). 

It will be convenient to use the coboundary operator 
( =  boundary operator on the dual lattice). It is 

defined by saying that a 3-cell 

ceSp if and only ifpsSc, etc. 

p is a plaquette. One writes accordingly 

-= H co[c] = I1 e)[c] 
ce~p c 

peOc 

(3.2) 

~p(m) = ~lp(O) + Kp(O)e) for e) = _ l e P  

R v = �89 in coth Kp(U) >= 0 

p = _lz In (sinh Kp(O) cosh Kp((])) 
Expression (3.6) involves the new path measure 

1 U [c])e~P@t'@Pl)l-IdO[b]l-[de)[c] 
b c 

181 

(3.7) 

If p r Y one is to put ~o'p = 1. ~ p ,  p [c] and, in general, 
also ff deperLd also on variables U[b].  An explicit 
formula for ~ p  is obtained from its definition (3.5a) 

For convenience we shall use a non-normalized 
Haar measure on F, 

S d e ) ( . . . ) -  Y' ( . . . )  (3.4) 
co=_+1 

Temporarily we shall neglect indicating U-depen- 
dence of functions (such as Kp, 5gp, F below) explicitly. 

One expands in a Fourier series on F. 

(3.3) 

additive language. It involves then the vector potential 
A and the current f. They take values in the field 
Z 2 = {0, 1} and were defined in terms of e)[c] resp. 
Pie] in (1.10) resp. (1.7) and f.  of the introduction. 

We introduce 

ffu~(x) = A A - A ~t u (3.9) 

<F> =  5IJat2[b]IJdco[c] S H a% 
b c p~Y 

�9 if({ dp }p~r) H &~(P [c])exp E ~@p (e),- 1 co[@ ]) 
r p 

eK"~tPl = S d cop e z~,(~~ @ (~ [p] )- 1, (3.5a) 

6(p[c] -1 I] a [ P ] ) =  Sdco[c]CSc(P[C] 1-[ a[P]  -~) 
peOc peOc 

= ~ de) [c] o5c( p [c]) l~ chc(a [P] )-x (3.5b) 
peOc 

And, for a function F that depends on variables 
a [p] with p ~ Y, 

F({a[P]}p~r) = iff({co' ,}p~r)H {c5' ( a l p ] ) - ,  d e)'p} 
peY  

(3.5c) 
One inserts these expansions into the definition of 
( F ) .  Summations over variables o-[p] may then be 
performed with the help of orthogonality relations of 
characters. They produce 6-functions. The e)p- 
summations can be performed next, making use of ttie 
presence of these 6-functions. As a result one obtains 
(e) [&] - H  co M) 

ceOp 

(3.6) 

It is defined as an element of the field Z 2 = {0, 1} ; 
addition is addition in Z2, i.e. modulo 2. 

In this language one finds 

1 s . _ 
dft = ~e  IJdU[b]IJdA (x) (3.10a) 

b x,t~ 

with action L that can be written in the form 

L = 2 {/~p(U) + Rp(U) - 2Rp((.f)Pu~(x)ffv(x)} 
+ inE~(x)fu(x). (3.10b) 

The current f is also a function of t). The first sum 
goes over all plaquettes p = p,~(x), and the second one 
over all links (x,x + e )  (they are in one to one 
correspondence with cubes cvx p (x)). Finally 

E (...) 
~=0,1 

Apart from the fluctuating coupling constant 
2Kp(~)), expression (3.10b) has a familiar look, 
except for the strange imaginary factor i n multiplying 
the last term. This factor would not have been expected 
from analogy with electrodynamics. We note how- 
ever that complete analogy cannot hold. In electro- 
dynamics, the Coulomb force between like charges 
is repulsive, between opposite charges it is attractive. 
In a Z 2 gauge field theory there can be no distinction 
between like and opposite charges, s i n c e -  1 = + 1 

in Zz.~The factor in in (3.10b) makes e L invariant 
under j ,  (x) ~ - f ,  (x). At the same time it is responsi- 
ble for the lack ofpositivity of the measure dfi. 

The new path measure dfi is that of a Z 2 gauge 
field theory. We show that it is invariant under the 
following local gauge transformations 

e)[c]--+v[h2]e)[c]v[hl] -1 if ~ c = h z - h  ~ (3.11) 

for v [ h ] = _ + l e P  

Interpreted as elements of the dual lattice, c is a link 
and h~, h z are the two endpoints of this link. (In the 

(3.8) 
Because of the factors o5c( p [c]) = _ 1 this measure is 
not positive. 

It is amusing to see formula (3.8) translated into 
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original lattice they are 4-dimensional hypercurbes 
touching each other along the cube c). 

In terms of the vector potential A, these gauge 
transformations are of the familiar form 

A u ( x  ) ~ A u ( x  ) + A J ( x )  (3.12) 

with f ( x ) ~ Z 2 = { 0 , 1  }. Gauge invariance of the 
measure (3.10) follows therefore from the fact that the 
current j is identically conserved. That is, for any 
configuration/)  = { ~) [b] } the values of the functions 
fu(x) of the random variable U [b] satisfy (1.8'). 

We conclude this section with a comment on the 
lack of positivity of the measure d ki. Physical positivity 
in the quantum field theoretic sense--also known as 
reflection positivity or Osterwalder Schrader (OS) 
positivity [11J--holds  in spite of it. Basically this is a 
consequence of the fact that the measure is obtained 
by a duality transformation from a model that is 
known to respect OS-positivity [12]. 

Let F be a local observable which is a real gauge 
invariant function of the variables co It],  ~) [b] attach- 
ed to cubes c resp. links b in the halfspace t -- x 4 > 0 
only. Define 

( O F ) ( { c o [ c ] ,  U[b]}) = F ( { c o [ O c ] ,  U[Ob]})  (3.13) 

Time reflection 0 : (x 1 x 2 x 3, x 4 ) ~ (x 1 x 2 x 3 ' _ x 4) acts 
on cells c, b in the obvious way. 

Any such function F can be regarded as a function 
which depends on variables co [c] only through gauge 
invariants co [Op] associated with plaquettes p in the 
halfspace x 4 > O. By doing the duality transformation 
backwards and using OS-positivity of the original 
model one can show that 

( ( O F ) F )  -- ~ d f t ( O F ) F  > O. (3.14) 

4. Wilson Loop forZ 2 Monopoles 

Let S be a set of links in the time t = 0 hyperplane ~ .  
The 't Hooft operator B [S] is defined by its action on 
wave functions in the quantum field theoretic Hilbert 
space of states, and < B IS] ) is the vacuum expectation 
value of this operator, cp. [2]. By using the path inte- 
gral formula for the vacuum state it was shown there 
(cp. (4.11) of [2]) that < B IS] ) is equal to the expecta- 
tion value of a multiplication operator, viz. 

( B [ S ] )  = ( F )  = S d # F ( U )  (4.1) 

F ( U )  = exp Z {~q~(- U [ /sb])-  ~q~ ~b])} 
bsS 

This holds generally, both for the standard and the 
modified model. Pb is the plaquette protruding from 
the spacelike link b in positive time direction. In the 
variables of Sect. 2 

F = exp - 2 ~ K p  (0 )a  [pb] (4.2) 
beS b 

Now one can use formula (3.6) to rewrite ( F )  in 
the language of the dually transformed model. A 
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short computation (the same as is carried out in 
Eqs. (4.12)... (4.13) of[2] ) gives the result 

( B [ S ] )  -= ( I~ co[Cp]) - Sd/2 l-I co [cp] (4.3) 
peOS pebS 

.cp is the cube protruding from the spacelike plaquette p 
in positive time direction. In additive language (1.10) 
this is the desired formula (1.11). 

5. Z 2 Monopoles of Larger Size 

Let us for a moment restrict attention to the t = 0 
plane S in the lattice A, and consider a configuration 
U =  {U[b]}b~ s. Let c be a cube in 2;. I f p [ c ]  = - 1 
then there is a monopole located at c. By (1.6) it is 
end point of a string of magnetic flux, cp. Fig. 2. We 
attribute size l a 3 to the monopole (a = unit of 
length given by the lattice spacing in A.) The string 
has cross section 1 a 2 . 

Besides these small monopoles there are monopoles 
of larger size, they are end points of strings of magnetic 
flux of larger cross section. To discuss them we intro- 
duce sublattices A N of A with larger lattice spacing 
2Na. We consider A N as cell complexes consisting of 
vertices x', links b', plaquettes p', cubes c', and hyper- 
cubes h'. The links b' in Au are paths in A consisting 
of 2 N links of A. A plaquette p' in A N is composed of 
4 N plaquettes of A. Its boundary/5' = Op' is a path in A 
and so the parallel transporter U [/5'] can be defined 
by (1.1a). 

We may now proceed as in Sect. 2. For plaquettes 
p' E A  N we define 

a N [p'] = sign tr U [/5'] (5.1) 

For cubes c ' e A  N we consider the monopole distribu- 
tion function 

PN [C'] = [ I  sign tr U [/5'] (5.2) 

It follows that 

lq a~ [P'] = P~ [c'] (5.3) 
p" ~iOc! 

Products are of course over plaquettes in A N. 
A substitution of variables U [b] ~ U [b] y [b] 

(~ [b] = + 1, b links in the original lattice A) takes 
U [b'] ~ U [b'] Y [b'] for b 'eA s with 7 [b'] = + 1. 
Therefore, by the same argument as in Sect. 2, the 
monopole distribution function PN is a function of the 
cosets ~) [b] = U [b] F (b ~ A) only. Thus the configura- 
tion U also determines the distribution of monopoles 
of size 8 N a 3 . 

A monopole of size 8 N a 3 in the t = 0 plane 27 is end 
point of a string of magnetic flux of cross section 
4 N a z, cp. Fig. 2. 

Next we derive an estimate for the cost in action of 
quanta of magnetic flux. 

Let p' be a rectangle of 2 N' x 2 N2 plaquettes p ~ p' 
in A. We will show that 

t r U [ / 5 ' ] - 2 > 2  NI+N2 ~ ( t r U [ p ] - 2 )  (5.4) 
p e p '  
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Fig. 2. A pair of monopoles in the time 0 plane Z and a string of 
magnetic flux joining them, The monopoles are located at cubes 
ci,  c z where p[cJ  = - 1, and the string consists of a sequence of 
plaquettes p for which a(p) = - 1. Considered as elements of the 
dual lattice of 27 these plaquettes form a path joining points c~ 
and %. 
The same figure applies to monopoles of arbitrary size 8Na 3 and 
string of magnetic flux of cross section 4Na 2 joining them. In this 
case the cubes and plaquettes are of the lattice A s 

b' 
Fig. 3, Illustration to Eq. (5.5) 

Specializing to a plaquette p' in A N we see that making 
6NIP' ] = --1 costs at least an amount of 2fl '4 -N 
of action. The factor 4-N represents a bound on the 
possible savings achieved by spreading the flux over 
an area of 4-Na 2. 

To prove inequality (5.4) we divide the rectangle p' 
t into two rectangles Pa and P'2 of 2 N1 - a x 2 N~ plaquet- 

tes each (for N a ~ N2) .  One has then 

c = v v 2 v - a  v a (5.5) 

where O~ = U [/~'~ ] and V = U [b']./51 is the boundary 
of p'~ with a choice of initial point as indicated by 
dots in Fig. 3; the path b' joins these initial points. 

We introduce 4-dimensional unit vectors sj = (s j, t j) 
by 

Uj = tj~ + ia .s j  (5.6) 

6 = (61, ff 2, 6 3) are Pauli matrices. In this notation 

tr Uj = 2 tj (5.7a) 

tr U [ f ]  = 2(t a t 2 - Rs I .s2) (5.7b) 

R = R(V) is a 3-rotation given by (the fundamental 
formula of spinor calculus) vak v * =  d R(V)~ k. 

It follows that 

t r U [ f f ] > 2 ( t a t 2 _ ( 1  2 a/2 - ta) (1 - -  ~2)1/2) 

where - l _ < t . _ < l .  For fixed value of t = t  a + t  2. 
�9 , - -  J - -  

t h e  mlmmum of the r.h.s, is attained at t a = t 2 = ~t. 
This gives 

tr U [/~'] > t 2 - 2 = (t - 2) 2 + 4(t - 2) + 2 

Therefore 

~(tr U[p'] - 2) > 2(t - 2) 

= (tr U [p'l] - 2) + (tr U[ff2] - 2) 

Iterating the procedure gives inequality (5.4). q.e.d. 
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From inequality (5.4) one can derive conclusions 
concerning confinement of the larger monopoles. 

Let T be a set of IT[ plaquettes in A N. By using 
chess-board estimates [13] in the same way as in 
Sect. 8 of our first paper [2] one deduces from in- 
equality (5.4) that 

( 1-] O ( - t r  u [ p ' ] ) )  <=ON(fl)lTI wi th  
p'ET 

DN(fl) < C Nex p -- f l (~4 -N -- ~)---,0 as /~ -- oe. (5.8) 

> 0 may be taken arbitrarily small. The constant 
C N may depend on e, N but not on ft. (In inequality 
(1.~) we chose e = ~ - ~3") 

Let us now look at our (standard) model with the 
eyes of a quantum field theorist. The Hilbert space of 
physical states consists of wave functions ~g(U) which 
depend on arguments U [b] associated with links b 
in the time 0 plane S. Among them is the wave 
function f2 of a vacuum state (eigenstate of the transfer 
matrix with eigenvalue 1) which is given by a path 
integral formula, (1.15) of [2]. Let us ask for the 
probability PN [Cl, c2 ] of finding in this vacuum state 
a pair of (virtual) monopoles of size 8 N a 3 located at 
cubes c 1 resp. c 2 of ANc~S and linked by a string of 
magnetic flux (cp. Fig. 2). This probability is less 
than or equal to the probability of finding a string 
f r o m  c 1 to  c 2 . From the path integral formula for 
f2 it follows then that 

PN[C1  ' C 2 ]  ~ 2 (  ~ I  0 (  - -  tr u [ p ' ] ) )  (5.9) 
T P'~T 

Summation is over all possible strings T. If c 1 and c 2 
are a distance L apart in units of 2Na(= lattice 
spacing in AN) then the number IT[ of plaquettes 
in T obeys [ T I > L. The number of strings of length 
I TI is bounded by e ~lTI, ~ a constant. It follows 
therefore by combining inequalities (5.8) and (5.9) 
that the probability PN[Cl,C2] decreases exponen- 
tially with the distance L between the monopoles if fl 
is sufficiently large. We may regard such an exponen- 
tial falloff as a defining feature of monopole confine- 
ment. How large fl has to be may depend on N 
because of the N-dependence of C N and the factor 
4-N multiplying fl in inequality (5.8)'. 

This paper was completed and distributed as a DESY-report 
in April 1979. It is printed here without changes. 
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