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I derive from the quantum-chromodynamic Lagrangian differential laws describing motions and interactions
of an infinite set of string operators—locally gauge-invariant color-singlet operators. By truncating the set, I
obtain a g-g wave equation with a confinement potential, and also a jet-fragmentation equation which
describes splitting of a g-g string and creation of I = O vector mesons. I argue for the validity of the

perturbative treatment of the string operators.

I. INTRODUCTION AND SUMMARY

In quantum chromodynamics (QCD) all physical
states, including the vacuum, are invariant under
local gauge transformations. Only locally gauge-
invariant operators have nonvanishing matrix ele-
ments between the physical states. Such opera-
tors must involve a line integral of the vector po-
tential as a phase and are called string operators
to indicate their path dependence. There have
been some attempts to formulate the motion of
such operators.’ In my previous paper? (referred
to as I in the following) I considered a differential
equation for a ¢-7 string (quark and antiquark
operators connected by a string) defined on a
t plane. In the present paper I formulate the dy-
namics of a more general set of string operators,
eliminating altogether the propagators of quarks
and gluons. The virtue of defining the string oper-
ators on a ¢=const plane is that their time de-
velopment is completely determined by the QCD
Lagrangian, or by the equations of motion of the
field operators. Since the gauge symmetry is
preserved in QCD, a string operator may split
with time into two or more strings, or convert
itself into another kind, but it will never split into
two disconnected objects, each having a color.
Thus the QCD Lagrangian leads to an infinite set
of first-order differential equations in time for
an infinite set of string operators.

A string operator consists of end points (quark
or antiquark) and vertices (electric or magnetic
fields), connected by strings. The equations of
motion of the string operators show that the end
points and the vertices move according to the
free Dirac and Maxwell equations, respectively,
providing the basis for the parton model. The
interaction manifests itself in creation of new
vertices along the string and also conversion of
field vertices into quark currents and densities.
Whenever a part of a string operator forms a
gauge-independent substring it will split from the
parent string. Thus, two or more field vertices
can form a gauge-invariant subset and will be

emitted as a gluon bound state. Also, if a vertex
is converted into the quark current, the original
string either splits at this vertex creating two new
end points or emits a I =0 vector meson without
splitting itself. The string splitting is a realiza-
tion of the conjecture by Kogut and Susskind.®

The observation that there are two processes in a
jet fragmentation should have a direct physical
consequence.

In order to deal with an infinite system of string
operators and their equations of motion I will
make two approximations in the present paper.
First, I will neglect all string operators with two
or more vertices. With this truncation I obtain a
closed set of equations. Second, I will consider
only straight strings to connect end points and
vertices. Such operators alone do not form a
closed system in general, but they do in the trun-
cated set of equations. The equations of motion
of the string operators involve a linear confine-
ment potential, which is the energy of the electric
flux represented by the string. It is naturally
there, because I am dealing with an instantaneous
motion of the string. Whether or not such a con-
figuration can be maintained over a longer period
of time as assumed here is the central problem
of the confinement. In other words, the truncation
will not be valid if there exist infinitely many al-
most-degenerate configurations into which the re-
tained strings can transform. I have two obser-
vations which may shed some light on this ques-
tion. A

The first observation is about a possible essential
difference between the quantum electrodynamics
(QED) and quantum chromodynamics (QCD). In
QED one can define a gauge-invariant string oper-
ator with a finite cross section (a sausage-shaped
string which converges at both ends to a point
which is a quark or an antiquark) as shown in I.

In QCD the same does not appear to be possible,?
because the only way a color spin is carried from
one end to the other in a gauge-invariant way
seems to be along a strictly linear path. Thus in
QED a string of a small but finite cross section
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tends to spread with time without some outside
pressure because energetically that is more
favorable. In QCD, if the above conjecture is cor-
rect, the situation is entirely different. A linear
string may change shape or split but it stays lin-
ear. A large change in shape is energetically

less favorable because the electric energy of a
linear string is proportional to its length.

The second observation is about an analogy with
infrared photons in QED. Just as emission of soft
quanta gives rise to an infinite degeneracy, crea-
tion of soft vertices may give the same kind of
degeneracy in the string configuration. In QED a
charged particle must be dressed with the proper
infrared field and any real transition is accom-
panied by emission of an infinite number of soft
quanta.

Yet the Klein-Nishina formula remains meaning-
ful unless the energy resolution is extremely
good, thanks to the smallness of the fine-struc-
ture constant. Also the hydrogen spectrum is
accounted for including the fine structure without
considering the effect of the proper infrared field.
The treatment of the ¢g-g spectrum and the string
fragmentation discussed in the present paper is
very similar in nature to the above two examples
in QED. In order for the present formulation to
be valid, the coupling constant that governs the
vertex creation must be small, even though the
running coupling constant for the infrared gluon
emission may be large as is commonly believed.®

II. EQUATIONS OF MOTION FOR STRING
OPERATORS

I summarize first the field equations in QCD,
which I use to derive the equations of motion for
the string operators. The process may be in-
terpreted in the sense of the correspondence
principle. The standard QCD Lagrangian for a
color-triplet quark field g(x) of mass m interact-
" ing with an octet of gluon vector potentials A%(x)
(a=1,2,...,8) is given by

L= j A% ~% Fo, Fo*"+ 3y, (i9" - g 33, A™)q - m7q],

(2.1)
where the field strength F9, is defined by
F3,=8,A3_8,A% _gf, ALAD, (2.2)

fape is the structure constant of SU(3). In the fol-
lowing I take a gauge

Ag=0, (2.3)

In this gauge the electric field is given by
E3=F3 =A%, (2.4)

and the magnetic field by

a_ 1 a
Bi=—z¢€;;,Fj

=(Vx A+ igrf, A'xA),. (2.5)
As is customary_I. introduce for an octet {K“} a
matrix operator A by

A=gin A%, (2.6)

and similarly the field strengths E and B. The
field equations which follow from the Lagrangian
(2.1) in the gauge (2.3) are the equivalent of the
Ampére-Maxwell equation

- = 9E =«

DAX B- '3? =], (2.7)
and the Dirac equation

. Sq - -

1_8?=[-&.(—2V_A)+ Bmlq. (2.8)

The quark current I“ is defined by
10 =q" ()airg (), (2.9)

and the matrix j(x) in the same way as (2.6). The
covariant derivative D, in (2.7) is defined by

D,0=Vo+[4,o0], (2.10)

for any octet rﬁatrix 0. The conservation law for
the color charge Pa=‘f%’\.ﬂ follows from (2.8) and
can be written as

D,j+p=0. (2.11)

From the definitions of E and B given by (2.4) and
(2.5) there follow two equations:

~ = 9B
B, xE+2=0 (2.12)
ot
and
D,-B=0. (2.13)

As is well known, an equivalent of Gauss’s law
does not hold as a field equation in the present
gauge. Instead one obtains from (2.7) and (2.11)

9 > =
55 BarE-p)=o0. (2.14)
Thus,
G=D,-E-p (2.15)

is a constant of motion and a generator for local
gauge transformations. Namely, if I define for a
set of time-independent infinitesimal c-number
functions w%x) a unitary operator

U(w) =exp [?g tre I w(x)G(x)d 3x] , (2.16)

where w=g(A,/2)w?, and tr° means the trace with
respect to color spins, then U generates a time-
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independent infinitesimal gauge transformation
A'=URU=A -Vw+[w,A] (2.17)
and
q'=UqU=(1-iw)g. (2.18)

Since all the physical states are assumed to be
locally gauge invariant a physical state ¥ must
satisfy .

G(x)¥=[D,E(x) - p(x)]¥=0. (2.19)

Hence, only locally gauge-invariant operators
have nonvanishing matrix elements between two
physical states.

Now I derive the equations of motion for such
locally gauge-invariant operators, which I call
string operators. To study a ¢-g system, I con-
sider a g-g string defined by

q(1,2)=tr’[U(2, 1)g(1)g'(2)]. (2.20)

The quark field g(x) has three sets of indices,
spinor, color spin, and flavor components, and
q(1)¢"(2) in the above equation must be regarded
as a matrix in these three set of indices. The
string part U(2, 1) is given by

z}(2,1)=pexp(i flzz-d;:), (2.21)

where P means the ordering along the integration
path, which is taken to be a straight line. More
explicitly, I may use a definition by an infinite
product,

N - -
U(2,1)=1lim T expli A(¢,)-4], (2.22)
N—wo ni
where A = %, -%,)/N and E,, =nA+%,. The product
is ordered from right to left with increasing #.

Under the gauge transformation (2.17) and (2.18),
]

4]

. N - PP
iU(2,1)=1im )+« oA a[_A( ).

N—>ew p=1

I move K(g,,) to the left of K(g,,), and use a commu-
tation relation

[A%(,), A%(E,)]=10,,0,,6,,/A°

which corresponds to the standard canonical com-
mutation relation

[A%(x), Ab(x")]=18,,5,,6%(x - x"). (2.27)
Thus, I obtain
iU(2,1) =% U(2, 1)

)

+lim E coo pihltys1)ra ‘E’(E")_Keii(e,,)-z e,

N—wo n=1
(2.28)

¢(1,2) is invariant. The equation of motion for
q(1,2) was essentially derived in I, and is

iq(1,2) = (Hy+F*r)q(1, 2)
2
+ J dx-[gz(1,2;%) +q5(1,2; ) X ag].
1

(2.23)

Here 7 =%, - X,|and H,, is the Dirac Hamiltonian
for the quark and the antiquark,

Hpy=—iG, YV, + B ym—iGp Vo Bpm,  (2.24)

where @ LR means_ﬁ operating from the left
(right) on ¢(1,2). o is an abbreviation

ag=r (X -%,[a,+ [F-%ap). (2.25)

In deriving (2.23), the Dirac equation (2.8) has
been used. The interaction term —i-&L-Z has been
canceled by a term from —iaL--V.lU(Z, 1). The lat-
ter derivative yields also a line integral involving
the magnetic field B [the last term in Eq. (2.23)],
which arises from the shift of the integration path
when the end point 1 or 2 is moved. ¢z g,(1,2;%)
is a gauge-invariant string operator with an elec-
tric (magnetic) vertex at X, and naively is defined
by

a3(1,2; 2) = tr[U(2, OE(x)U(x, 1)g(1)g'(2)],  (2.26)

and similarly for ¢z(1,2;x). U(2,x) and U(x, 1)
are defined as in (2.21) with a straight integration
path, but in general the vertex X need not be on
the straight line connecting 1 and 2. The term
involving ¢z(1,2; x) in (2.23) obviously arises
from the time derivative of U(2,1). That Eq.
(2.26) needs a refinement can be seen by taking
the time derivative of U(2,1) defined by the infi-
nite product (2.22),

~5i{A(E) B, A(L) R4 oo JeiRtnrE Le

|
where

=18 coi2000) (2.29)
A 5 . .

C is a Casimir operator C=27 (xa/2)*=4/3. 1/A%
is equal to 8%(0) as indicated in (2.29), which can
be interpreted as the inverse cross section of the
string., Since k® must be finite, the unrenormal-
ized coupling constant g2 must vanish. With the
string energy k®» explicitly extracted in (2.23), the
precise meaning of the definition (2.26) must be
given by the second term of Eq. (2.28). To denote
the continuous limit of this term I may introduce
a notation of the open- and closed-end string such
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as Ulx, 1) and U[2, x), and write instead of (2.26)
q3(1,2; x) =tre[U[2, x)E(x)U[x, 1)g(1)g"(2)].  (2.26")

Admittedly, the notion of the open- and closed-

end string may not be well founded mathematically.

Nevertheless the recognition of the difference be-
tween (2.26) and (2.26’) seems to play a vital role
in the later development. For simplicity, how-
ever, I will use a loose notation (2.26) in the fol-
lowing, keeping in mind the precise definition
(2.26). An equivalent qualification of Eq. (2.26)
is to understand that E“(x) in _Ff(x) stands to the
left of everything else. The difference between
this and (2.26) will be

2
ngf 6%(x - x')dz’ =5 g°Co%(0) =k?,
x

(Hp+E*[%, = X[+ B*[X, - %|)g7,(1, 25 %)

where I have chosen the.line 1—-2 as the z axis.
One may wonder why -E.“(x) is moved to the left
instead of to the right, which would produce —k?.
Later I will consider matrix elements of ¢(1,2) and
% @(1, 2; x) between a hadron ket and the vacuum
bra, in which case moving E“(x) to the left proves
to be the correct step.

Next I investigate the equation of motion of a
q-7 string with one vertex g3 (3(1,2;x), or qgg
string. Instead of E and B it is convenient to
consider the vertices

¥ (%)= E(x)+iB(x),
and the corresponding operator qF*(l 2; x) defmed
as in (2.26), or more precisely (2.26’). The time
derivatives of ¢(1)¢7(2), U(2,%), and U(x, 1) can be
treated in the same way as in the case of ¢(1,2).
They produce

+( f"+ j 2>tr°{P[U(2,x)-f*(x)U(x,1)'(§(x’)°d?{’+-1§(x')x &z, x)+d¥)q(1)g"(2)]}, (2.30)

where
- '&Llfc—?{’]/’i—il], %' e[%,,X%]
a,(x,x’)={

A E-%|/ [R=%,, ¥elk k).

(2.31)

The P symbol in (2.30) means that E(x’) and B(x’) should be placed at its position along the path 1 -%-2.
As stated before, X need not be on the straight line 1-2, and when taking V, and V, of ¢#(1,2; %), X is to
be held fixed. The ¢-g string with two vertices can further be reduced. The operator involving only two

vertices and no end points,

g3,3,(0,x") = tr[U(x’, 0)F,(x)Ulx, x)F, (x")],

(2.32)

is a gauge-invariant tensor, which may be called a gg string. It represents a gluon bound state consisting
of two gluons. The two-vertex strings in (2:§0) can be a product of a gg string and a ¢g-7 string. For in-
stance, the operator involving the vertices F,(x) and E(x’) can be written, after taking X on the line 1-2,

which is chosen to be the z axis, as

flzp[ggm(x,x')]dz'-qu,2)+ftr°{P[U(z, DF,(0)E(x)q(1)g"(2)]}pread?’ - (2.33)

The second term is a genuine ¢gggg operator, which cannot be reduced into a product of strings. The P
symbol in the first integral is the ordering of the two vertices along the integration path 1-2. It should
be recognized that because of the definition (2.26’) I have been able to move the operator gz B3 to the left
of ¢(1,2) without producing an extra term from the commutation of E(x) with Ad(x).

The time derivative of F* is, from (2.7) and (2.12),

iF,=+D,xF,-ij.

(2.34)

Again the covariant derivative of ¥ .(x) is converted to a simple derivative of qF*(l 2; x) with respect to X,
plus a correctlon term coming from the shift of the integration path of U(x, 1) and U(2 x). Hence

itre[U(2, x)F (x)U(x, 1)q(1)g"'(2)]= :t:VXqF*(l 2; x)

il(J; + L )T(x,x') tre{ P[U(2, x)F,(x)+ Ulx, 1) x (B(x") x d%") q(1)g"(2)]}

-igtr°[U(2x) % (q'a % q) Ulx, 1)q(1)q'(2)] , (2.35)
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where
X -%|/|%-%|, ¥elk,%]
T(x,x") =
X' -%,|/[%k-%.], X'cl},%,].
The last term of (2.35) is equal to
+igi,(Ma(1,2) - Sigq(1, Mag(x,2),
where () =¢"(x)ag(x), it we use a Fierz identity

(%Ra)aa(%)\:)n 2% 50[1685 - %'6a3675 .
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(2.36)

(2.37)

(2.38)

The two terms in (2.37) represent the creation of an I=0 vector meson from a g7 string and the splitting
of a ¢g-gq string into two ¢-g strings. Both will contribute to the fragmentation of a gg jet. Collecting
(2.30), (2.33), (2.35), and (2.37), I obtain the equation of motion for a ggg string operator, after setting

X on the line 1-~2,

iz, (1,25 %) = (Hp+ B2+ V, X gz (1, 2 %) + 3ig §,(0)q(1, 2) - 3 igg(1, X ag(x, 2)

2 -
+f dz'1,(x,x")q(1,2) + (irreducible gggg operators), (2.39)
1

where the gluon-bound-state operator f: is defined by

£,(e, 27) = P{gz, 5,06, %) + €5;08% .5 (0, 60 (0, ), 706, 1) [ 8,530, ) = By g, 5, (%, 29|}

N, is a unit vector in the z direction. _&I(x,x') and
T(x, x’) are defined by (2.31) and (2.36), respec-
tively. Figure 1 shows schematically the time
development of ¢(1,2) and ¢3 (1, 2; x).

III. CONFINEMENT WAVE EQUATION FOR
q-3 SYSTEMS

Equations (2.23) and (2.39) are the coupled
equations for ¢(1,2) and ¢z ,(1,2;x), but they are

4+ o—o o—s + o—X—H—e
(C:a—s)

(__ ———3» + —x—x—s

irreducible

FIG. 1. Diagrammatical representation of the time de-
velopment of a g-g string and a g-g—gluon string as
given by Egs. (2.23 and (2.39), respectively. The end
points (dots) represent a quark and an antiquark, and the
vertices (crosses) the gluon field. The diagrams for a
g-q—gluon string represent kinetic energies, creation of
a vector meson, splitting of the string, and creation of
a second vertex in that order. The last reduces to the
sum of emission of a gluon bound state and an irreducible
qqgg operator.

(2.40)

[
not closed even if the irreducible gggg terms are

neglected because of the unknown gluon-bound-
state operator gz z,(1,2; %) in (2.39). A third
equation for gz %, is necessary to have a closed
set. In this paper, I will neglect gluon-bound-
state emissions, which are represented by pro-
ducts of gluon-bound-state operator g and ¢-7
operator ¢(1,2). Also by considering a ¢g-7 sys-
tem with some flavor quantum number (for in-
stance a u-d system) I need not consider the con-
version of a ¢g-g system into a gluon bound state,
which is represented by products of gluon-bound-
state operator g and the vacuum expectation value
of g(1,2). This process is certainly important in
discussing the spectrum of I=0, J=0 mesons. I
have to retain products of the vacuum expectation
value of gz 5, and a ¢-7 operator ¢(1,2). I will
also neglect the fragmentation terms which may
be considered higher-order terms as far as the
spectrum is concerned. I introduce c-number
wave functions

X(l’ 2) =(\IIO’ q(]-, 2)‘11)
and (3.1)
xz,(1,25x) = (¥, ¢7,(1, 2, x)9) ,

which satisfy, after the above-mentioned approxi-
mations to (2.23) and (2.39),

(W= Hy — k2)x(1, 2)

2
=f axe[xz(1,2; %)+ x3(1,2; %) X ag] (3.2)
1
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and
(W - Hp — k7 79, X)xz, (1, 2; %) = 1,(1, 2; 2)x(1, 2) .
(3.3)

Here W is the energy eigenvalue of the state ¥,
and

1,(1,2;%)= f S (Folw, ¢tz (3.4)

with ﬁ(x,x’) given by (2.40). In the following I
will neglect the velocity-dependent terms (terms
involving -07) throughout.

At a large distance 7, the gluon momentum _V',
and the kinetic energy W —H,, could be neglected
against %y, so that

xa(1,2;2) ~ = Zlelz'r [T.1,2; %) +1.(1,2; 2)]x(1,2).
(3.5)

Introducing (3.5) into (3.2), I obtain

(W - Hp, - B*r)x(1,2)=U(r)x(1, 2), (3.6)
with

2

U)o o [ [ dzdathte,x). (3.7)
Here 1
B(x,x") =50, « [T, x) +1.(x, %]

(3.8)

I have neglected terms proportional to |x’ — x| in
(2.40), which prove to be unimportant. From the
translational invariance of k(x,x’) I can write
(3.7) as

~ 2 r r
U(r),_,m—k—z;<rj; dz—fn dzz)h(z,()).

|

e
= (Plg gy 5 (%, %) + 85 5 (%, %) = 85,5, (5, 2") s -

Hence if h(z,0) falls off faster than z™2 for large
z, then

Ur ~_—f dz h(z,0)+0(1/7). (3.9)

For comparison,
(Ey(2)Eq(x") + B(x) *B(x’) = By(#)By(2")s

behaves like |x - x’[™ everywhere for free trans-
verse fields. Then the upper limit of integration
(8.9) is convergent but the lower limit is not. I
expect that (gz,z,(x, ")), falls off at least as fast
because the phase factor would act destructively.
For a small distance, however, the phase factor
should be negligible, and from the asymptotic
freedom® I expect the same singularity 1/z* at
z=0, which would lead to an infinite constant in U.
Actually, this difficulty is due to the unjustified
transition from Eq. (3.3) to (3.5), and can be re-
moved easily. The z-¢ singularity of the g’s leads
to an infinite constant term of the form 1,A°

(A = cutoff) already on the right-hand side of (3.4),
and hence of (3.3). Since this term is independent
of X, the use of Eq. (3.5) would lead to an X-inde-
pendent xz(1,2;x) which cannot be correct. Equa-
tion (3.3) tells that there is a term —iV X xB(l 2; x)
on the left-hand side. The constant term 1 A®
should be matched with xz~0,Xx X -%,) -A3, which
however does not contribute to (3.2), where ?{-?{1
is on the z axis. Thus, a subtraction should be
made such as

A
h(x,x')"h(x,x')—l—i_—i,]w (3.10)

and X should be chosen so that there will be no
term of order A% in (3.9).

At a short distance #, the gluon momentum _V’,c
will be large on the left-hand side of Eq. (3.3).
Hence

VX xp(1,2;%) ~ 5 [T1,2;0) - 1.(1, 2, 0) x(1, 2) =i szZ’P{@‘ﬁEJx, 2o+ 170, ) g g 5 (0, 2 Mot (3.11)

As v —0, I can make a replacement

(Plgg g,(x; )]0 ~(P[B(x)* Ey(x")])o= -5i g2CV x [T 4e(z - 2")6%(x - x")], (3.12)

where the last expression was obtained using the free fields for E(x) and B(x) Introducing (3.12) into

(3.11), I obtain

xrv,(l,z;x%{—ngﬁsfze(z—Z’)Gs(x-x’)d2’+-V'y(x)}x(1,2)- (3.13)

To determine the unknown function y, I invoke Gauss’s law (2.19). Using the exact expresson for g3(1, 2; x)

as given by (2.26’), I notice that U[Z,gc’) can be moved all the way to the right of all the operators in the
trace because U[2,x) commutes with E%x) in E(x). Thus, in (3.1) E(x) can be considered to operate di-
rectly on the vacuum to the left. Hence, I may use (2.19) and find

Y oxz(1, 25 %) =(¥,, tro[U(2, x)p(x)U(x, 1)g(1)g'(2) | ¥) ~ 0. (3.14)
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The last step is an approximation consistent with
neglecting the fragmentation terms in going from
(2.39) to (3.3). Combining (3.13) and (3.14) I have

Vy(x) =g*C o~ f €z - 2")6%(x - x")dz’
=g%C[6%(x - x,) + %(x — x,)].

P S
Z-%1]

Introducing this back into (3.13), I find

Hence

g% 1
y(x)-— v [

I—-}?—_—}s{;‘l (3.15)

U= [ xat,2;) -a%=0.

The mystery of the disappearance of the Coulomb
potential can be solved by again going back to
(2.26") which must be used in defining 3 (1, 2; x).
Then a careful analysis shows that in Eq. (3.11)
only, the integration region z’ <z gives nonvanish-
ing contributions. Hence, instead of (3.12) I
should have
(Plgs E3(x, x")])e—~ -1 ig2 CV X [(6(z = 2")8%(x = x)].
(3.16)

Going through the same argument I obtain, instead
of (3.13),

2
Xz(1,2; %) ~{—gzcﬁ3 j 0(z = 2")0%(x - x")dz’
. 1

+_V.y(x)} x(1,2), (3.17)
and instead of (3.15)
__g¢c_1_
y(x)=- i TEE (3.18)
Finally from (3.15) I obtain
2
Ulr)= -2 - é’—’4—c<1 - ) , (3.19)
T\7”

where the constant term represents-the electro-
static self-energy.

Thus, I have recovered the Coulomb potential,
but I have yet to consider the charge renormaliza-
tion. Since the first term of (3.19) is already
finite, any multiplicative renormalization constant
must be finite, If the same renormalization mul-
tiplies the second term, then the Coulomb potential
will vanish because g?~0. Hence in order to ob-
tain a nonvanishing Coulomb potential, the two
terms in (3.19) must be renormalized in different
ways. I do not know how this could be done. Sum-
marizing, I have established a wave equation for

3
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a g-g system, which is

[ ig;=Hp —V(v)]x(l 2)=0 (3.20)

where
V(r) ~k%r (r—~).

The behavior of V(7) as » —0 is not very clear.
The conventional wisdom will tell us to take as
the electrostatic part of V(#)

Vi ~= 22 (r=0),

where ag is the running coupling constant. ‘This
would ‘require different renormalizations for two
terms in (3.19). The solutions of Eq. (3.20) for the
light-quark systems have been given by Geffen and
myself.”

IV. FRAGMENTATION EQUATION

The string operators can be used to represent
various jets if we use momentum representations
for the end points and the vertices. Thus, ¢(1,2)
describes a ¢-7 jet, gz(1,2;x) a g-g—gluon jet,
and gpp(x, x’) a two-gluon jet, and so fourth. The
equations of motion for the string operators as
derived in Sec. II can then be used to obtain transi-
tion probabilities for a jet to fragment into dif-
ferent channels. For example, the coupled equa-
tions (2.23) and (2.39) describe the fragmentation
of a g-q jet through splitting, emission of a I=0
vector meson, or emission of a gluon bound state.
Just to illustrate how this is done, I will retain
only the splitting term in (2.39). Assuming the
splitting vertex does not move very fast, I get
from (2.39) -

. -1 .
q3(1,2; %)~ zzg<t — - H, —k27> q(1,x)aq(x,2),
(4.1)

and gz(1,2;x) ~0. The singularity of the denomi-

nator should be avoided in the ordinary way. In-

‘troducing (4.1) into (2.23),

9
<i 57 - Ho - k27>q(1, 2)

%'gf dx-(; — _Hy-k 1’) q(1,x)aq(x,2).

' (4.2)
The right-hand side represents a string-splitting
interaction. I infer the matrix element M for the
parent string to split into two to be

g dtfjd x, d xzf a%-u'(1, 2)( 57~ Ho=F 1’) u(1, x)aulx, 2) o 43)
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where u(1,2), u(1,x), and u(x,2) are the time-dependent c-number wave functions of the parent and two
daughter strings. There are certain problems in this equation.

It develops that if u(1,2) is taken to be a product of two plane waves then the transition probability is in-
versely proportional to the linear dimension of the space. The difficulty is not essential because any g-g
state of energy E has a natural boundary given by r=E/k? due to the confining potential.” How the renor-
malization of the coupling constant g can be done is a problem as already mentioned at the end of Sec. III.
Finally, the noncovariant character of (4.3) may not be just apparent. In spite of these difficulties, (4.3)
may be used to evaluate relative branching ratios for fragmentation into different flavor states. Similarly

to Eq. (4.3), the matrix element for creation of an I=0 vector meson V is given by

o 2 9 -1___
M=tigr, ["at [ [a*maw, [ di-ufu,z)(ia—t_ap_kzy) T, 2). (4.4)
-c0 1

Here u(1,2) and «’(1,2) are the wave functions of
the original and resultant strings, and V(x) is the
wave function for the vector meson. f, is the
coupling of V(x) to the current j:(x).
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