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PROCESSES IN 

An analysis is given of the QED factors relating the cross section for ee--, eeX to the virtual 
2-photon collision y ' y *  --, X. Only transverse photons are considered, but no kinematical approx- 
imations are made. The cases where none, one or both of the scattered electrons are detected at 
angles >>mc/E (E = beam energy) are separately considered. A full discussion is given of the 
kinematical restrictions necessary to arrive at factorisible equivalent photon approximation 
formulae, and quantitative comparisons are given. Also discussed are the rapidity distribution of 
the produced system X and restrictions on the ettective two-photon luminosity due to angular cuts 
on produced particles. 

1. Introduction 

The aim of this paper  is to present an analysis, useful for experimental  appli- 
cations, of the purely Q E D  factors relating an observed process of the type 

e e ~ e e X  (1) 

(the symbol "'e'" and the term "elect ron" below stand for electrons of arbitrary 
charge) to the e lementary photon-photon process 

y * y * ~ X  , (2) 

where X is any produced system of invariant mass IV, but otherwise unspecified. This 
problem has already been treated extensively in the literature [1-4]; not always 
however correctly*, often with a rather theoretical bias and with the emphasis mainly 
on total cross sections for process (1). The present work aims to be more experi- 
mentally orientated and to concentrate particularly on the connection between the 
processes (1) and (2) when the scattered electrons (one or both) are detected or 
" tagged"  at angles 0 such that: 

m~/E<< 0<< 1 

(E = beam energy, m~ = electron mass). However,  the interesting question of the 
total cross section is also considered in some detail. 

* There is a thorough discussion of various incorrect derivations of equivalent photon spectra for 
two-photon collisions in section 6.7 of ref. [.5]. 
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The analysis is given in terms of differential p h o t o n - p h o t o n  luminosity functions 

d S ° J d z  *, where z is the scaled effective mass: z =- W / 2 E ,  of the system X. The 
starting point  is the general  analysis of the connect ion between processes (1) and (2) 

in terms of helicity ampli tudes for the virtual pho tons  [3, 4]. The  implicit assumption 

made here is that the process (1) proceeds  only via the Feynman  graph shown in fig. I. 

For example bremsst rahlung graphs,  where the system X is p roduced  by a single 
virtual pho ton  are neglected. The connect ion between processes (1) and (2) is then 

given by the equat ion  

d~'o- d" f ii 
W 2 ' - ~  q i ,  q~_) 

dt' l  . • • dc~ dt:l . . . dye, ° ' (  
(3) 

where d " o ' / ( d c l  . . .  dc~) is the cross section for process (1) and cr, that for process 
(2). L'~. . .  r ,  are 6 variables kinematically defining the configurat ion of the 

scat tered electrons;  - q ~ , - q ~  are the masses of the two virtual pho tons  with 

polarizat ion indices i and j. Three  fur ther  assumptions are made  to arrive at a 
definition of a single luminosity function d,Sg/dz : 

(i) only transverse virtual photons  are considered:  

ij = T T  , d ~ / d z  -~ dSg, TT/dz ; 

(ii) the pho ton  mass dependence  of crrr is neglected:  

OrTi.( W 2, q~, q2) = cr-rr( W 2, 0, 0) =- or( W 2) . 

(iii) as the azimuthal  angles of the scat tered electrons are, in all cases, integrated 

over,  terms propor t ional  to the relative polarizat ion of the transverse photons  are 

neglected. 
These three assumptions are also essential in derivations of the " 'Weizs~cker-  
Wil l iams" or  "equivalent  pho ton  approx imat ion"  (EPA)  pho ton  energy  spectra 
[7-13] ,  but the analysis given here is more  general.  The luminosity function 
considered here does not in general  split into a product  of two pho ton  flux factors 

P~ : IE,91 
~ e 

* Note that the definition of the two-photon luminosity function used here is somewhat ditierent to that 
given in ref. [6]. The rate for process ( 1 ) is given by: 

ee luminosity × the luminosity function × cross section for (2). 

Fig. 1. Definitions of kinematic quantities. 
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each containing the kinematical variables of only one of the scattered electrons. The 
relationship of the present analysis to EPA calculations is discussed in sect. 6. 

With (i) to (iii), eq. (3) simplifies to 

d6o . d~3f ', 
- or( W 2) . ( 3 a )  

d v l . . . d t ' 6  d v l . . . d v 6  

d ~ / d z  is then found from the full differential expression, eq. (3a), by integrating over 
the scattered electron variables, applying suitable cuts when luminosity functions for 
double tagging (DT) or single tagging (ST) are required. Assumption (ii) is essential 
to carry out this integration and the resulting function d ~ / d z  is only physically 
meaningful [unlike the fully differential function in eq. (3a)] if (ii) is true. To go 
beyond this requires detailed knowledge of the physics of process (2). If the photon 
coupling is pointlike, assumption (ii) is likely to be a good approximation.  For VDM 
type couplings to hadronic systems and for large beam energies, large suppressions of 
the cross section (2) are expected. This point is further discussed in sect. 7 below. 
Throughout  this paper  the virtual photon-photon cross section is assumed to be 
independent of q2, q~. 

The organization of the following sections of the paper  is as follows: in the sect. 2 
definitions of kinematical variables are given. Sects. 3, 4 and 5 treat successively the 
cases of untagged, double tagged and single tagged luminosity. Sect. 6 discusses 
factorizable (EPA) formulae for the luminosity functions. In sect. 7 the rapidity 
distribution of the luminosity is briefly considered, and in sect. 8 modifications of the 
effective luminosity due to acceptance requirements on the produced system X are 
calculated. Sect. 9 contains a summary of the essential conclusions and a few remarks 
relating this study to other recent work. 

2 .  D e f i n i t i o n s  a n d  k i n e m a t i c s  

The 4-vectors of the incoming and scattered electrons in the lab system are defined 
in fig. 1.81 and 82 are the electron lab scattering angles and d~ is the azimuthal angle 
between the planes defined by the beam direction and the two scattered electrons. 

Other  definitions are: 

x, =- (E - E I ) / E  = scaled photon energy) .  
, , ~ ~ t = l , 2  

O~ q ? / 4 E -  = -(scaled photon mass)" / 

W 2 ~  - ( q l  + q2) 2 = ('}"Y effective mass) 2 , 

z ~- W / 2 E ,  cr=-- z 2, 

me ~- electron mass ,  

cos 6) ~-Pl • P2/]Pl: ]P2] =sin  01 sin 02 cos ~b - c o s  01 cos 02 • 
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The YT effective mass is given, in terms of the scat tered electron variables, by the 
2 p]2, ,2 expression (neglecting m~. compared  to p2 ) 

Z 2 = X l X 2 - ~ ( 1  - x l ) ( 1  - X 2 ) ( l  +COS ( 9 ) .  (4) 

3. Untagged luminosity 

In this case d . ~ / d z  is given by integrating d~ 'Se / (dv , . . ,  dr,,) over  the complete  

phase space of the scattered electrons. The result has already been given in ref. [4]. It 

may  be written as 

- 2 l ' ( E / m ~ ,  ¢r) + F '2' (~rl + F '  a~0"r)] , (5t 
dz z 

where the functional dependences  of the three terms are as indicated. The full 
expressions for F '1 ', F '2' a r e  ra ther  complicated and are given in the appendix.  All 

the logari thmic terms are conta ined in F '~' and F ':~. F '3', which contains only 

powers  of cr and constants,  is negligible - it vanishes for cr = 1 and gives only a 
fraction of a percent  correct ion near cr = 0. Curves  of d . f T ° T / d z  for E = 15, 100, 

1000 G e V  are shown in fig. 2. Only  the F 'z', F '2' terms are included. The contr ibu-  
tions f rom the powers  of In ( l / c r ) , l n  {1-~r)  are important .  Retaining only the 
(In ( 2 E / m ~ ) )  2, In 1 2 E/m~)  terms leads to a negative luminosity for z > 0.85! However ,  

I02 
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Fig. 2. Two-photon differential luminosity curves. Curves A, B, (': Total luminosity for E = 1000, 100, 
15 GeV. ( 'urve D: Single tagged luminosity for tagging in 0 < d~ < 2 m 20 < 0 < 200 mrad, E = 15 GeV. 

Curve E: Double tagged luminosity for tagging in 0 <  ~ < 2,'r, 2(1< 0 < 200 mrad, E = 15 GeV. 
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Fig. 3. Ratio of total differential luminosity to the leading log approximation,  eq. c61. Curves A, B, C for 
E ~ 1000, 100, 15 GeV. 

taking only the leading logarithmic term in In (2E/rn~) in F '~' in eq. (5), i.e., 

4 - I n 2 E ,  2 2 ( l + ½ c r ) 2 1 n - - ( 1 - ¢ r ) ( 3 + c r )  , (6) 
dz \~ - /  me/ t cr 

gives a reasonably good approximation (scale er ror - -  I 0% and about 10% variation) 
to the complete expression (5), except in the region of cr = I .  This is shown in fig. 3 
where the ratio of d.fT°r/dz relative to d...fI°T'IL/d2 iS shown for E = 15, I00, 

1 0 0 0  Ge V .  

The function of or in the curly brackets in eq. (6), first given by Low in 1960 [14], 
follows also from the Weizs~icker-Williams approximation,  where it is assumed that 
the function d,f/dz can be derived from the product of two photon flux factors one 
from each electron--,/vertex, the number  dN~ of virtual photons in the range dx of 
scaled photon energy being given by 

dN~ ( ~ )  [1 +(1 - x ) 2 ] l n  2E 
- - . ( 7 )  

dx x me 

The functional form given in (6) follows on integrating the product of two flux factors 

of the form (7) over Xl, and x2 subject to the constraint, which follows from (5) in the 
limit 69 -=- 7r 

) 

z" = o---- x~x2. (8) 

4 .  D o u b l e  t a g g e d  l u m i n o s i t y  

The full expression for the completely differential luminosity function, eq. (9), 
follows on rewriting eqs. (28) and (29d) of ref. [4] in terms of the variables defined in 
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sect. 2 and using the definition of the luminosity function eq. (3): 

where 

dS~. a - 
dO~ dO2 d43 dx ,  dx2 = 32~ "3~ cot 101 cot ½02 

[K - 2(x2 + 02)]  2 2 ?n e 1 
x + 1 - E--r- ll 

x ~ + 1 -  , 

2 
- { -  ~ , 

i = 1 , 2 .  

~2=- K - 4 0 1 0 _ ; ,  

and, in limit , n~ /E2  << 021, 0 2  

O~ = (1 -x , )  sin 2 ~0,, 

(9) 

Eq. (9) contains 5 variables instead of 6 as in eq. (3a), as the trivial overall azimuthal 

rotation of the configuration about the beam axis has been integrated out. 

For the calculation of luminosity for a practical range of tagging angles, 01, 82 ~> 
10 mrad, which is typical of experiments on the present P E T R A / P E P  generation of 
e re storage rings, one has, for double tagging (detection of both scattered electrons) 

o I  2 , 

so the last terms in the two curly brackets of eq. (9) may be dropped. With this 

approximation the luminosity within a given angular range is independent of the 
beam energy. The double tagged luminosity with both scattered electrons detected in 

the angular range, 

0 ...... ~ Or, 02<~ Om~, 

(0ram >> r o d E ) ,  has been calculated by numerical integration of eq. (9J*. The integra- 
tion is carried out over the 4 variables 01, 82, 43, x l .  x2 is expressed in terms of z and 
these variables by using eq. (4). The integration contour on the xl, x2 plane for fixed z 
and different values of the angle 6) is shown in fig. 4. For 6) = 7r the contour is a 
hyperbola, for 6) = 0 it is a line z 2 = 1 - x l  - x 2 .  Results of this calculation are shown 

in fig. 2 (curve E) for 0,m,, = 20, Orn~x =200 mrad. In fig. 5, to better display the 
variation for the different angular ranges, the curves are normalised to the fully 
angular integrated luminosity in leading log approximation given by eq. (6). The 

curves are calculated for E = 15 GeV. As mentioned above the shape of the curves is 

" The DESY Library numerical integration program QUINT (authors R. Noehrc, O. Helb was used. 
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Fig. 4. Integration contours in the plane of scaled virtual photon energies xl, x2 for fixed scaled 
photon-photon invariant mass, z. Curve a: z = 0.3, O = ~-. Curve b: z = 0.3, O = 0. AB: Allowed 

integration range for/3 </3,n,x = 0.682. 
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Fig. 5. Double tagging efficiency curves from integration of eq. 19l. E =  15 GeV A: 10<0~, 02< 
100 mrad; B: 20< 0~, 02< 200 mrad; C: 30< 0~, 02 < 300 mrad; D: 20< 0~, 0z< 200 mrad. Integration 

c o n t o u r :  Z 2 = X I X  2. 

e n e r g y  i n d e p e n d e n t .  T h e  ove ra l l  scale ,  f r o m  eq.  (6) is g iven  by 120(In (2E/me))  -2 (E 

in G e V ) .  T h e  m a i n  q u a l i t a t i v e  f e a t u r e s  of  the  cu rves  a re :  

(i) a s u p p r e s s i o n  of  t he  f r a c t i ona l  l u m i n o s i t y  a c c e p t e d ,  wh ich  is in e x p e r i m e n t a l  

t e rms ,  e q u i v a l e n t  to d o u b l e  t agg ing  eff ic iency:  

d ,.~DT ,d,,~'l'OT.l.l. 

at  smal l  v a l u e s  of  z ; 

(ii) eDT i n d e p e n d e n t  of  z for  z ~>0.5; 

(iii) t he  s u p p r e s s i o n  b e c o m e s  m o r e  s e v e r e  at l a rge r  t agg ing  angles .  
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The importance of using the full expression relating z 2 to x~, x2, eq. (4), instead of the 

approximate expression, eq. (8), is shown in fig. 5. The dotted curve D shows the 
luminosity function for 0m,, = 20, 0m~ = 200 mrad using eq. (8) instead of (4). 

5. Single tagged luminosity 

In principle the single tagged luminosity function could be found by numerical 

integration of eq. (9) over the full range of one of the scattered electrons, say 

0 <  01 < ~', restricting the angular range of the second electron as before to 0mm< 
82 < Vm~x. Since, however, the dominant contribution to the 01 integration comes 
from very small angles 01 -~ m c / E  it is simpler to do this integration analytically. The 

following approximations are then made to eq. (9): 

(i) Q~ = 0 in K, s ¢ and in the second curly bracket of eq. (9); 
(ii) Q~ >> (me~E) 2 so the rnZ~/E2Q~ term is dropped. 

The 01 integral with xl fixed can then be written as an integral over ¢)~ between the 

limits 

2 rn~( x, ~2 
o . , , .  = ~ I - Z ~  / + o t t o 2 ) ,  

, )  

O~.~ = 1 - x ~ .  

The further approximation 01 -~ 0 is made in the relation, eq. (4), which then becomes 

z 2 ~ x l x 2 - 1 ( 1  -x l ) (1  -x2)( l  - c o s  02). (10) 

As the 4~ dependence of the integrand then vanishes, the d~ integration is trivial, 
giving simply a factor 27r. On carrying out the Q~ integration the following 3-fold 
differential luminosity function is found: 

d3C~ t ~ 2 . g  ' o t l ,  [ ( K ' - 2 x l )  2 ] 
d02 dXl dx2 8~  2 c _"2 [ ~ + 1 

xi{ln~'~('-~"lr/'<'-~<x:+OS/~ ] <'-: ' ' , } + ,  , <1,> 
m~ x, JL ~ x7 

where K '  ~- z 2 + O~ and terms of order rn~./E 2 relative to unity have been dropped. 
dAvST/dz is then given by an integral over xl and 02, using eq. (10) to eliminate x2. 

The single tagged luminosity found in this way from eq. (11 ) is given for 0ram = 20, 
0m~x = 200 mrad, E = 15 GeV, by curve D of fig. 2. Fig. 6 shows curves for other 
angular ranges, normalized to d . ~ r ° f ' u / d z  as in fig. 3. The same qualitative features 

(i)-(iii) mentioned above for the double tagged case are again evident here. In 
addition there is a slow fall-off as z ~ 1. From fig. 3 it can be seen that this fall-off will 
be largely eliminated, at least up to z ~ 0.9 if the full angle integrated luminosity is 
used for normalization instead of the leading log approximation to it. Also shown in 
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Fig. 6. Single tagging efficiency curves from integration of eq. (11 ). E = 15 GeV. A: 10 < 02 < 100 mrad; 
B: 20 < 02 < 200 mrad: C: 30 < 02 < 300 mrad; D: 20 < 0: < 200 mrad ~curve B in fig. 5. 

/ 
fig. 6 (dotted curve D) is VFDT for 0m,, = 20, 0 .... = 200 mrad, given by assuming 
"factorizat ion" of the tagging efficiency. Except for values of z <~ 0.05 the agreement  
with curve B is quite good (10% level). It should be noted that the single tagging 
efficiency defined by the curves in fig. 6 corresponds to tagging in one direction 
only. Use of both forward and backward detectors will give double the efficiency. 
It can be seen from eq. (11) that the single tagged luminosity will scale with energy 
oc In (2E/me) at high energies, where the logarithmic term in the large curly bracket 
of eq. (11 ) dominates.  The tagging efficiency, defined as 

__ d , ~  s T / d ~  TOT.I-[ 

will then scale (In (2E/rne)) -1. 

6. Factorizable formulae: Weizsiicker-Williams approximation 

The condition to derive factorizable formulae from the general expression eq. (9) 
is that 

z2>>O~, O~. (12) 

From the definitions of Q2 and 02  this implies that 01.2<< 1 or xl.2 = 1 and hence, 
from eq. (4), that eq. (8) is closely satisfied. Making this approximation the following 
expressions are found for the luminosity functions differential in xl and x2: 

d2,j, T°f  . J  ~ r ' l ' ( ) T  d N T O T  
% _ ul ~ _ ~  

dx' l  d x 2  d x  I (xl) " dx2 (x2), (13a) 

d2C2 psr  H/~]101 d N  v 
- ~ '  " ~  (Xl)' (x2, 0mi,, 0m,,), (13b) 

d x l  d x 2  dxl 
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where 
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d2"~cl?Dr-dN'(,!.'l,(gmin, O ..... )'dd---~-(x2, Orni,,,(9 .... ). 
dxi dx2 OXl 

(13c) 

d ,O, ] } . .~  2E(1 - x )  
dx In [1 +(1 -x)2]  - 1 +x  

• t h e  X 

(14) 

dNd_._~t ~ (x, 0mi,, (9 . . . .  )= /~\tS~) [1 + 1 - x  
)2] 

In0 
. x 'gram ( 15 ) 

Here it is assumed that s in#=(9  and #~,,, >>(m,./EV'. Eqs. (13a), (13b), (13c) 
correspond to the total, single tagged and double tagged luminosities, respectively. 
Eq. (13a) is derived from eq. (9) by integrating over both O{ and 02,  instead of over 
O~ only, as in the derivation of eq. (11); retaining is this case both of the m~/E20~ 
terms. Eq. (13b) is derivable directly from eq. ( 11 ) on integrating over 02. Eq. (13c) is 

2 t i n 2  ,,"~2 given by eq. (9) on dropping the rn~/,: re, terms and integrating over (9~ and (92. In 
all cases condition (12) allows the replacement 

K = K ' = z  2 " 

Making the leading logarithm approximation that: 

In 2E__ >> In ) x - - - - :  , (  1 - In 2E__ >> 1 .- x ,  
t h e  X t h e  

dN r()r,~ the expression for ~ / ax  reduces to that given in eq. (7). With this approxima- 
tion dN~°T(x ) /dx  and dN.~(x, 0.,,,, 8m~x)/dx have identical x dependence and 
carrying out the integration over one of the photon energies for fixed z leads to the 
Low function, eq. (6), for the variation of d.~/dz with z. 

j • r T O T / j  In calculating u~,~ ~ /ux, since the most important contributions come from small 
angles ~-mc/E in the angular integration, the condition (12) is well satisfied and it is 
not suprising that the luminosity function calculated by convolution of independent 
photon flux factors, which is the philosophy adopted in the Weizs~cker-Williams, or 
equivalent photon approximation, gives a good approximation to the exact 
luminosity function eq. (9). In this limit also, the restriction to transverse photons is 
expected to be quite accurate. Agreement between total cross sections calculated 
exactly by QED Feyman graphs and by EPA has been found at the level of =5% 
[15]. There is general agreement in the literature on the expression (7) for the total 
equivalent photon spectrum in leading log approximation. Problems, however, arise 
if the factorization approach is used when tagging is done at angles mJE<< (9<< 1. 
This has recently been pointed out by Carimolo et al., in a study where direct 
comparisons were made between cross sections calculated in EPA and by QED for 
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g-pair production. Writing the condition (12), that the factorizable equations (13b) 
and (13c) follow from eq. (11), in terms of angles and scaled electron energies 

z2>>(1-x,)sinZ½0,,  i = 1 , 2 ,  

it is clear that either l - x ,  = 0  or if x, is small, z >>~0,. The first case, though 
presumably mathematically possible, is of little physical interest due to the sharp fall 
off of the luminosity function with increasing z (see fig. 2). It is still of interest to 
note, however, that a factorizable region with very loose angular restrictions 
should exist near z = 1. This region of factorizability is completely outside the 
classical Weizs~icker-Williams [7-9] kinematical region where it is required that the 
virtual photon energy is <<beam energy. Of more physical interest is the case 

z >> ½0,, x, small. However, practical limitations require that typically 0 > 10 mrad, so 
to be confident of neglecting the Q2 terms, say z I> 0.05 is needed and for 0 > 
200 mrad no region of validity for deriving the factorizable formulae remains. In the 
study of ref. [16] it was found that in order to keep deviations from the QED result 
less than a factor 2 for particular kinematical configurations when using a Weiz- 
s/icker-Williams luminosity function corresponding to eqs. (13c) and (15), it was 
required that (in the notation of this paper) 

O/z <~. 

Unlike in the case of the total equivalent photon spectrum a number of 
significantly different expressions have appeared in the literature for the photon flux 
in a limited angular region: dN, /dx (x ,  Omin, O,,,x). Arteaga-Romero et al. [1 ] found 
an expression identical to eq. (15). Brodsky et al. [2], gave the spectrum 

" "  (X, Omin, Om.x)= [l+(1--X)2]lnOmax 
dx Omin 

{2-x): [x2+{l-x)0~.x] I 
- -  . ~ -  ( 1 6 )  4 ln[x_~_(1 X)Omin]J' 

while more recently Carimalo et al. [17], have derived the spectrum, appropriate 
only to the case of single tagging: 

" ' ~ ( x ,  O,.i., Oread)= [1 +(1 - x )  2] I n -  
dx 

D(x, 0 ~ )  
- (1  - x )  In 

D(x, Omin) 

0max 

0rain 

2 "~ x(l  - x)(O .... - 0mi,)/ 

(17) 
where 

D(x, O)=-4x + ( 1 - x ) O  2. 

As pointed out earlier [5] and recently reiterated in ref. [17], the spectrum (16), 
derived correctly for the case of electroproduction on nucleons, is not appropriate to 
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Fig. 7. Double  tagging e/ficiency curves. E = 15 GeV,  2 0 <  0~, 02< 200 mrad. Solid line: from cq. (9). 
Dashed line: E PA calculations. A: eqs. I13ok I151; B: eqs. i l 3c I, (171: ( ' :  eqs. (13c), I16). 

the two-photon collision process because of different kinematical conditions. Use of 
formula (16) has led to a number of erroneous calculations of tagging efficiency for 

two-photon processes in the last year or so*. 
Comparison of the luminosity functions calculated via eqs. 113b) and (13c) using 

eq. (7) for d N T ° r / d x  and eqs. (15 ), (16)or (17) for dN,,(xl  O,,,m, 0 . . . .  ) /dx  are shown 

in tigs. 7 and 8 for double and single tagging respectively. Also shown are the 

functions calculated from eqs. (9) and I 11 ). The angular range taken is 20-200 mrad 
and E -- 15 GeV. d . f / d z  is found from eqs. (13b), (13c) by substituting x2 = z e / x ,  

from eq. (g) and numerically integrating over x, between the limits z 2 and 1. Strictly 
speaking, eq. (17) should not be used to give the equivalent photon spectrum for 

double tagging. However, it is interesting to note that it agrees much more closely 

i T i - i O] d:~s~ Singte agged Luminosity 

d - ' ~ - ~ T . L  L 

02 / ~ ~ -  - -  - -  _ _ _  _ - ~ : ~ _ _ _ _ ~  
A/,. ~ 

Ol 012 
. L ~  

0J3 0 L, 0'5 D 6 
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Fig. 8. Single tagging efficiency curve . /=  = 15 GeV,  20 < 82 -:: 200 mrad. Solid line: from eq. ~ 11J. Dashed 
line: EPA calculation. A: eqs. ( 13hi, 115): B: eqs. (13b), ~17): C: eqs. cl3bL 1161. 

Eq. 16~ was quoted  by the ;mthor in ref. ]21] and has been used in several E ( 'FA. . I .E I  reports  for 
lagging efficiency calculations. It has also been widely used in calculations made in suppor t  of 
exper imental  prc, posals. 
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with the curve calculated from eq. (9) than eqs. (15) or (16). The maximum 
discrepancy is -=- 20% near z = 0.1. Eq. (15) shows a discrepancy larger by a factor of 
-=-2. Eq. (17) is then useful even for double tagging calculations if only a rough 
estimate of the tagging efficiency is required as it is much easier to carry out the single 
integration over x~ than the 4-dimensional integration needed if the exact expres- 
sion, eq. ~9), is used. For single tagging the agreement  between eqs. ( 11 ), (15), (17) is 
good, better  than 10% for z >0 .05 .  At smaller values of z, (15) and (17) overes- 
timate the luminosity quite seriously, but, as discussed above, one should not expect 

factorizable formulae to be valid in this region. As can be seen in both figs. 7 and 8, 
the.incorrect formula (16) rather grossly underestimates the luminosity for z <~ 0.3. 

7. Rapidity distributions of differential luminosity 

If the leading log approximation,  eq. (7), is made to the total virtual photon flux, 
and eq. (15) is taken for the photon flux in the angular range 0 m i , < 0 < 0  . . . .  all 
luminosity functions, untagged, single tagged and double tagged, have a simple 
functional form in terms of scaled effective mass of the two photon system and its 

rapidity in the lab system y : 

d2-f d2 ' f  I [1 + i l  - z  e")2][l +(1 - z  e ,.)2] 
(8) J d y d z  d y d z  ~-l z 

Eq. (18) follows from eqs. (13) and the definition of rapidity 

1 E+p. .  
v ~-~ln - -  (19) 
• E - P:l 

on neglecting the angles of the virtual photons relative to the beams and using the 

simplified relation, eq. (8), for z. The ratio 

d 2 . f /  d 2 f  I 

dy dz/dy dzl:=l 

is plotted as a function of y for various values of z in fig. 9. A plateau develops in the 
differential luminosity as z is decreased from 1. The length of the plateau is 
Ymax = In ( I / z )  and the height becomes oc 1/z as z --, 0. For small values of z there is 
an almost uniform distribution in rapidity from 0 to )'. .... 

8. Effects of experimental acceptance on the luminosity [unctions 

In order to reduce backgrounds to tolerable levels when studying 2y processes in 
e ' e  storage rings it is normal to require the detection of at least one particle, from 

the system X produced in the two-photon annhilation, in the experimental  detector. 
With a few simplifying assumptions it is fairly straightforward to make a rough 
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Fig. 9. Differential luminosity distributions as a function of rapidity in the lab of the two-photon system, >,, 
for various fixed values of z. 

est imate of the reduct ion in effective luminosity resulting f rom such cuts. If the 

p roduced  system consists of relativistic particles in its barycentr ic  f rame then a 

particle emit ted at 90 ° to the direct ion of mot ion of X in this frame will appear  in the 
lab at an angle l / f ly ,  independent  of the particle m o m e n t u m ,  where/3  and y are the 
relativistic velocity and energy of the system X in the lab. Fur thermore ,  in the 

approximat ion /3  = 1, a given range of c.m. ang!es, say 

}It < 0* < ~rr (20) 

I will appear  in the lab above a certain min imum angle 0;~n, where  for the angular  
L 

range (20) cor responding  to = 7 0 %  of the c.m. solid angle 0mi, -= 0 .41 /y .  Relaxing 

the restriction fl = 1 will increase 0Era from this value. Requir ing that one  particle is 
1 seen in the lab at an angle >0;~m is then equivalent  to one  particle appear ing  in the 

range (20) of c.m. angle. If the probabil i ty of the latter is near  100%, which would be 

the case, if for example,  the system X was massive j p c .  =-0 ÷ state decaying into 
many  pions, then the relation between 0Era and y can be inverted to give an estimate 

of the accepted luminosity. So for a fixed angular  cut in the lab, 0 > 0c it follows f rom 
the above  a rgument  that there is a max imum value of y, Ymax = 0.41/0~, such that all 
particles omit ted  in at least the c.m. angular  range (20) are detected in the lab. For  
larger values of y, a smaller range of c.m. angles is accepted and the acceptance  
cor respondingly  falls. 70% of the c.m. solid angle is taken as a reasonable  definition 

of the " shou lde r "  of the acceptance function. Neglect ing the angles of the virtual 
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photons  relative to the beam, the relativistic velocity of the system X is given by 

p X1 - - X  2 
/3 - (21) 

E x~ +x2 
,--u-- 

The restriction/3 </3m~, where/3~,~x = v y ..... - 1/Ym~x is then translated directly into 
a restriction on the range of integration of the variable x~ (it is assumed here that z is 

fixed and x 2 = z 2 / x ~ )  and so the change in the luminosity function is directly 
calculable. This is shown in fig. 4. The allowed region of x~ lies between A and B 

along the curve z 2 = x~x2, where A and B are the intersections with this curve of lines 

(1 --/3max) (] +/3 .. . .  ) (OL')  
x 2 = ( l + / 3  .. . .  )xl (OL) ,  and x 2 - ( l _ / 3  .... )xl  . 

to 

The limits of the x~ integration are changed from 

2 
z ~ 1  

~/1 -/3m.,, ~/1 +/3r.,,x 
z ~_/3~x*~ 1--/3m~x 

by the restriction /3</3  . . . .  Evidently,  if z> '~" i l - /3max) / ( l  ~-/3max), kinematics 
requires tha t /3  </3m~x anyway,  the x~ integration is f rom z 2._, 1 and the luminosity 
function is unmodified.  This can be seen in fig. 4 since in this case there are no 
intersections A, B of the lines OL,  OL '  with z2=x~x2  in the al lowed regions 

0<~x,.2<~ 1. 
The luminosity restriction given by the condi t ion/3  < timex changes dramatical ly 

with the angular cut 8c. Taking 0c = 20 mrad (technically feasible for a forward 

detector)  gives (1 - timex)/(1 +/3m~x) = 6 X 10 -4, and so no luminosity restriction for 

z > 0.024. 8c = 300 mrad,  a typical min imum angle for a central (solenoidal) detec-  
tor, gives (1 -/3m~x)/(1 +/3m~x)= 0.19 and so loss of luminosity occurs for z < 0.44. 

This value is taken for the lines OL,  OL '  shown in fig. 4. The corresponding 
modification of the luminosity function is shown in fig. 10. Here  eqs. (13c) and (17) 

(factorizable formulae)  were used. The angular range taken for the scattered 
electrons is 20 < 0 < 200 mrad but the fractional reduct ion in luminosity, e~, given by 
the /3 cut is almost  independent  of this, and using the simpler form eq. (15) for 
(dN~,/dx)(x, Om~., Om~x) would be strictly independent  of 0mi. and O . . . .  In this case it 
is, in fact, given by the analytical expression: 

(2 + z2) 2 In ( l / a  2) - 2 z ( 1 / a  - ot ) [ 2 z  2 - z ( 1 / a  + a )  + 4 ]  

et~ = (2 + z ~_)2 In (1 /z  ~) - 2( 1 - z 2)(3 + z 2) , (22) 

where 

~ D /3 max 
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Fig. 10. D o u b l e  t agg ing  efficiency curves.  E = 15 G e V ,  20 < 01, 02 < 300 mrad.  Solid line: f rom cqs. ( 13cl, 
I I 7)" no res t r ic t ion  on B. D a s h e d  line: /3 < (I.682 or 0,. = 300 mrad.  

It is evident that even in the case considered here of an almost isotropic distribution 
of final-state particles in the barycentric frame of X, there is a large loss of effective 
luminosity in changing the minimum accepted angle of the detector from 20 to 
300 mrad. Further loss of acceptance will occur if the produced particles are forward 
and backward peaked in the centre of mass system for dynamical seasons as will be 
the case for many final states of interest. This clearly indicates the importance of good 
experimental acceptance in the forward direction. Such forward acceptance is 
particularly important to observe low mass final states with good efficiency. 

9. Conclusions and closing remarks 

(a) Total luminosity. The agreement between the simple leading log expressions 
and the full luminosity function is quite good, except near z = 1 (fig. 3), the leading 
log approximation typically overestimates the luminosity by 10-15%. 

(b) Tagged luminosity. There are significant differences between the double and 
single tagged luminosity functions given by eqs. (9) and (11), respectively, and those 
previously appearing in the literature, derived using the factorizable EPA approach. 
In particular, the formula givcn in ref. [2], whose validity has previously been 
questioned [5, 17] strongly underestimates the luminosity at small values of z. The 
equivalent photon spectrum recently calculated by Carimalo et al. [17], gives the best 
agreement with the present calculations in both the singly and doubly tagged case. 

(c) Acceptance effects. In the case where detection of at least one produced particle 
is required, it is important to have acceptance in the angular range below 300 mrad, 
to study two-photon processes with good efficiency, particularly for small values of 
the effective mass of the produced system. 

The terms of reference of this study have been somewhat limited, but it is hoped at 
least to have quantified the differences between what may be called unpolarized 
transverse photon approximation, i.e., the assumptions (i) to (iii) of sect. 1 plus the 
exact helicity formula, and the factorizable EPA type of calculation. The validity of 
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the latter type of approximation has been tested by comparison with exact QED 
calculations for various kinematical regions in a series of recent papers [16, 18]. The 
same authors have also given an analysis of single tagged processes where the 
restriction to transverse photons is dropped [19]. To perform more precise cal- 
culations, short of making a full Feyman diagram computation, requires relaxing 
assumptions (i) and/or  (ii) of sect. 1, i.e., making some physics assumptions about the 
virtual 73' process. Such an approach within the EPA philosophy has recently been 
taken by Olsen [20]. For the case of the total hardonic cross section where at low Q2 
the photon-hadron coupling is expected to be via a vector meson propagator, it is 
straightforward to modify eq. (9) by a simple multiplicative factor in Q2 to account 
for this [21]. For processes where the photon coupling is pointlike*, a strong 
dependence on Q2 of the photon-photon cross section is not expected and more 
significant errors might be expected to come from the restriction to transverse 
photons. 

The work described here as benefited largely from discussions with and com- 
munications from A. Courau, M. Defrise, F. Gutbrod, J. Reignier and P. Kessler. 

Appendix 

The functions F~(E/me, or), FI21(O.) a r e  given in appendix 2 of ref. [4] as 

F ' l '  = 4(1 + ½o')2 In In - 2 ( 1 - o ' ) ( 3 + o ' )  l n - - ( 1  -o.)  
me 

+2In  W(lnl)2(2- , -o .+o.2)  
m e ' ,  o- 

*{~(1 -0-) (39+3o-)-8(1  + ~o.)2[L2(1)- L2(o.)]} In W(1  -o-) 
me 

W 1 
- I n  - -  In - ( 1 4 - 4 o -  - 5 o  -2) , 

m e  or 

F,2, = [2(1+ ~ o . ) I n  1 2 q._ ~,o e l  2](. 1)3_4(1+½o.) i  n or--1 [in (1 _o.)]2 

- (4 -~°'2)(ln 1 )  2 -  2 ( 1 -  o.)(3 + or) In 1 In (1 - o.) o. 

+{~z-31o . -~o .2  +6(1 +o. +~o.2)L2(1)+6(1 + ½o.)2L2(o.) 

1 
+ 12(1 + o.)[a (o.)] 2} In - ,  

or 

• The pointlike coupling may arise either because lepton pairs are produced in the final state or, in 
hadronic processes, where an internal quark line is far from mass-shell. See ref. [22]. 
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w h e r e  

o'n I 2 
L2(cr)  = ~ ,  L 2 ( I )  = ~'n " , 

. - 1  /7 

/ 
1 o" 

a(~r) = X/  grr - a r c t a n  - - 4  - o" 

N o t e  t ha t  a l t h o u g h  F ~ '  is w r i t t e n  a b o v e  in t e r m s  of  W/m~ a n d  or, this  e q u i v a l e n t  to  

E/mc a n d  o- s ince  

W 2 E  W E 1 
I n - - = I n  - I n - - - s i n  or+In 2 .  

m e  me 2 E  m e  
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