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An argument is presented showing that the Wilson loop expectation value decays according to the area law, if it is as- 
sumed to satisfy the free loop wave equation. 

1. Recently, Nambu [1] proposed that the 
Schwinger-Dyson equations satisfied by the (suitably 
renormalized) Wilson loop expectation in a pure non- 
abelian gauge theory 

t ~ ( e ) = ( T r { P e x p / d x u A u l > ,  (1) 

P: path ordering, could perhaps be replaced, as a zeroth 
approximation, by the free loop wave equation 

(6 2/6Xla(O ) 6X,(O) -- M4x ' (0)  2) ~ ( e )  = 0 ,  

x u = dxu/do. (2) 

Here, e denotes a closed, infinitely differentiable curve 
in euclidean space- t ime I! d, Xu(a ) (0 ~< o ~< 2rr) is a 
parametrization of  e and M a constant mass parameter. 
Eq. (2) is expected to hold for double point free curves 
only. The loop wave equation has been studied in the 
context of  the relativistic string [2], but the wave func- 
tions constructed there do not actually solve the 
Minkowski space version of  eq. (2) and are therefore 
not immediately useful here. In this letter we show that 
eq. (2) together with some plausible "technical" assump- 
tions imply that 

In ~ (k  C) = -X2M2A ( e )  + lower orders ,  (3) 

where X Q denotes the curve e scaled by a factor of  
X and A ( e )  is the area of  a minimal surface bounded 
by e (for an introduction to the mathematics of  mini- 
mal surfaces see ref. [3] ). In particular it follows from 

this result that static quarks are confined by an asym- 
ptoticaUy linearly rising potential. 

2. One of  the "technical" assumptions needed to 
prove eq. (3) is that ~ ( e )  decays in a smooth fashion 
for large loops, i.e. 

In ff(XC) = - v(X) W(C) + lower orders ,  (4) 

where u(X) diverges for X -+ o~ and W > 0. Inserting eq. 
(4) into eq. (2) and keeping the leading terms only 
yields 

V(~,)2(~ W/6X#)2 = ( ~ / ) 4  x '2 . (5) 

It follows that v(X) is proportional to X 2, i.e. 

v(X) = X2M 2 , (6) 

if W is suitably normalized. Thus. eq. (5) reduces to 

(6 W/~xla) 2 = x ,2 (7) 

and since W is a reparametrization invariant functional 
ofxu(o ), we also have 

x u 6 W/fx u = 0 .  (8) 

The differential equations (7) and (8) have many solu- 
tions.so that we cannot immediately identify W(e)  with 
A (if).  The additional pieces of  information used to es- 
tablish the equality are positivity and scale covariance 
of 14I (a consequence of  eqs. (4) and (6)): 

W/> 0 ,  W(~.e) = X 2 W ( e ) .  (9) 
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3. Before proceeding with the argument it is help- 
ful to consider the analogous case of the Klein- 
Gordon equation 

{a2/axuaxu - M  2} @(X) = O, (x 4: O). (10) 

The corresponding W-function is defined for x 4:0 
and satisfies 

(0 W/axu) 2 = 1, W ) 0, W(X,x) = XW(x). (11) 

To solve the differential equation, we follow the 
method of characteristics (see e.g., ref. [4, pp. 90 ft.] ). 
Thus, one first determines the characteristic curves in 
phase space as the solutions of 

d aH d 0H p2 
drrXu-~pu ' d--rPu- ~x u '  = 1 ,  (12) 

where H = clef ~ (p2 _ 1) is the Hamilton function as- 
sociated with the differential equation (11). Explicitly, 

xu(r)=Pu r+au' Pu'au = constant, p2= I. (13) 

The usefulness of characteristics stems from the fact 
that for any solution W of the differential equation 
(11) the equality 

Pu = 8W/axu ' (14) 

holds along the whole characteristic (13), if it is true 
at one point (x, p). In particular, the change of W 
along these lines is given by 

dW/dr = 1. (15) 

To have W 1> 0 it is therefore necessary that all points 
(x u, 8 W/axu) in phase space determine characteristics 
passing through the origin x = 0, where b W/Ox u may 
be discontinuous and eq. (15) stops to hold. It follows 
that 

aW/ax u = xu/Ix I 

and since W ~ 0 as x -~ 0 by scale covariance, we are 
left with 

where f (a )  and g(o) are arbitrary smooth periodic 
functions. The equations for the characteristics thus 
read 

a + ~ a , , 
Or xu =s~u gxu ' Ur p" = [- fx .  +gp.] , 

p 2 = x , 2 ,  x ' . p=O.  (18) 

Of course, these are the familiar classical string equa- 
tions [2], whose solutions xu(r, o) describe minimal 
surfaces. If the functions f a n d  g are varied, the solu- 
tion of eq. (18)with prescribed initial data Xu(O, o), 
pu(O, a) will change. The minimal surface ~ swept 
out, however, remains the same. 

Suppose now that W solves eqs. (7) and (8) and 
has the additional properties (9). Each point [xu(o ), 
6 W/6xu(o)] in phase space then determines a unique 
characteristic curve (minimal surface) Y. passing 
through it. W changes in a simple fashion along ~: 
if a closed curve e on Z is smoothly deformed into 
another curve e ', we have W ( e ' )  - W(e)  = (signed) 
area swept out durIng the deformation ~ ~ e ' .  

In particular, deformations on one side of C will de- 
crease W. Since W t> 0, we conclude that Q actually en- 
closes a part of ~. Furthermore, by scale covariance, 
W ( e ' )  approaches zero, when C'  is contracted to a 
point. W(e)  is thus equal to the area of the piece of 
Y., which is enclosed by Q.. In other words W(e) = A (e ) ,  
as asserted. 

5. The proof of the area law given above is not 
mathematically rigorous. In particular, we implicitly 
assumed that W was continuously differentiable. There 
is little reason to do so in fact, even if the Wilson loop 
expectation ~b ( e )  is differentiable. Suppose for exam- 
ple that 

q,(e) =Z~ o~(e), 
i 

W = Ixl .  (16) 

4. In the strong case we have to solve many first 
order partial differential equations simultaneously. The 
associated Hamilton functions are 

2~" 

H = f d a ( l f ( P  2 - x ' 2 ) + g x ' ' p } ,  
0 

(17) 

In t~i(XQ ) = -X2M2Wi(e ) +lower orders, (19) 

where the Wi's are analytic functionals. In this case, 

W(e) = min {Wi(C)}, (20) 

will not in general be continuously differentiable. Also, 
it it not difficult to argue that A ( e )  or its first deriva- 
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tive must be discontinuous at some curves C,  which 
bound several minimal surfaces. 

As a working hypothesis, it is consistent to assume 
that all discontinuities of  W arise from the presence 
of competing terms in the large loop expansion of  
as explained above. Instead of continuous differentia- 
bility, one thus requires that 

(i) W is piecewise (real) analytic. 
(ii) (cf. eq. (20)) W can be analytically continued 

across the discontinuities. The analytic continuation 
W is bounded by W: W ( e ) / >  w(c). 

The argument of  the preceding section can then be 
adjusted easily, so that one arrives at eq. (3) again. 

6. It is to be expected that there are many solutions 
of the loop wave equation, which behave like ff (C)  
for uniformly large loops (eq. (3)). To completely fix 
the solution one would also have to specify the singu- 
larity structure at small and self-crossing loops. It 
seems reasonable (but somewhat arbitrary) to choose 
singularities appropriate for a string Green's function. 
In this case, ~ ( e )  can be formally constructed from 
the loop heat kernel K(z, x) [5] : 

]z] K(z,x), (21a) 

x) = f * 
e~ u(z(o))=xu(o) 

M2 f d2z(aaC~u)2 (21b) X exp ----~- 
D 

Here, za(o), 0 ~< o ~< 21r, a = 1,2,  denotes a closed curve 
in the plane I:12 bounding a region D. The fields Cu 
integrated over in eq. (21b) are defined o n D  and 

have prescribed values on aD. Although the "proper 
coordinate" representation (21)is not very explicit, 
it is easy to check eq. (3). Noting 

f 
~u(z(a))=xu(o) 

2 
X exp - X 2 - ~  fd2z(a,,Ou) 2 , (22) 

D 

we see that an asymptotic expansion for k ~ ~ can 
be obtained by the saddle point method.  The absolute 
minimum of 

! fd2z  (aa4,u)2, O.(z(o)) =xu(o ) 
2 

D 

when ¢u(z) and Za(O ) are allowed to vary, is known 
to be the least area enclosed by C [3],  so that the 
leading term in the saddle point expansion matches 
with eq. (3). 

I am indebted to P. Di Vecchia, P. Weisz and K. 
Symanzik for helpful discussions. 
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