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We compute the determinant of the Dirac operator in a general multi-instanton back- 
ground field. 

I. Introduction 

Recent studies [1,2] in two-dimensional non-linear o-models suggest [3] that the 
Yang-Mills instanton gas is dense and that the infrared divergencies present in the 
dilute-gas approximation disappear, when this is properly taken into account. To 
give this intriguing idea substance, one has to include dense multi-instanton con- 
figurations in the semiclassical treatment of the functional integral and is thus led 
to the problem of computing the determinant of the fluctuation operator in a gen- 
eral multi-instanton background field. We here derive a formula for the determi- 
nant of the corresponding Dirac operator, hoping that the determinant of the gluon 
fluctuation operator can then be computed in a comparatively simple step exploit- 
ing supersymmetry [4]. 

We use the same general method to calculate determinants as in the two-dimen- 
sional CP n- 1 models [2]. Thus, we first compute the variation ~ F of 

F = In det' O, /9: Dirac operator, 

with respect to the parameters of the instanton background field. This is possible, 
because 

3 r = Tr {641S} , 

S being the known [5,6] Green function of D. Integrating 8F, one obtains F up to 
an integration constant, which is finally computed by considering an especially 
simple instanton configuration, where all the eigenvalues of/p can be calculated 
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explicitly. Of course, to make F well-defined, its ultraviolet and infrared diver- 
gencies must be regularized. This will be achieved by introducing an appropriate set 
of  Pauli-Villars regulator fields and by projecting the Dirac operator onto a spher- 
ical space-time with adjustable world radius R. 

Since the Green function S is already known, the computat ion of  6 I" is straight- 
forward, except that the projection onto a spherical space-time causes some calcu- 
lations to be rather lengthy. The main difficulty, however, is to integrate 6F,  a step 
which involves a lot of  guesswork. For the special case of  ' t  Hooft ' s  instanton solu- 
tions [8], this problem simplifies and it has been solved by Brown and Creamer [7]. 

Our article is organized as follows• To fix notations,  the general instanton solu- 
tion due to Atiyah,  Hitchin, Drinfeld and Manin [9,10] for the gauge group Sp(r) 
is reviewed in sect. 2. These particular gauge groups are chosen for technical con- 
venience. In fact, no serious l imitations arise from this choice, since Sp(r) contains 
an SU(r) subgroup (also, Sp(1) = SU(2)). In sect. 3 we define the Dirac operator on 
S 4, discuss its zero modes and the Green function S. 6[ '  is computed subsequently 

(sect. 4) and integrated in sect. 5. Finally, the integration constant is evaluated in 
sect. 6 and our results are summarized and commented in the concluding sect. 7. 

2. Description of  the general Sp(r) instanton solutions 

Sp(r) can be considered to be the subgroup of  U(n), n = 2r, of  all those unitary 
matrices u with * 

tl + = JHT J T , (1) 

where J is the antisymmetric matr ix  

J =  

O 1 
--1 0 

0 1 
--1 0 

o 1 
- 1  o 

(2) 

Correspondingly, Sp(r) gauge potentials A u are special U(n) gauge fields, i.e., they 
are antihermitian n X n matrices having the additional reality property 

A + = J A T J  T (3) # 

In particular, Sp(r) instanton solutions are special cases of  U(n) instanton fields. 

* T and + denote transposition and hermitian conjugation, respectively• Greek indices U, u, ... 
run from 0 to 3, capital Latin indices (spinor indices) A, B .... A', B' ... from 1 to 2. The 
totally antisymmetric tensor egvpo is normalized such that e 012 3 = + 1 and repeated indices 
are always summed over. 
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To explicitly describe these, we need some spinor algebra. 
F 

(Multi) spinors are t e n s o r s  ~A1...AI,A'I.,.A'rn with A i = l,  2 and Ai = 1,2.  They 
carry a representation of  the spin covering SU(2) X SU(2) of  the euclidean Lorentz 
group SO(4): 

[(U, O) " ~]A1 ...AI, A ' I . . .A '  m = Id A 1 B 1  ... btAIBIOA'IB' 1 ... OAmB'm ~ B 1 . . . B I , B I . . . B  m , 

(u, v) E SU(2) × SU(2) (4) 

(ffA'B' is the complex conjugate of  VA'B'). Spinor indices can be raised and lowered, 
for example 

~A = ~ B c B A ,  ~A = 65AB~ B ' 

CAB = r  4 "  = - c B A ,  e~2 = 1 (5 )  

Contraction of an upper and a lower index of  the same type (i.e., primed or un- 
primed) is an SU(2) × SU(2) invariant operation. Note that 

~A r/A = _~A ~A • 

The adjoint ~ of  a spinor ~A is defined by 

~]- = --~-2, ~2 = ~-1 ( 6 )  

(analogous formulae are understood for spinors r/A,). The merit of  this construc- 
tion is that the adjoint spinors transform in the same way under SU(2) × SU(2) as 
the original spinors. In particular, 

(~, r/) = ~ r/A (7) 

is an invariant scalar product. 
The spinor components XAA' of  the position vector x u are defined by 

XAA'  = Xu(eu)AA'  , 

eo = ~ ,  ea = - i o  a, (8) 

where o a, a = 1,2,  3, are the Pauli matrices. The covariant matrices e u satisfy the 
following useful identities: 

+ = ee T e T , (9) e# 

Tr{e~e~) = 25uv, (eU)AA'(eu)BB' = 2eABeA'B'  . (10) 

Now we are well-prepared to describe the U(n) gauge potentials A u giving rise to 
self-dual field strengths Fur [5,6,9,10]. They can be represented in the form 

A u  = v+~uv, v+v = 1, (11) 

where v is an (n + 2k) X n complex matrix. Here, k denotes the instanton number, 
viz., 

k - 1 fd.x Tr(Fuv ,Fuu) ,Fray , = ~ euvooFpo (12) 16rr 2 ' ' 
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v is the solution matrix of a set of 2k complex linear equations 

V+AA ' = 0, (A' = 1 ,2 ) ,  (13) 

with A A, a spinor of (n + 2k) × k matrices depending linearly on x u: 

AA' = aA' + b A X A A  ' • (14) 

aA' and bA are constant (n + 2k) × k matrices, which parametrize the instanton 
solution• They are not unconstrained, however, but must be chosen such that 

A+A'AB ' = - -eA 'B ' f  -1 , for allx . (15) 

Here, A~, is the adjoint of AA' in the sense of spinors (cf., eq. (6)), viz., 

A-~ = -A2 x , A~ = A1T . (16) 

Noting 

A+A ' = a+A ' + b + A X A A  , , (17) 

it follows that eq. (15) holds if and only if 

a~'aB' + a+ffaA ' = 0 ,  (18a) 

a+A'bA + b+AaA ' = 0 ,  (18b) 

b~4bB +b+BbA = 0 .  (18c) 

Thus, given a pair of parameter matrices aA', bA satisfying these quadratic con- 
straints, the gauge potential A~ constructed v/a eqs. (13) and (11) has self-dual 
curvature. It will be non-singular provided the k × k matrix f - 1  defined by eq. (15) 
is invertible for all x. 

Two sets (aA', bA)  and OA', bA) of parameter matrices related by 

aA' = UflA'K, bA = UbA K ,  (U E U(n + 2k); K E Gl(k, ¢)) 

give rise to the same instanton solution. This invariance can be exploited to trans- 
form b A to its "normal form": 

1 0  
0 0  

b l =  0 1  
0 0  

1 
0 

k 

0 n 

2k 

0 

0 0  
1 0  

b2=  0 0  
0 1  

0 
1 

We shall henceforth assume that b A is in its normal form• 

(19) 
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U(n) instanton potentials Au,  which are reducible to Sp(r), come from aa"S 

having the reality proper ty  (cf.,  eq. (2)) 

+ = a T, jT  (20a) a A , 

The analogous equation for bA, 

b~ = bT S T, (20b) 

holds automatically,  when bA is in the normal form (19). Eqs. (20) imply in par- 
ticular that f i s  a real symmetric k × k matrix for Sp(r) instantons. 

3. The Dirac operator  on S 4 and its Green function 

Analogous to the CP n-1 case [2], one could set up a manifestly 0 (5)  covariant 
formalism to deal with Dirac fields and gauge potentials on S 4. We here prefer, how- 
ever, to work with explicit  stereographic coordinates x u instead. Thus, points ra, 

a = O, ..., 4, rara = R 2 , o f  S 4 are parametrized by x u according to 

2 R 2 x u  R 2 _ x 2 
- r4  ( 2 1 )  r# R2 + X  2 , = R R 2  +x 2 . 

In these coordinates,  the natural metric on S 4 is 

guy = ~fiuv , f2 = 4R4(R 2 + X 2 )  - 2  , (22) 

and the Dirac operator reads * 

D = 2~2-1/2i7uD u , D u = ~u + A u  • (23) 

The "),-matrices are defined by 

0 

The gauge potential  Au is taken to be any Sp(r) k-instanton solution as described 
above. In particular, the Dirac fields, on which D acts, are in the quark representa- 
tion of  the color group. The factor of  2 in eq. (23) is added to insure that D for- 
mally approaches the usual fiat-space Dirac operator in the infinite volume limit 
R ---~ oo. 

* Many authors prefer a normalization of Dirac fields different from ours, corresponding to a 
Dirac operator 

1) = ~-3/4D£~3/4 = 212-5/4iT~Dl~I23/4. 

Both formulations are completely equivalent, of course. 
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A characteristic property of  the Dirac operator is its off-diagonal shape 

where 

T = 2~-l/2ie+uDu, T + = 2~2-U2ieuD, . (25) 

+ 
Writing (e~) A'A for the matrix elements of  eu, we see that T maps spinors ~A of 
negative chirality onto spinors X a '  of  positive chirality. These two spaces V and 
V÷ are equipped with the natural 0(5)  invariant scalar products 

(qJ, ~)= f d4x a~/ :~+A~ , 

(X, ~) = f  d4x ~-~I/2~+A'~A' (26) 

(contraction of  color indices is understood). Correspondingly, T + is the adjoint of  
T mapping V+ into V_. 

T + has no zero modes, but Thas exactly k, viz. [5,11], 

~i~, A = (O+bAf)ui . (27) 

Here, i = 1, ..., k labels the solutions, a = 1, ..., n is the color index and A = 1,2 the 
spinor index. The projector Po onto the zero modes (27) can be written as an inte- 
gral operator 

(Pog:)A (x) = f d4y gZfy)l/ZPo (x, Y )AB~B(y) ,  (28) 

where 

?o( x, Y)AB = ~ ~)iA (x)Ni]'  ~]B(y) + , 
i,j 

Nil = (~i, $J) . (29) 

Color indices are to be contracted appropriately, of  course, and adjoints are taken in 
the spinor sense, eq. (6). 

The Green function S of  the Dirac operator D is off-diagonal as well: 

(o ,30, 
S =  S + 0  " 

Thus, S_ maps V+ into V and S+ is the adjoint of  S_.  The defining equations for 
S_ are 

TS_ = 1, Po S_ = 0 .  (31) 

More explicitly, defining an integral kernel S_ (x, Y)AA' by 

(S_ ~)A (X) = f d4y a ( y ) ' / : S _  (x, Y)AA '~)A ' ( y )  , (32) 
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eq. (31) reads 

TA' A s -  ( x, Y)AB' = g~-1/2 6A"6( x -- Y) , 

: d 4 y  g207 )l12 po(x, Y)AB S_ 07, z)BB ' = 0 . (33) 

The solution of these equations is not difficult to guess: 

S_(x,  Y)AA' = S_(x, Y)AA' - f d4z ~2(z)l/ZPo(x, Z)ABS-(z, y)BA' , 

S_ (x, Y)AA' = ½i(eU)AA'DuG(x, Y) .  (34) 

Here, G(x, y )  denotes the known scalar Green function [5,6] 

v + (x)" v(v)  
G(x, y )  - 4n2~ x - - ~  , D•DuG(x - y )  = - 6 ( x  - y ) .  (35) 

The simple solution (34) can be traced back to the simple conformal transformation 
properties of the Dirac operator. In particular, we fear that it would be much harder 
to find the Green function for the gluon fluctuation operator on S 4. 

4. Computation of the variation of the determinant of the Dirac operator 

Because 7s anticommutes with D, its non-zero eigenvalues come in pairs (X, -X). 
The overall sign of det D is therefore ambiguous. We remove this ambiguity by 
defining 

P = in det' D da= ½ In det' D 2 . (36) 

The prime indicates that the zero modes of D should be omitted. To regularize the 
UV divergence of F we now add Pauli-Villars regulator fields with large masses Mi 
and alternating "metric" el, such that 

e i=- - l ,  ~ eiM] p = O, (19 = 1, . . . , v - 1 ) .  (37) 
i = 1  i = 1  

When the number v of regulator fields is greater than 3, the regularized determinant 

Preg = ½Tr (ln(D 2 +Po) + S ei ln(D 2 +M])} (38) 
i = 1  

is finite and perfectly well-defined. Eq. (38) can be given a somewhat simpler form 
noting that 

D2 = ( T+T O ) 

\0  TT + ' 
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and that the non-zero eigenvalues of  T+T and TT + are identical: 

S Preg = k ~ e i In Mi + Tr (ln(TT +) + ei ln(TT + + M ] ) } .  
i = 1  i = 1  

The trace here is to be taken in the space V+ of  normalizable spinor fields XA'. 
We now consider a curve Au(x, s), 0 ~< s ~ 1, of  instanton solutions with 

Au(x, 0) = Au(x). Our aim is to compute 

d 
t ~P reg  = dss P r e g l s = o  " 

From eq. (39) it follows that 

6Preg = Tr{6T[T+ (TT+) -1 + 5 eiT+ (TT + +M/2)-1~]} + c.c., 
i = 1  

where c.c. means complex conjugate. Noting T ÷ (TT+) - 1 = S_ and defining 
s-M( x, Y)AA' to be the integral kernel of  T+(77 "+ +M2)  -1 , this becomes 

Freg = f d4y Trcolor (2i (e+#) A'A 6A u (3') 6 

(39) 

12 

e i (40) × [S_ (x, Y)AA' + + c.c. 
i=l 

Thus, to compute 6 Freg we must study the short-distance behaviour of  S_ and S_ u .  
From the explicit form, eqs. (34), (35), of  S_ one derives that up to terms vanishing 
a t x  = y  

S_ (x, Y)AA' = ½i (e,)Aa' D u [U(x, y)(4n z (x - y ) 2 ) -  1 ] 

1 [3(Duo+) bBfb~o + v+bnfb+s(Duv ) + v+bBaufb+Bo] (3:) 
- 24rr2 

- f d4z g2(z)l/2po(y , Z)ABS_(z , y)B A' . (41) 

Here, U(x, y) is the gauge parallel transporter along the straight line from y to x: 

x 

U(x, y)  = P exp - f dz. Au(z ) , P: path ordering. (42) 

Y 

On the other hand, the short-distance behaviour of  S M can be calculated pertur- 
batively (see appendix): 

el S~I-i(x, Y)A.4' = --½i(eu)A.4' Du [U(x, y) (4r?  (x - y)2) -1  ] 
i = 1  
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~"~ 0") 1 / 2 / 
- Fuv(y)y v ~ j  . (43) 

Terms which vanish in the limit where first x -+y and then M/-+ oo have been 
neglected here. 

When inserting eqs. (41) and (43) into eq. (40) we see that the short-distance 
singularities cancel and we are left with 

If 6Freg = 6Pl  + 61~2 + ~ 2  d4x Tr(6Au(x)ju(x)} , 

~F 1 = - f d4y d42 Tr (2i(e+~) A'A 

X 6Au(v)P  o (v, Z)ABg'~(Z)I]2s_ (g, y)B A, } + C.C., 

6F2 = -(67r2R2)-l f d4y ~2(y)l/2yv Tr{gAu(Y)Fuv(y)} 

]u = u+ (bAfb+A AA 'fau A+A' -- O# A A ' f  Ax +A ' bA fbA } t;. 

6 r l  can be simplified as follows. Denote by if" and a6o the operators T and Po with 
set equal to one. Then 

6F1 = -Yr (6  7"Po~2Uz/~+(/:5?+) -1 } + c.c. 

Now ]hP o = 0 so that 

TPo = - TSPo • 

Furthermore, 

~ + ( / ~ + ) - 1  :?= 1 - . p o ,  

and therefore 

6F1 = Tr (6Po~U2(1 - / ; o ) }  + c.c. 

= 6 Tr(ln N - In/9) 

(N is the zero-mode matrix (29)). 
6P2 can also be integrated easily. Namely, using the field 'equation DuFuv = 0, we 

have 

6 Tr(FuvFuv ) = 40 u Tr{6AvFuv ) , 

so that 

6r'2 - 1 f d4x (0 u In ~2) Tr(gAvFuv } 
127r 2 
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The rest of  6 F will be integrated in sect. 5. As a preliminary step towards this goal, 
we here derive an expression for 6Au in terms of  6aA', the variation of the instanton 
parameter matrix (6bA = 0 since bA is always assumed to be in its normal form (19)). 
Defining the projector 

P = oo + = 1 - A A' fA~'  , (44) 

it is easy to check that 

6A u = v+[fP, 8uP]v + Du(v+6o) . (45) 

The term Du(v+6v) can be dropped, because 6Freg is gauge invariant (or, equiva- 
lently, since Duj  u = 0). Inserting eq. (44) into eq. (45) gives 6A u as a function of  

~a A ,. 

For ease of reference, we finally collect the results of  this section to obtain 

6 Freg = 6 (Tr(ln N -  ln ]Q) + 1-~- f d4x ln fZ Tr(FuvFuv) 

+ &l f d% Tr(6Auju) . (46) 

Here, the k × k matrices N and N are given by (el ,  eq. (27)) 

Nil = f d4x a'/2q'5 + jA , 

R ,  = f d4x  JA, 

and, w i t h  d A, def ~aA, , 

5A u = u + (dA' f  auA~, -- ouAA'fd+A ' } V, 

]u = o+ { bA fb  +A AA'f3u A +A' -- 3 .  AA' f  A+A'bA fb  +A } o . 

(47) 

(48) 

5. Integration of 6 Freg 

Of course, Freg can be obtained by integrating •['reg along any path of  instanton 
solutions connecting A u with gome standard configuration A °, thus giving Preg 
essentially as a five-dimensional integral. Such an expression is quite implicit, how- 
ever, because it is difficult to display the integration paths. In this section we derive 
a formula for Freg involving a five-dimensional integral too, but with an integrand 
which is an explicit rational function of  the instanton parameters and the integra- 
tion variables. 

We first rewrite Tr(6Auju) in terms of  the basic matrices bA, AA' and f. From 
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eqs. (10), (44) and (48) one finds 
I r - ~  [ 

T r ( f A . / u )  = 2 Tr {dfb+Pbfb+Afb+P 

+ t - 'q+ 
+ d d ~  bfb P} + c.c. (49) 

The lines connecting pairs of  matrices imply that their spinor indices are contracted 
such that the index of  the left matrix is in the upper position, e.g., 

r-"-i + 
b fb = b A fb +A . 

By adding a suitable divergence OuAu one can express Tr(6Au]u) through f a lone :  

Tr(SAufu) + O~A u 

= 1T1 - 3 r z  + 3 r3  + 1T4 + T5 - 1T6 - T7 + r8 - 3T9 .  (50) 

Here, 

a u = - 2  Tr { d f O . ~ - A f f b  + AfA + },  (51) 

and the Ti's are the following traces: 

TI = euvao T r ( f 6 f - l f o g f - l f O v f - l f o o f - l f o o f  -1 } ,  

T2 = Tr ( f S f - l  f O v f - l  f O u f - l  f O v f - l  fOv f  -1 } , 

T3 = Tr { f 6 f -  l f o . f -  l fOr f -  l f O . f -  l f o  v f -  1 ) , 

T4 = Tr { f 6 f - l  f O u f  - l f O v f - l  f O v f - l  f o . f  -1 } , 

/'5 = Tr ( f o u l  f -  I fOg f -  l f o  v f  - l f O v f -  1 ) , 

T6 = Tr { f O g 6 f - l  f O v f - l  f o . f - l  fOv f  -1 } , 

T7 = Tr ( f S f -  l fff~-b f O u f -  i f  o u r -  l } , 

T8 = Tr ( f S f -  l fO ~f  - l  f ~ b  f O u f - 1  } , 

T9 = T r { f O u 6 f - l f o u f - l f ~ b }  , 

T I  0 = T r  ( f ~ f -  l f ~ b  fbr-~ } 
(Tlo is added to the list for later convenience). We only know of  a rather lengthy 
proof  of  eq. (50). It goes as follows. First observe that using the rules 

8 f  -1 = ½(d~, A A' + A~4,dA') , 

Olaf- 1 = (e~)AA , b+A A A', A+A,b A = _b+A AA, , 

all Ti's can be written as linear combinations of  traces of  products of  

d A ' fb+A, bAfd~ ' ,  A A'fd•' '  

A a ,fA~,, A A'fb+A, hA fA~4', b a f b b ,  
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with all spinor indices contracted. All terms contain precisely one matrix d A'  or  d~, 
and four matrices b A or b~t. Such traces are called basic. For example, the expansion 
of 7"2 in basic traces is 

4fb /,fb >. 
. _ ] 

It is obvious from eqs. (49) and (51) that the left-hand side of eq. (50) can also be 
written as a linear combination of basic traces. The two sides of eq. (50) do not yet 
match, however, because the basic traces are not linearly independent. 

There are three sources for linear relations between basic traces. First, the reality 
property eq. (20) of Sp(r) instanton parameter matrices implies that all basic traces 
are real. Any trace involving d~'  is therefore equal to another basic trace containing 
d A ' ,  e.g., 

Tr ( A f  ,d + A f ~  + A f ~  + } = Tr { d f ~ - ~ b  + A f b ~ , f b  + AfA+ } . 
I L 1 ' ' - '  l t [ I 

A second set of relations between basic traces arises from the rule 

CA,B,~SC,D, = eA,C,~.B, D, -- CA,D,~.B, C, , 

which reads graphically 

I ,L '=' I ' 1 - 1 '  ' I .  

Of course, the analogous rule holds for contractions of unprimed indices, too. Note 
also that 

b+AbB = l e.ABbg-b . 

A third type of relations is finally obtained from 

d ~ ' A  B' + A+A'dB ' + d ~ ' A  A'  + A+B'dA ' = O ,  

d f4 'bA  + b+AdA ' = 0 

(this is a consequence of eq. (15), (18b), respectively). For example, using reality, 
we have 

8, + 

aef Tr(A+d f~-Afb+ +fb~Afb + A,f} B2 = - ,  t . -  , -  

= Wr {d + tAfb~,Afb+ , A f ~  + A f } ,  

and  t h e r e f o r e  B1 + B2 = 0. 
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As a result of  all these linear dependences, any basic trace can be represented as a 
linear combination of  the elements of  an irreducible set of  14 basic traces. When this 
is done for both sides of  eq. (50), they turn out to be identical. 

Most of  the right-hand side of  eq. (50) can be integrated quite easily, viz., 

- 3 T  2 + 3 T  3 + I T  4 + Z  5 - 1T6 -- Z 7 +V8 - 3 T  9 

= 6(101 502) + O.(~m~ 7 2 7 5 iz  A .  + _ s  4 - - ~ A  u - ~ A u )  ; ( 5 2 )  

O1 = Yr { f O u f -  l f 3 u f - l f o v f -  l f 3 v f -  1 } , 

02 -- ¼ Vr ( ~ f b ~  }, 

A l = T r { f 6 f - l f 3 # f - l f 3 v f - l f ~ v f - l }  , 

A~ = Tr ( f~ f - l  f 3 v f - l  f 3 # f - l  f ~ v f  -1 } , 

A 3 = T r ( f ~ t a s f - l f ~ v f - l f ~ v f  -l ')  , 

A~ = - ~ T r  (f6 f -  l fb~4 b f Ouf-1 ) , 

A 5 = _ l T r  (fOla6 f -  lfbr~ b }. 

Eq. (52) is proved straightforwardly by computing 6D i and OuA~, observing the rules 

6f= _ f 3 f - l f ,  Ouf= _ f O ~ f - l f ,  alzOvf-1 = 26#v , 

and expressing the result as linear combinations o f / ' 2  ... Tlo (as usual, we assume 
that bA is in its normal form, in particular that b+b = -2 ) .  For example, 

6D1 = -27"2 - 27"4 + 4T5 , 

1 1 0uA 4 = T7 + ~T8 - ~T9 + 2TIo • 

Summarizing eqs. (50) and (52) we obtain 

fd~x Tr(6A~,/u) =fd4x (¼Vl + 16Da - 5~D2 } . (53) 

The final step, the integration of  T1, requires a little detour. Let M(~) E Gl(k, ¢)  be 
an arbitrary function of  five real variables ~o ..... ~4. Define 

q(~) = ea3v~x Tr(M-I~c~MM-IOtsMM-I~q, MM-IO6MM-1BxM} • (54) 

q(~) has a topological character in the sense that i fMis  varied, q changes by a local 
divergence only: 

6q = 5~aea~r~ Tr(M-IgMM-I~tg l IM-I~ . rMM-IO~MM-laxM} . (55) 

An integrated form of this equation is 

1 

q = 5 ~  J dt e ~ s x  T r ( K - I O t K K - I ~ 3 K . . . K - I a x  K} , (56) 

0 
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where K(t, ~), 0 ~< t ~< 1, is any curve of  invertible matrices such that K(0, ~) is 
diagonal and K(1, ~) = M(~). 

To apply eq. (56) to the problem at hand, we identify ~u with x u (/a = 0 ..... 3), 
~4 with any instanton parameter such that 5 = ~4, and M with f - l .  Then, 

T1 = euvoo Tr { f O 4 f -  1 fOla f - 1 fOr f -  l f o o f -  1 fOo f -  1 ) = !q 5 " 

Furthermore, choosing 

Kq = (1 - t)(1 + x2)50 + t f i 7 1  , 

which is strictly positive and therefore invertible for all t and x, eq. (56) becomes 

1 

T 1 = 6 f dt euvoo Tr{K-IOtKK-IOuK . . . K - I ~ } o K )  + OUE u . 

0 

Integrating over all space finally yields 

f d4x Tr(bAu/u)=b f d 4 x ( 1 D , -  5D 2 +k(1 + x2) -2  

1 

+ 1 f dt euvoo Tr[K-13tKK-lOuK ...K-13oK]). (57) 
0 

The term k(1 + x2) -2  has been added to make the integral absolutely convergent. 
To sum up, we have shown that 

I'reg -- 2r['Oeg = a + Tr(ln N - in/~0 

1 
f d4x 11 (x) 1 f d 4 x  In ~ Tr(FuvFuv ) + 

+ 48n2 

1 

0 

Here, Fr°eg equals Freg for the case of  no background field and one color only, a is a 
number, which is constant on each connected component of  the instanton mani- 
fold, and the integrands 11, I2 are given by 

11 = Tr ( f O u f -  1 fOu f -  1 fOvf  1 f i ) j -  1 ) _ 20 Tr ( f2 } + 4k(1 + x 2) -2 ,  (59) 

12 = euvoo Tr {K- 1 ~ t K K-  10gK K-  10 vK K-  1 ~oK K -  1 O oK} , (60) 

6. Computa t ion  of  at 

Let A u be any Sp(r) instanton potential. Of course, A u can also be considered as 
an instanton configuration -4u in Sp(r-') for any ~ r, viz., 
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Z g =  ~ } } 2 r  (61) 

2(r r) 

Denoting by ~reg the log of  the determinant of  the corresponding Dirac operator, 
we obviously have 

~reg -- 2rrOeg = Preg -- 2rFOeg (62) 

i.e., the left-hand side of  eq. (58) is invariant, when A u is imbedded into a higher 
group. The same holds for Ni/, Nq and the integrals on the right-hand side of  eq. 
(58) and must therefore be true for c~, too. Since any k-instanton solution can be 
imbedded or reduced to Sp(k), it follows that it is sufficient to compute a for r = k. 

The instanton manifold is essentially a convex space for r = k and is therefore 
connected (cf., the description of  instantons given by Drinfeld and Manin[  10]). 
c~ is hence the same for all k-instanton configurations. It can conveniently be com- 
puted by specializing eq. (58) to the case of  a superposition of  k one-instanton 
solutions, each of  them occupying one of  the k commuting SU(2) subgroups on the 
diagonal of  Sp(k). Then, a = kcq where cq is independent o f k  and can be calcu- 
lated for k = 1. 

The one-instanton solution of  size R centered at the origin has parameter 
matrices 

a I = R  , a 2 = R  , 

b ~ = , b 2 = . (63) 

Exploiting 0(5)  invariance, one finds that TT ÷ has the following two series of  eigen- 
values (e.g., ref. [12]) 

E 1 = 4R -2 (m + 1)(m + 4 ) ,  

dim = l (m + 2)(m + 3)(2m + 5)" (64a) 

E~  = 4R-2 (m + 2) (m+ 3 ) ,  

d~  = l (m + 1)(m + 4)(2m + 5) ,  (64b) 

(E / is the eigenvalue, d/m its multiplicity and m = 0, 1, 2 .... ). In the vacuum case, 
there is only one series of  eigenvalues 

E°m = 4R-2  (m + 2) 2 , 

d ° = 2(m + 1)(m + 2)(m + 3) .  (64c) 
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Freg for the one instanton solution (63) can now be obtained using ' t  Hooft 's  
method [13] to compute the regularized sum (39) over all eigenvalues (64a,b): 

Vreg  eiln(MiR)[~(MiR) 4 + I(MiR)2 +gg]  + l n R  
i = 1  

- 4~"(-1) - -~"( -3)  - 41 in 2 - In 3 + 22_.A (65) 
540 

(~'(z) is Riemann's zeta function, ref. [14], subsect. 9.5). Similarly, from the series 
(64c) we get 

FOg = £ ei In(MiR)[4~(MiR) 4 + I (MiR)2 + ~o] 
i = 1  

+ 4 ~ - , ( _ 1 )  _ _ ~ f , ( _ 3 )  - 11 1 In 2 (66) 2 7 0  " 

The left-hand side of  eq. (58) thus becomes 

Freg-2P°eg=~ S e i l n M i +  l l n R - 4 ~ ' ( - 1 ) - ~ l n 2 - 1 n 3 + l ~ .  (67) 
i = 1  

It is a trivial matter to evaluate the right-hand side of  eq. (58) for the special con- 
figuration (63). Comparing with eq. (67), we then obtain a l  and hence a: 

a = k {  2- 3 e i l n M i - 4 f ' ( - 1 ) - l n 2 +  5 }  . (68) 
i = 1  

7. Summary and discussion 

Our final formula for the regularized determinant (38) of  the Dirac operator D 
(eq. (23)) in a general Sp(r) k-instanton solution is 

v 

Preg - 2rP°eg = k{~ ~ e i lnMi - 4~"(-1) - In 2 + s }  
i = 1  

+ Tr(ln N - ha j~r) + 1 fd% l~ a Tr(FzvFzv) 
487r 2 

1 

+2-~g 21fd4X[I(X) + ~ l  f d 4 x f d t l z (  t ' x  ) . 
o 

(69) 

Here, ~eg is the determinant with vanishing background field, the k X k matrices 
N and N (eq. (47)) are built from the zero modes (27) of  D, and the integrands Ii, 
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/2 are 

I 1 = T r { f O u f - l f ~ t s f - l f ~ v f - l f ~ v f  -1 } 

- 5  Tr{fb +AbAfb +B bB} + 4k(1 + x 2 )  -2 ,  (59) 

12 = euvpo Tr {K- I  OtK K - I  OuK K-1OvK K - I  OoK K - I  OoK} . (60) 

The real symmetric k X k matrix f (x)  is defined in terms of the instanton param- 
eters by eq. (15) and, finally, 

K( t , x )#=(1  t ) ( 1 + x 2 )  1 + A (70) - ~(bAb )ii + t f  -1 (x)i i .  

Eq. (69) simplities in the infinite volume limit R = co: 

lira (Yreg - 2rP°eg) = k{ 2 5 ei In Mi - 4~"(-1) - ~ In 2 + s ) 
R --+o~ i = 1  

1 

+21n2 fd4xI,(x)+2@~ fd4x f dt/2(t,x). (71) 
0 

This is a tractable expression, although it is not completely explicit. Maybe, with 
sufficient ingenuity, one could calculate the integrals, but we did not at tempt to do 
so. The integrand/2 vanishes for all one- and two-instanton solutions. We checked 
that in general it contributes, when k t> 3, thus indicating that two-instanton solu- 
tions are not generic multi-instanton configurations./2 also vanishes for 't  Hooft 's  
instanton solutions 

k 2 

1--  i__~ 1 ~ki A u =~Ouva v l np ,  O = 1 + _a i )  2 , (72) 
"= (x 

which are therefore rather special, too. For these solutions, eq. (71) can be written 
more compactly: 

lira (Preg - 2rI'r°eg) =k{~ S ei lnMi - 4~"(-1) - ~ In 2) 
R--+ oo i = 1  

k 

+9-1-Tr2fd4xln~Vq21n~+ ~ ~ lnXi+ ~ ~ l n ( a i - a / )  2, (73) 
i = 1  i<] 

where, following Belavin et al. [3] *, ~ is defined by 

k 

= p I~ (x - ai) 2 . (74) 
i = 1  

* Our result, however, seems to disagree with their eq. (7). 
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An equivalent form of eq. (73) has previously been found by Brown and Creamer 
[71. 

The formulae for the determinants, which we have derived here, are strikingly 
similar to the corresponding ones in two-dimensional non-linear a-models [1,2]. 
This suggests that the integrals over 11 and 12 have perhaps a universal geometrical 
meaning relating to the topological and metric properties of the instanton manifold. 

To compute the determinant of the gluon fluctuation operator via supersymmetry, 
requires the quarks to be in the adjoint rather than the fundamental representation 
of the gauge group. In view of the tensor product formula for instantons [15], how- 
ever, our result applies to this case as well. The ensuing exact instanton gas will be 
rather complicated and what its physical properties are, remains to be seen. 

One of us (B.B.) thanks H. Krasemann and Z. Kunszt for discussions about com- 
puter problems. 

A p p e n d i x  

Short-distance expansion o f  sM_(x, Y)AA' 

S~_ is defined by 

sM- ( x, Y)AA' = 2~2(X)- l/2 i(eU)AB ' DuG M ( x, Y)B'A' (A.1) 

where G M is the Green function for TT ÷ + M 2 : 

[ -8~:D~D u - (e+~ev)A'B , (~2 '/2 3u~2- ' /2)D v 

1 1"3 ~ar2 g A '  + 7~ . . . . .  B' } GM( x, Y)B'c'  = 1y21/28( x -- Y)- (h.2) 

We first derive the short-distance expansion of GM(x, y )  for y = 0 and shall later 
exploit 0(5) covariance to extend the result to ally. Defining 

U. = 2A u + e+eu(~ll2ovg2 -112) , 

V = OuA u +AuA u +e~ev(~l/2~u~'-2-1/2)Av, 

/ ~ = 1 - ¼ ~ ,  

W = U . 0 .  + V + •M 2 , 

eq. (A.2) reads (spinorial indices are suppressed) 

{-0u0 . +M 2 - W) GM(x, 0) = ½8(x). (A.3) 

The perturbative solution of this equation is 

o. 

aM(x ,O)=½ ~ fd4Xl ...d4xmao(x-x,) 
m =  0 o 

X W ( x l ) G o ( x l  - x2)  ... W(xrn)Go(xm) ,  (A.4) 



B. Berg, M. Lfischer / Quantum fluctuations of quark fields 299 

where the free propagator is 

["  d4p eipz(p2 Go(Z) = d ( ~ ) 4  +M2) -1 . (A.5) 

Each term in the sum (A.4) can be expanded for x -~ 0. It is sufficient to calculate 
the expansion up to and including the orderx u. Define 

Cm(x) = f d 4 X l  ... d4xm Go(X - x1)W(x1) ... W(xm)Go(xm) . (A.6) 

Expanding 

W(z) = W ° + zuW ~ + zuzvW2uv + .... (A.7) 

the integral (A.6) can be evaluated in p-space and reduces to a sum of  Bessel func- 
tions. Most of  the terms, however, do not contribute in the limit where first x -+ 0 
and then M-+ oo. In particular, for m/>  4, Cm(x) is once continuously differentiable 
at x = 0 and Cm(O) as well as 3uCm(O ) vanish for M-~ oo. Also, integrals involving 
W t, l/> 4, need not be considered for the same reason. Thus, we are left with a finite 
number of  integrals to compute and expand for x -+ 0, M -+ oo. This calculation is 
lengthy but straightforward and we therefore merely quote the result: 

p 
Mj 

e/S_ (x, O)A A' = li(e#)AA, Du [U(x, 0)(4/r2x 2 ) -  1 ] . (A.8)  
j=l  

U(x, 0) is the gauge parallel transporter from the origin to x along the straight line 
connecting the two (eq. (42)). 

The 0(5)  covariant expression reducing to (A.8) f o r y  = 0 is 

S ei~__i(x, Y)AA' = - l i~~(x)l /4(e,  Vg( X, Y))AA' 
/=1 

X D ,  {Ug(x, y)[(47r2~2(x) 1/2 (x - y)2 ~2Cv)1/2)-1 

-- (32rr2R2) -1 ln(a(x)l /2(x - y )2a (y ) l / 2 ) ] ]  ~"2CV) 3/4. (A.9) 

Here, Ug(x, y)  is the gauge paralM transporter along the (shorter) geodesic connect- 
ing y with x. Similarly, Vg(x, y)  is the spin parallel transporter along the same geo- 
desic, 

x 

f - '  Vg(x , y )=Pexp{  - dz. auv~3vln ~2} , 
Y 

- -  1 + + = _ eveu). where our ~(eue v Noting that 

Ug(x, y)  = U(x, y)  + (x - y)2 (x - y)uFu~(y)yv - -  

(A.IO) 

a0,)l/2 
+ O((x -- y)4)  

12R 2 
(A.11) 
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(and an analogous formula  for V g (x, y) ) ,  another  tedious but  s traightforward 

compu ta t ion  shows that  eq. (A.9) is equivalent  to eq. (43) up to terms vanishing at 

x = y .  
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