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Abstract. For three-jet events in e+e - annihilation, a 
procedure is described to determine all three jet axes 
by minimizing the sum of squares of transverse mo- 
menta. Computations with this procedure show that 
at high energies the result is quite insensitive to miss- 
ing particles, such as neurals. 

Experimental evidence for two-jet structure in hadron 
production by e§ - annihilation was first found at 
SPEAR by Hanson et al. [1]. They discovered this 
important phenomenon by minimizing the sum of 
squares of transverse momenta, as suggested pre- 
viously by Bjorken and Brodsky [2]. 

In this paper we describe a simple procedure to 
analyze the three-jet events in the same spirit as that of 
Hanson et al. [-1, 3]. This procedure has the following 
desirable features : 

1. All three jet axes are determined. 

2. It is not necessary to have the momenta of all 
produced particles. For example, this procedure can be 
used when there is no detection of neutral particles. Of 
course the loss of information leads to a larger error. 

3. All measured momenta can be used; in other 
words, there is no need to introduce a cutoff for low 
momenta. 

4. Computer time is moderate ~ 

Let p j, j = 1...N, be the momenta of the N observed 
particles. Let the rectangular components of pj be 

* Supported in part by the US Department of Energy contract 
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1 We have developed this three jet analysis program for the 
TASSO-Collaboration at DESY. At E~m=30GeV, with 
IBM 370/168 computer, the C.P.U. time is about 0.5 s for multiplicity 
15 and about 1.5 s for multiplicity 21 

called pj~, c~= 1, 2, 3. Define 2 a 3 x 3 symmetric real 
matrix M by 

=  pj pj . (i)  
J 

Let 21, 22, 23 be the eigenvalues of M, which are 
explicitly, 

2k = ~ (Pi" ilk) 2 k = 1, 2, 3 
i 

where h k are the unit length eigenvectors. Then let [4] 

(2) 

These normalized eigenvalues Qk satisfy 

Q1 q- Q2 -[- Q3 = 1, (3) 

and can be arranged so that 

0--<Q1--<Q2<Q3. (4) 

Colinear events are characterized by Q2<Q3, and 
similarly coplanar events by Q1 <Q2. In terms of the 
Q's, the sphericity S is 

s = }(01 + Qg. (5) 

A triangular plot, with the coordinate variables chosen 

to be S and ? (Q2-  Q1), can be used to separate two- 

jet, three-jet and nonplanar events as shown in Fig. 1. 

We turn our attention to three-jet events, which are 
necessarily coplanar. Since h k is the normalized eigen- 
vector of M corresponding to 2~, then these h k form 
an orthonormal coordinate system. Let P be the plane 

: There is a slight difference between this matrix and those of [1] 
and [2] 
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Fig. 1. Triangular plot to separate two jet, three jet and noncoplanar 
events (see text) 

formed by h e and h 3 with h~ normaP to P and qj be 
the projection of pj onto this plane P. Choose coor- 
dinate system in P so that the rectangular and polar 
coordinates of qj are respectively (q jl, qi:) and (q~, 0). 
Here the axis for 0 = 0  ~ is not necessarily either h: or 
h 3. Relabel the N momenta such that 

0 ~ 0 1  =_~ 02 ~ 03 ~ . . .  < 0U < 2~Z. (6) 

The main idea of the present analysis is as follows. For  
every way of partitioning these qj into three non 
overlapping sets and for every choice of three jet axes, 
a sum of the squares of transverse momenta can be 
calculated. We minimize this sum. 

The program is implemented as follows. First, 
choose three integers N 1, N 2, and N 3 such that 

1 =< N 1 < N  2 < N  3 < N  (7) 

0 ~ _  ~ - 0 ~  <re (8) 

0 ~ _  ~ - 0 ~  < rc (9) 

and 4 

27~ + ON~ _ 1 -- 0U~ < rC. (10) 

The reason for the condition (8), (9), and (10) is the 
desire to have each jet contain only particles in one 
direction, not simultaneously in both directions. In this 

3 Note that 2~ is a measure of the flatness of an event and 23 is a 
measure of the sphericity. Similarly h~ is the vector h such that 

(Pv ~)~ 
i is minimized 
2 #  
i 

and h 3 is the vector h such that 

is maximized 
2 d  

In case N~ =1, we define 0o = 0 s - 2 ~  

way, the N momenta are partitioned into three sets, S~, 
$2, and S a. 

S 1 ={N1,N I + I , . . . , N  2 - 1 }  

S 2 = {N 2, N 2 + 1, ..., N 3 - 1} 

and 

$3= {N3, N 3 + 1, ...,N, 1,2, . . . ,N 1 - 1}. 

The second step is to define three 2 x 2 matrices M (1), 
M (2), and M ~3) by 

M(~)- (11) aft-- 2 qjc~qj~ 
j in St 

for ~, fl = 1, 2 and ~ = 1, 2, and 3. For each of these three 
2 • 2 matrices, let A (~) be the larger eigenvalue and rh u) 
the corresponding normalized eigenvector. Here A (*) is 
given explicitly by 

- - 2 t  ~ ' * 1 t ~ I " . 2 2  

+ [(M(;I _ M(2~)2 + 4(M]~)2j,/2}. (12) 

We impose the requirement that the signs ofrh ~) can be 
chosen so that 

q~. rh (~) > O. (13) 

for j in S t. More explicitly, if 4) (~) is the polar angular 
coordinate for ~(~), then (13) is 

~b(1)--ONI<'K/2; 0N2_1--(9(1)<7"C/2 (14) 

#2)-0N <re/2; 0N~_~-qS(2) <~/2 (15) 

and s 

q5(3)_ 0N3 <~z/2 ; 0N,_ 1 -qS(3)+2u < u/2. (16) 

These requirements (14)-(16) are seen to be more 
stringent than (8).(10). Finally, let 

A(N1, N2, N3) = A (~) + A (2) + A (3) (17) 

and we maximize A(N 1, N:, N3) over those values N~, 
N2, and N 3 where (14), (15) and (16) are satisfied. This 
maximizing partition gives the three jets and corre- 
sponding rh (~), ~h (2), and rh (3) yield the directions of the 
jet axes. 

This procedure is especially useful for events with 
only charged particles detected. Once the directions of 
the three jet axes are determined, from the known total 
energy E~ x beam energy) of e+e - annihilation 
events, one can reconstruct the total energy of each jet 
with the approximation that the invariant mass of the 
jet is zero. 

Let 

O~ 1 = sin(~ b(3) - ~ b(2)) 

ez = sin(q 5(1)- q~(3)) (18) 

and 
e3 = sin(q 5(el - ~ b")) 

5 This 4) (3) may be larger than 27~. If so, it is more convenient to 
use q~(3)- 2n 
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Fig. 2a and b. The distribution, at E~m = 30 GeV, of the difference of 
angle between reconstructed jet axis and the corresponding generat- 
ed jet axis a using momenta of charged particles only, and b using 
momenta of both charged and neutral particles 

where the q~'s are for the particular partition N1, N2, 
N a that maximizes A_(N1,  N 2 ,  N 3 ) .  From the directions 
of three jet axes, one obtains the total energy E (~) of 
each jet by 

E(~) = E e m o ~ / ( ~  1 @ ~Z2 -~ ~ 3 ) "  (19) 

The procedure has been tested as follows. Three 
jets are generated by the method of Feynman and 
Field [5] in three directions, referred to as generated 
axes. The angular distribution of the three jet axes 
follows from the decay of heavy quarkonium into three 
gluons [-6]. The present procedure is applied to recon- 
struct the jet axes. In Fig. 2 we show the distribution of 
the difference of angles between the reconstructed and 
the corresponding generated jet axes 6 at center of mass 
energy E~m = 30GeV. This result is seen to be quite 
satisfactory both for (a) charged particles only and (b) 
charged and neutral particles. Note that, in the method 
of Feynman and Field, the generated jet axis does not 
coincide with the direction of the sum of momenta 7. 

6 We associate the reconstructed jets and generated jets by taking 
the combinations with the smallest angle between them 
7 Our Monte Carlo program gives FWHM of about 3 ~ from the 
distribution of angles between the generated jet axis and the 
direction of the sum of momenta at ~/~ = 30 GeV 
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Fig. 3a and b. Comparison, at E~,~---30 GeV, of the reconstructed 
energy of each jet with the corresponding generated jet energy a 
using momenta of charged particles only, and b using momenta of 
both charged and neutral particles 

Figure 3a and b are the two dimensional plots with 
reconstructed jet energies E (~) versus the generated jet 
energies used in the Feynman and Field procedure. 
These figures show the results are quite satisfactory 
even when the neutral particles are not observed. 

One may ask the question: when is a planar event a 
three-jet event? The situation is quite similar to the 
previous case of two jets at SPEAR 1. The question 
there was : how can a two-jet event be identified? In the 
two-jet case, the possible considerations are energy 
dependence of sphericity and its distribution compared 
with phase space. These considerations are equally 
applicable to the three-jet events. It is desirable to 
study the energy dependence of the quantity tri- 
jettiness J3 and its distribution compared with phase 
space. Here we define tri-jettiness to be 8 

j (20)  

8 An alternative possibility is to use 

j ,  ( )1 r=l ,2 ,  3 ~  / V (PJ X /~/(~))2~ 
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Fig. 4a and b. Tri-jettiness distributions at Ecru = 30 GeV for three-jet 
model and for phase space model, a Events with all values of Qt. b 
Events with 0<~Q 1 <0.1. In each Figure the curve for the three-jet 
model and that for the phase space model are normalized to the 
same number of events. Neutral and charged particles are included 
in all distributions. In the phase space model, we have assumed a 
total average multiplicity of 15.3 and ~~ fraction to be 0.54 as used in 
[3] 
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where A~ =(1/2)<p~), .  {p~)~ is the average transverse 
m o m e n t u m  squared of  a jet with energy E (~) and may  
be assumed to be equal to that  for two-jet events. To a 
first approximat ion  this can be taken as a constant  
(~0 .1  GeV2/cZ), independent  of  the energy of  the jet. 
No te  that  N -  3 is the number  of  degrees of  freedom 
where N is the number  of  observed particles. 

In Fig. 4 we show event distributions of  the tri- 
jettiness J3 defined by Eq. (20) at E o m = 3 0 G e V  for 
both  heavy  qua rkon ium decay into three gluon jets 
and phase space model. Figure 4a gives events with all 
values of  Q1 as defined by Eq. (2) and Fig. 4b gives 
events with 0__<~Q 1 <0.1, i.e. coplanar  events which 
correspond to the shaded strip in Fig. 1. This cut 
contains almost  all three-jet events but contains only 
less than 15 % of the phase space events. In each of  the 
Figs. 4a and b, the curves for the three-jet model  and 
that  for the phase space model  are normalized to the 
same number  of  events. We conclude that  the J3 

distributions are quite different for the three-jet model  
and for the phase space model. 

Because of the work of  Sterman and Weinberg [7], 
it is desirable, for the purposes of compar ison with 
per turbat ion calculations in QCD,  to use variables 
that  are free of  infrared divergences as the quark  
masses go to zero. Examples of  such variables are 
spherocity, thrust, and acoplanar i ty  [8]. While these 
variables have the desired infrared properties, the axes 
defined this way turn out  to have to deal with the 
annoying  proper ty  of  being nonanalyt ic  functions of 
the momen ta  9. In view of the similarity of  the results in 
the upsilon region from sphericity and thrust  [4], it is 
possible that  the jet axes found by the present pro- 
cedure of  minimizing the sum of squares of  transverse 
momenta ,  can be used for compar ison with QCD.  
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