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Abstract. Two-particle correlation functions are 
introduced which vanish in the naive quark-parton 
model (zeroth order QCD) and directly measure 
higher order QCD corrections, i.e., three- (or more) 
jet final states. They have the advantage over a 
multi-jet analysis in spherocity, thrust and acoplana- 
rity (i) to be insensitive to heavy quark-antiquark 
pair production and (ii) to be easy to measure. 
Detailed predictions for two-particle correlations 
are presented. 

1. Introduction 

Quantum chromodynamics (QCD) predicts a multi- 
jet structure of the hadronic final states in e § e- 
annihilation [1]. Besides the predominant two-jet 
events, three-jet final states associated with q~g 
production are expected at a rate of 15-20~ for 
x / ~ > 2 0 G e V  while four-jet events due to q4gg 
production will contribute a notable ~ 5~ to the 
total cross section [2]. 

At first sight, the multi-jet structure will manifest 
itself in a nonvanishing [2,3] ( S ) , ( 1 - T )  and 
( A )  (S, T, A being spherocity [4], thrust [5] and 
acoplanarity [6], respectively) and a rising averaged 
[7,8] ( p 2 )  (with q2). Beyond, perturbative QCD 
makes definite predictions for the differential and 
doubly differential cross sections in spherocity, 
thrust and acoplanarity [2, 3] as well as for angular 
correlations of jet axes [8, 9] (event topologies). 

In the presence of heavy quark-antiquark (QQ) 
pair production, quantitative QCD tests on the 
level of spherocity, thrust and acoplanarity distri- 
butions will, however, be made very difficult. The 
reason is that (heavy) Q Q production will also give 
rise to events with ( S ) ,  ( 1 -  T )  and ( A )  much 
larger than the non-perturbative light quark back- 
ground [10] which are hard to distinguish from QCD 
multi-jet final states. Just above threshold, those 
events are expected to be almost spherical while 

for larger q2 we find ( S ) , ( A ) ~ , 4 m ~ / q 2  and 
( 1 - T )  ~ (n/4)ma/x/~.  

The multi-jet structure of the hadronic final states 
will, likewise, express itself in the one- and two- 
particle inclusive distributions. The fact that this 
involves the gluon fragmentation function as an 
unknown is rather a positive feature as it will give 
answer to such important questions like: is the gluon 
jet flavour neutral? QCD predictions on the level 
of one- and two-particle inclusive distributions 
seem to be less sensitive to the aforementioned heavy 
quark-antiquark pair production background. For 
example, the mean p2 of hadrons which peaks 
around [7, 11] x ~  0.5 (with peak value , - ~  O~s(q2)q2 , 
seagull effect) is found to be essentially not affected 
since the cross section involving heavy quark pro- 
duction clusters around [12] x ~< 0.2. Another example 
will be stated below. 

In this paper we shall consider the two-particle 
inclusive cross section to order ct. Since we are 
primarily interested in the primordial jet production 
mechanism, we shall concentrate on opposite hemis- 
phere correlations--opposite with respect to the 
plane perpendicular to the thrust axis and going 
through the origin of the event. This avoids short- 
range correlations of particles within the same jet 
which fall into the domain of nonperturbative QCD 
and, by nature, we do not know much about. More 
precisely, we shall be dealing with the correlation 
function 

CCC(xl' X2) ~-" dX-~l d~x2 / opposite 
hemisphere 

1 1 da c 1 da c = 2Pl 2 /x /~ ,  
2 a dx 1 a d x  2' xl'z 

where it is summed over all charged particles 
(indicated by c). This receives contributions only 
from order es (i.e., three-jet final states) and higher and 
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vanishes in the naive quark-parton modeP which 
makes (1.1) an interesting quantity for testing QCD. 

In Sect. 2 we shall deal with massless quarks. We 
calculate C~(xl,x2) and show that it is infrared 
finite by itself (which saves us the infrared "renor- 
malization"). In Sect. 3 massiVe quarks are taken 
into consideration. In this case (1.1) also receives 
contributions from zeroth order. By taking the 
energy weighted average over, say, particle 2, the 
zeroth order contribution drops out  again which 
brings us back into the fortunate situation where a 
nonvanishing correlation indicates a three-jet (or 
higher) final state. Finally, in Sect. 4 we make some 
concluding remarks. 

2. Massless Quarks 

Let us first consider the case where all quark masses 
are zero or can be neglected. In the (hypothetical) 
case of zero or equal quark masses, the (total) frag- 
mentation functions summed over all (e.g., charged) 
particles will be identical for the various species, 

- D d D ,  = D c  - -  D b . . . . . .  , O : -  ~ =  . . . .  = (2.1) 

in correspondence with SU(N:)  symmetry. 
For realistic quark masses, (2.1)will be approached 

only for very large q2 far above any (heavy) QQ 
production threshold, but surely it will be approached 
as a result of the evolution equations [13]. Experi- 
mentally, it seems that the (total) light and heavy 
quark fragmentation functions can be expressed 
in terms of a universal function Dq(x) (at least up 
to charm): 

_ ~ x . , D ; ( x )  ~ x . . .  
D,(x ) -  Dq(xll) xll,.. = Do(xll) xl I , , (2.2) 

where xll = 2plj~/-q2=xfx2 -4p~./q 2. This we con- 
clude from the observation [14] that a-lda/dxtl  
scales for 3 GeV < ~ - ~  < 7.8 GeV (i.e., through charm 
threshold). HenCe, (2.1~ may be expected to hold 

2 2 in the region where 4p~./q 2 ~ x (PT < m2/4, rnq being q 
the respective quark mass). 

Throughout this section we shall assume (2.1). 
Writing D~ = Du ~ = D~ = ... and noticing that D~ = 
D~, we find in zeroth order QCD a (naive quark-  
parton model) 

c~(x~, x2) = [O~(xOO~(x9 + D~(xl)D~(xg] 
i c D c x c ---~(Oq(X O+ ~( O)(Oq(xg+D~%)) 

= O, (2.3) 

1 For  all quark masses being zero; see later on 

2 We shall drop the q2-dependence from the argument  of the 
fragmentation functions 
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where the first term in square brackets represents 
d 2 a cc 

1 z/hemisphere 

This is understood to be the cross section for finding 
a hadron with fractional momentum x 1 in either 
one jet (hemisphere) and a hadron with fractional 
momentum x z in the respective opposite jet (hemi- 
sphere). It is always assumed that the nonperturbative 
jet-spread is negligibly small. In practice, xl and x z 
should, however, not be taken infinitesimally small 

(X1,X2>~2(PT)nonpert./%/-~) as the quark-par ton 
model does not apply here anymore. 

The fact that CCC(xpx2) vanishes in zeroth order 
perturbation theory means that the quark-antiquark 
two-jet final state factorizes when summed over all 
charged particles. Similarly, we find 

C c" = C "c = C "  = O, (2.5) 

where n stands for the sum over all neutral particles. 
In higher order in a s we expect CCC(xl,x2) to be 
nonzero d u e  to kinematically correlated quark, 
antiquark and gluon jets, so that a nonvanishing 
correlation function is a characteristic feature of 
QCD. 

In second order perturbation theory (2.4) receives 
contributions from the (qc~g) three-jet final state as 
well as from the vertex graph interfering with the 
Born diagram (Fig. 1). The vertex diagram (Fig. lb), 
being divergent by itself, functions as a regulator of 
the infrared and collinear singularities inherent in the 
three-jet diagram. 

Since the thrust axis coincides with the direction of 
the most energetic jet, one of the two hadrons must 
originate in the fastest parton. In Fig. 2 we have 
schematically drawn the parton content of the two- 
particle inclusive cross section (2.4). This divides the 
events into three main classes. Defining 

Xq- 2pq x~= 2p~, x o -  2p9 x~+x~+xo=2 '  ' 

(2.6) 

a 

b 

Fig. 1. Second order Q C D  diagrams: a three-jet production 
diagram and h vertex diagram interfering with the Born graph 
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to Fig. 2 we obtain: 

CCC(xl,x2)=2--o~sV ~ }~Koc(x l~Dc(x2~ 
3 = L ;  , x. L xu "tx--~} ~tT~) 

I + I I  

"-}- } d x q  l dXgKDc(Xl~Dc(X2~ 

I + III 

�9 -I- ) dXg 1 d~-~KDc(XI~Dr(X2~ 

II + III 

Ili ~r 
Fig. 2. The parton content of the two-particle opposite hemi- 
sphere inclusive cross section for the quark (I), antiquark (II) 
and gluon (III) momentum, respectively, defining the thrust axis 

x 4 

'\\ 
\ 
\ 
\ 
\\  

\ 
\ 
\ 

Fig. 3. Regions of phase space. For  the definition of I, II and 
III see text 

we distinguish between a 

I: xq > x~,x o quark most energetic 
II: xo >Xq,Xg antiquark most energetic (2.7) 
III: x o > xq,xg gluon most energetic 

The kinematic boundaries of the three regions are 
shown in Fig. 3. 

Collecting now the various contributions according 

3 See also [9] 
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1 

x2 xr \ x~ / 
I + II + III 
1 1 

xq o \ Xq/ 
I + II + III 

I + II + III 

1 1 K 1  <( )D~( )~d ~d q- Dq X 1 ~ X 2 Xq X~ 
0 o i 
I + II + III 

+ (x, <--> x2), 

where [3, 9] 
2 2 

K - xq + x~ 
(1 - xq)(1 - x~)" 

(2.8) 

(2.9) 

The vertex diagram (Fig. lb) does not appear expli- 
citly. We have made use of the relation 

2 % 5dxqSdx~K % 
- + 7 7  = 7  0 0 

1 + 11 + 111 (2.10) 
which (schematically) represents the order % correc- 
tion to the total cross section. The first three integrals 
in (2.8) extend only over a limited region of phase 
space according to the three classes of events indicated 
in Fig. 2. The actual phase space is stated under the 
integrals. Note that the full phase space corresponds 
to regions I + II +III .  

Equation (2.8) is infrared finite, though separately 
the various contributions are not. The infrared 
and collinear singularities cancel which means that 
we need not go through the procedure of infrared 
"renormalization". Equation (2.8) can be rewritten 
in a form which explicitely reveals its infrared 
finiteness: 

2 % [  ~dxq 
C"(x"x==3-dLk xq k x~ 

I + I I  
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c c X2 
\ \ xq /  

I + III 

-~s Oq -- xqDq(x2) 

II + III 
xl 1 ) 

x~ \ \ x~ / 
I + I I  

1 x2 7 ) --Dq(X2) ~xl~ I dx, g(D;(Xl)--XqD;(Xl) 
xq o \ k--q/ 

I + I I  
1 1 

--(D;(x1)-~- Dq(Xl)) !  dxq f dx, gD~(X2X) 
~2 xq \ xct / 

III 

o ~2 xo \ xo / 
I + III 
1 x2 

II 

*. dx c/x2"X 
+ D~(x,) S dxq j ~ - a K D g [ - - }  

x, x2 xo \ xo / 
III 
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+ (x 1) (x z K 
\ 0  0 0 0 / A 

I + II III 

+ (x t ~-+ x2). (2.11) 

The kernel K (Eq. (2.9)) becomes singular for x q , x ~  1. 
Whenever the integration extends to these values, 
the singularity is cancelled by the zero of, e.g., 

\ x q /  

The limit x - ~  1 corresponds to the case where 
the internal q ~ r k  or antiquark goes on mass shell. 
It is the fact that the two hemispheres factorize for 
on-mass-shell q ~ production which makes the corre- 
lation function CCC(xl,x2) infrared finite, similar 
to the vanishing of the zeroth order contribution. 

In Table 1 numerical values for the ratio 

C cc (x l ,  x 2)/DCq (x 1)D~(x 2 ) (2.13) 

are given for various xl ,x2,  where we have taken 

D~(x) = 2 (1 - x) 2 (2.14) 
x 

and 
}dx_ c / x \  ~.dx- / x \ 

A : D~ (x) = j ~ D ~ I - - / +  J - -~D~- [ - - ]  

I --X 2 
= 4 + 8 In x (2.15) 

X 

(1 -- X) 2 
B : D; (x) = D; (x) = 2 - -  (2.16) 

X 

Table  1. T he  (normalized)  corre la t ion  funct ion  (2.13) for (a) gluon f r agmen ta t ion  funct ion A an d  (b) g luon f r agmen ta t ion  funct ion B 

Table  l a  

x 2 ~ X l  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 - 0.003 - 0.008 - 0.017 - 0.024 - 0.035 - 0.049 - 0.068 - 0.097 - 0.146 
0.2 - 0.008 - 0.0001 0.004 0.007 0.009 0.011 0.012 0.011 0.002 
0.3 - 0.017 0.004 0.017 0.028 0.038 0.050 0.062 0.073 0.081 
0.4 - 0.024 0.007 0.028 0.047 0.064 0.081 0.100 0.118 0.137 
0.5 - 0.035 0.009 0.039 0.064 0.087 0.110 0.133 0.155 0.183 
0.6 - 0.049 0.011 0.050 0.081 0.110 0.136 0.162 0.188 0.228 
0.7 - 0.068 0.012 0.062 0.100 0.133 0.162 0.190 0.223 0.275 
0.8 - 0.097 0.011 0.073 0.118 0,155 0.188 0.223 0.267 0.339 
0.9 - 0.146 0.002 0.081 0.137 0.183 0.228 0.275 0.339 0.448 

Table l b  

0.1 - 0.009 - 0.010 - 0.015 - 0.021 - 0.031 - 0.044 - 0.065 - 0.095 - 0.144 
0.2 - 0.010 - 0.004 - 0.001 0.001 0.001 0.001 - 0.002 - 0.003 - 0.002 
0.3 - 0.015 - 0.001 0.009 0.018 0.028 0,038 0.050 0.068 0.100 
0.4 - 0.021 0.001 0.018 0.036 0.053 0.073 0,098 0,132 0.190 
0.5 - 0.031 0.001 0,028 0.053 0.080 0.110 0.146 0.196 0.278 
0.6 - 0.044 0.001 0.038 0.073 0.110 0.150 0.199 0.265 0.372 
0.7 - 0.065 - 0.002 0.050 0.098 0.146 0.199 0.263 0.346 0.483 
0.8 - 0.095 - 0.003 0.068 0.132 0.196 0.265 0.346 0.454 0.628 
0.9 - 0.144 - 0.002 0.100 0.190 0.278 0.372 0.483 0.628 0.862 
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Fig. 4. The (normalized) correlation function (2.13) for a gluon 
fragmentation function A and b gluon fragmentation function B. 
One  block corresponds to Axe,  2 =0.1.  The triangle x 2 > x~ 
which is symmetric to x~ > x 2 has been cut away. For the 
absolute values see Table 1. 

Choice A corresponds to the case where the gluon 
fragments first into a quark and antiquark, respec- 
tively, with a flat momentum distribution [15] which 
then decay with fragmentation function (2.14). Choice 
A is somewhat softer than choice B. All fragmentation 
functions are normalized to 

1 2 
SdxxDC(x) = - (2.17) 
o 3 

which, however, cancels out in (2.13). In Fig. 4 (2.13) 
is shown graphically. The triangle x 2 > x~ which is 
the mirror image of x, > x 2 has been left out for 
better view. The figures given correspond to ~ = 0.25 
(which is equivalent to x/-q ~ = 20 GeV, A = 0.7 GeV, 
Ny = 5). 

The correlation predicted is quite large. For 
medium x~ ,x  2 where one can expect sufficient 
statistics, it reaches the level oi ̀4 ~ 20~. The effect 

4 Based on the normalization (2.13) 

129 

is largest for xa, x 2 " +  1. Here it also depends critically 
on the choice of the gluon fragmentation function, 
while for medium x a , x  2 choice A and B differ by 
not more than 10~. 

3. Nonasymptotic Region 

For nonasymptotic q2, where quark masses cannot 
be neglected, the (total inclusive) light and heavy 
quark fragmentation functions will generally be 
different. This means that, in the presence of heavy 
quarks, CCC(xl,x2) will not vanish anymore in 
zeroth order. 

Assuming that there are only two types of quarks, 
one light and one heavy, with fragmentation functions 
D o and DQ and charges Qq and QQ, we obtain in 
zeroth order (naive quark-parton model) 

2 0 2 n  2 
, 2, + 03 )2 ,uq(x l ) -  o (x0) 

"(D~(x z) - D~(x2) ), (3.1) 

and similarly for the more realistic case of several 
light and heavy quarks. Only for very large q2 ( far  

above 4m~) can we expect (3.1) to vanish, i.e., 

D~ (x) -+ Dq (x). (3.2) 

This means that a nonvanishing correlation 
function C~(x l , x2 )  is not confidently a signature 
of QCD. However, the zeroth order contribution 

c c is rather small. If we allow Dq and DQ to differ by 
20%, expression (3.1) gives a 2% (1.3%) contribution 
to (2.13) for equal (different) charges. This is to be 
compared to, say, a 20~ effect coming from second 
order perturbation theory s. For Q = c(Q = b) and 
(asymptotic) quark fragmentation function (2.14), 

c c we expect from (2.2) that Dq and DQ are the same 

within 20% for x / ~  > 9 GeV ( v / ~  > 30 GeV) and 
x ,~ 0.5. 

The non-QCD background (3.1) can be fully 
eliminated by summing, e.g., over the energy in 
the jet opposite to particle 1" 
1 

~dxzx2(D~(x ~) - D~(x~))(D~(x2) - DCo(x2))= 0 (3.3) 
o 
as a matter of the normalization condition 6 (2.17). 
This gives the desired result 
1 

S dx2x2 CCC(x1 , x 2 )  = O(O~s) ( 3 . 4 )  

o 

s The error one makes by neglecting (3.1) is certainly smaller than 
the uncertainties accompanying D~(x) and D~(x) 
6 To be precise, energy conservation only tells us that 
1 1 1 

dx  xD c +" (x) = 1, and we may  well have ~ d x x D~ (x) :/= ~ d x x D~ (x). 
o o o 

So, generally (3.3) is only true if it is summed over charged and 
neutral energy (i.e., for C c'c + "(x l ,  xz) ). If necessary the reader should 
place the obvious changes 
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which, in case it is nonzero, constitutes a genuine 
signal of QCD now. By D c (x) we shall understand q 
now the average of light and heavy quark fragmen- 
tation functions 7 and leave out the quark masses 
in the q{g-production amplitudes. We then obtain 
from (2.11): 
1 

5dx2x2CCC(X1,X2 ) 
0 

=-4 2 ~ J d x 4 ( 1  - xq)K(D~ - xqD;(x,) 
9 Xq o \ x q /  

I 
l d x  1 ( ( ~ ) 

- 2  ~'~' ~dxq(1 -  x)K D}_ xl_ -X, Dq(Xl)  
~ x~ o k \ x ~ /  

I 

l d x  1 
- 2 5 .... q Sdx~( 1 -- Xo)KD;(XI]  

x, xq o \ xq /  
III 

- i dxa }dxq(1-xo)KD~o(x l  ~ 
,,1 xg o \ x o /  

III 

- 2 i d X a i d X q ( 1 - x q ) K D ; ( X l  ~ 
:q Xo o \ x o /  

(3.5) 

I 

xl 1 
- 2D;(x,) ~ dx~idx~(1 - Xq)K 

0 0 
I 

xl 1 1 + 2D~(x~) ~ dxr - xq)K , 
0 0 

I 

where we have made use of the normalization condi- 
tion (2.17). As can easily be checked, the various 
integrals in (3.5) are all infrared finite. 

From Fig. 4 we gather that a great portion of the 
correlation will cancel when integrating out one 
particle due to the fact that (2.11) changes sign. 
In Fig. 5 we have plotted 
1 

I dx 2 X 2 CCC(x1 , X2)/ D ~ (X1) (3.6) 
0 
for gluon fragmentation functions A and B. The 
correlation is found to be largest for small x 1 and 
around xl ~ 0.7. At maximum it is of the order of 

5%. Choice A and B differ by less than 20% near 
their maximum. A somewhat diminished signal 
(as compared to the full correlation (2.13)) is the 
price one has to pay for having eliminated the heavy 
quark background completely. 

Taking the energy weighted average over both 
jets eliminates quark and gluon fragmentation 

7 Weighted by their charge squared 

*[,6 

0 - - - - - -  

_ - ~  -2.4 
-6 

0 0.2 0.4 O.fi 0.8 1.O 
Xl 

Fig. 5. The integrated (normalized) correlation function (3.6) 
for gluon fragmentation functions A and B 

functions totally and brings us close to the energy 
correlations considered by the Seattle group [-16]. 
This correlation will be further diminished due to 
the change of sign of (3.6) (cf. Fig. 5) which again 
causes a large cancellation. We obtain 

1 c 

hemisphere 
1 c ~(EI>(EC2) 

XIX 1 X2X2 Ccc Xl~X 2 
LO 0 _1 

[ ~ 1  1 " o  - c l a  1 " cT-lao- 

o a d x * o  a d x 2 ]  

2 ~ [  1 1 1 - 2  ( ( } - X q z .  
: + q )  

3 o o - xg 
I 

1 1 2 2 7 
+ 5dxqSdx~(1 xq + x~ 

o o - x)2 (1 - Xq)(1 - x~) J 
III 

= - 0 .10  % (3.7) 
7~ 

which is a tiny effect (0.8% for % = 0.25) as compared 
to (2.13) and (3.6). 

4. C o n c l u s i o n s  

We have seen that QCD predicts sizable two-particle 
correlations. If one restricts the analysis to faster 
particles, what one anyway would do because the 
correlations are largest for more energetic particles, 
there should be no doubt which particle belongs 
to which hemisphere. Probably, one will not even 
have to determine the thrust axis�9 This means that 
the two-particle correlations are straightforward 
to determine experimentally. 
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The fact that the gluon is flavour neutral was 
only implicitly made use of. In order to test gluon 
quantum numbers explicitly one will have to look 
for two-particle correlations of definite charge. This 
will be done elsewhere [17]. 
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