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The properties of photon-photon initiated 3-jet events of the type e + e- -~e  + e-qg(q¢l)+ 
beam pipe jet are discussed. Expressions are derived in QCD for the total energy, longitudinal 
momentum and transverse momentum distributions of the beam pipe jet. These results are based 
on a generalization of Witten's result on photon structure functions to a distribution of two 
partons in a photon. The derivation is a novel application of jet calculus. The charge correlations 
typical of the 3-jet events are also analysed. 

I. Introduction 

The predictions of Q C D  in leading logari thm approximat ion  for the jet structure 

arising f rom the p h o t o n - p h o t o n  mechanism in very high energy e + e -  collisions 
have recently been discussed in detail [1-5].  In pho ton -pho ton  processes both the 

e ÷ and e -  radiate an essentially parallel pho ton  with a well-known Weizs/icker- 

Williams probability.  In zeroth order  of Q C D  the two-photon  collision leads to the 

p roduc t ion  of a hadronic  state of  l a rgep  T via the Q E D  Born diagram shown in fig. 
la. The high PT of  the two final-state quarks ensures that  the internal quark 
propaga tor  is far f rom mass-shell giving a point-like pho ton-quark  interaction 

which justifies use of  per turbat ion theory. Higher-order  Q C D  diagrams leading to 
high-pT jets contain,  in addit ion,  a number  of quarks and gluons nearly parallel 
with the initial direction, for example that shown in figs. lb, 2a, where a quark  and  
gluon recoil at large angles or  in fig. 2b where, as in the Born diagram, the jets 
come f rom q~l. These quarks and  gluons form a small-pTjet,  which we shall call the 
beam pipe jet. W h e n  all the diagrams are summed over [1, 6 -8] ,  the cross sections 
of these 3-jet and 4-jet (containing 1 and 2, respectively, b e a m  pipe jets) events can 
be expressed in terms of  the distr ibution functions,  calculable in QCD,  of  quarks 
and gluons in a pho ton  (fig. 2). Conversely, the Q C D  predictions can be tested by 

carrying out measurements  on the 2-jet, 3-jet and  4-jet events. 
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Fig. 1. (a) The 2 jet proces, (b) the 3 jet process e + e----~e + e-qg + beam pipe jet. Yi are the lab 
rapidities of the high-pT quanta, xl, x 2 are scaled momenta of the photon and quark participating in 
the hard collision. ~ and z B are scaled momenta of the other photon and the valence quark within the 
beam pipe jet. z, w 1 and w 2 are momentum branching fractions as indicated by the arrows. Q2 and p2 

indicate the off-shell mass scales of the hard and intermediate partons. 

The  purpose of this paper  is to consider the characteristics of 3ojet events; 

however,  the discussion can be easily extended to 4-jet events. A knowledge of the 

properties of the 3-jet events is clearly impor tan t  for planning experiments on 

pho ton -pho ton  initiated jets. To  compare  experiment with the theoretical predict- 
ions, the 2-, 3- and  4-jet events must  be separated. In  particular, we shall discuss 
the properties of the beam pipe jet. Calculations so far have only pointed out  its 

existence. Charge correlations will also be considered. The discussion of the 
angular  width of the beam pipe jet  will lead to a rather interesting novel application 

of jet  calculus [9] to photons.  

A clarification of the terms '3-jet event '  and ' b e a m  pipe je t '  may  be in order  here. 
The physical  basis for the existence of the third small-PT jet in the processes of figs. 

2a, b is the following: the large-PT process probes the quark  and gluon content  of 
the electron with a quark  of invariant  mass - q 2 ( 1  + eY'-Y2). Before the invariant  

mass of the quark can attain this large value, the quark undergoes Q C D  evolution 
2 and  emits further quarks  and gluons. The relevant diagrams up to order  a s are 

shown in figs. 3a, b. The dominan t  conf igurat ion is one in which the p roduced  

quarks and gluons are nearly parallel with the incident electron. The  object formed 

by these quarks and gluons or  target fragments is in the following called the beam 

pipe jet. Strictly speaking, a ' jet '  results f rom a single separated quark  or  gluon. 

Here we are extending this definit ion to include several a lmost  collinear quanta.  It 
is similar to the target f ragmenta t ion jet  in deep inelastic leptoproduct ion.  

i~lg (Y],q....T) / q (Yl'q-. T) 

e+ ~'----i-----~x~T e + e- 
xl 2} / fgle(x2,qT 2} 

P 

'~ q(Y2,'q T} q(y2,-qT ) 
a) b} 

Fig. 2. The two subprocesses in 3ojet processes (a) ~,q---~gq and (b) "¢q--~qcl- 
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Fig. 3. Generation of the beam pipe jet  in the course of QCD evolution. 
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In addition to the 3-jet events as defined above, there are genuine 3-jet events 
obtained from QCD diagrams where more than one propagator is hard. In fig. 4 
the qFtg diagram with two hard propagators leads to a genuine 3-jet event. The 
angles between the quanta remain constant when s--~ oo and the cross section is 
calculable from the lowest-order diagram without the need for a leading log 
summation. Processes of this type have been considered in connection with 
hadron-hadron scattering in [10]. 

On the theoretical level, the basic object we shall consider in the following is 
fata2lv (x 1, X2, Q 2, ~2), the double longitudinal inclusive probability density of find- 
ing two quanta (a L 2 = q, g) in a photon (fig. 5). Here a 2 is the q or g initiating the 
hard collision, a I is another jet  originating from the photon. The mass of a 2 is of 
the order of Q2, that of a~ of the order of/~2. The distribution fa,~21v generalizes in 
a natural way the photon structure function fair derived by Witten [6]. Its deriva- 
tion is a new application of jet  calculus [9]. One of the properties of f~,~21 ~ is the 
energy momentum sum rule 

~" fo' dXlX'fa'a21v(x' ' x 2 '  Q2,#2) = (1  - x2)fa~l.r(x2, Q2,#2), 
al  

(1) 

which expresses the fact that the expectation value of the scaled energy of the 
fragmentation jet  a~ added to the scaled energy x 2 of the hard quantum a 2 gives 1. 
To determine the energy distribution of the beam pipe jet (sect. 2) we only need 

fa2w 

] Bard 
. . . . . .  

Fig. 4. A y 7 process leading to three genuine  non-degenerate  jets. 
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Fig. 5. The jet calculus diagrams contributing to f.ma21v(xt, x2, Q2). 

2. The beam pipe jet in photon-photon initiated 3-jet processes 

We shall in this section first discuss the beam pipe jet in the valence approxima- 
tion, i.e., assuming that QCD evolution takes place only via gluon radiation from 
quarks. This leads to more transparent formulas and is also likely to be a good 
approximation to the complete QCD evolution result (sect. 3). 

The cross section for the 3-jet event in fig. lb producing two large-px jets at 
(Yl, qv) and (Y2, --qT) is (for a u quark) given by 

- 

do = x , f v l ¢ ( X , ) x 2 f ~ l ~ ( x 2  ) 1 d6VU--'g~- , (2) 
d y  I d y  2 d2qT 'n" d t  

where 

daYu-'gu 42~raa~e]( £_ +-fi) 
d [  3 ~2 _ fi g ' 

(3) 

x , = ½ x T ( e Y , + e Y ~ ) ,  x 2 = ½ x T ( e - e , + e - Y , ) ,  X T = 2 q T / V ' S  

g = x l x 2  s ,  [=_,  2 ( 1 + e y e - y , ) ,  f i =  _ ~ s x v ( l '  2 + e y , - y ~ )  (4) ~SX T 

= a lo s 1 + (1 - x )  2 

Lie(X) ~ g a m  E x ' 

and 

ful~(x2, Q2,/~2) = fo'  d x d £ 6 ( x 2  - YzT)folv(zT' Q2,/~2)fvl,(Z) 

(5) 

= f o  1 d Y d z  dw2 f~l~(.~)[ z z + (1 - Z ) z ] 6 ( x 2  - %zw2) 

3 e 2u a £ Q 2 d_P_~ 
x fulu(w2,O2,p2), 2 p 

(6) 
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where, in s tandard  notat ion,  the x " -  ~ momen t s  of f~l ~ are 

[ a (Q2) ]d."" 
(7) 

1 T o  sum over  5 nf f lavour  doublets ,  eq. (2) is to be  mult ipl ied by n f ( l  + ~ ) .  
To  descr ibe the b e a m  pipe je t  we calculate the dis tr ibut ion in the var iables  zB, 

x a and  p~-, def ined as follows: 
(i) z B is the scaled m o m e n t u m  of the valence quark within the b e a m  pipe jet. 

(ii) x a is the scaled m o m e n t u m  of the whole b e a m  pipe jet, i.e., adding  the 

contr ibut ions  of the f r agmenta t ion  leg and the ha rd  process leg in fig. lb, x B = £(1 
- z )  + Yz(l - w 2 )  = x - x z w  2 = . ~ -  X 2. This is s imply energy conservat ion.  Note  

that  z a = x B if w 1 = w  2 = 1, i.e., no gluon radia t ion takes place (Born approx ima-  
tion). In general z a + x 2 < Y < 1. 

(iii) p 2  is the t ransverse  m o m e n t u m  of the f ragmenta t ion  leg in fig. lb,  which in 
the present  valence app rox ima t ion  is the same as the PT of the whole b e a m  pipe jet. 
The  t ransverse m o m e n t u m  P v v  of the valence quark  within the b e a m  pipe would  be 
given by  Pxv  = wlPx  since its m o m e n t u m  is reduced by  w~ due to gluon brems-  

strahlung. 
The  calculat ion of the distr ibution in x B is very simple: including 6 (x  B - ~ + x 2) 

one has 

X2 ) 
d f q l e ( X 2 ) = f q l . r _  f , l , ( x z + x a ) O ( l _ x  2 x B ) / ( X z + X a ) ,  (8) 

dxB  x2 + x a 

which is to be inserted in eq. (2). T o  calculate the distr ibution in z a we need the 
two-par ton  distr ibution in a pho ton  [eq. (1)]. In the present  valence approx ima t ion  
the z B distr ibution is given by evaluat ing the jet  calculus d iagram in fig. lb  and  is 

ob ta ined  f rom eq. (2) by replacing fu i~(x2) by f ,  u l~(X2, z B): 

x 2 ,  ,7. B ,  2 , p ,2  fual~( Q ) = f o l d 2 d z d w 2 d w , ~ ( x 2  - x z w 2 )  

. 3e2a 
× a(zB - - z)wl)Llo( )-T;- [ z  + ( l  - z )  

/.Q2 d p  2 ~ / 
× L 2  - - j J u J ° t w 2 ' Q 2 ' P 2 ) / o l ~ ( w " P 2 ' / ) "  (9) 

Since the valence quark  dis tr ibut ion is normal ized  we also have 

fo ldzBfuulc(  X z , Z a ,  QZ, btz ) =fule(X2 ' Q 2 , ~ 2 ) .  (lO) 
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The p~- distribution is calculated by changing the integration variable p2 in (9) to 
p~-. For a process q =P l  +P2 with E I +PlL = Z(qo + qL) the exact general kine- 
matic relation is 

q2 p2+ p2 p2 (11) 
= z  " 

In agreement with the rules of jet calculus [9] we have in eq. (9) assumed that 
[p2[ =p2 =p2. Since q2 =0 ,  eq. (11) then implies that dp2/p 2= dp2/p 2. The 

consequences of the assumption ]p2[ =p2 2 clearly deserve further study, here, as 
well as in jet calculus in general. 

As the distribution in the total energy x a of the beam pipe jet can be expressed 
in terms of the known structure functions faly(x, Q2), a = u, d,g, we also give here 
the general result, not assuming the validity of the valence approximation. Now the 
two subprocesses 7q--~gq and yg---~q~ (fig. 2) also contribute: 

do __- ( o~ s ]2 a 2 1 

dy  1 d y  EdEqwdx B I ~ log ~ ~ X,  4me ] qx (1 + cosh y)2 
(12) 

where (Y--Yl-Y2)  

.~'q 64 nf 
9 33 - 2nf 

- -  [1 + (1 -- Xl)2] [ U(XB,X2) 

+¼D(xB,x2)(l+e_r+ 1 ) 
l + e - r  ' 

(13) 

)~Yg- 10 ne 
3 33-- 2nf [1 + (1 -- x,)2]G(xB,x2)cosh Y. (14) 

Here U, D and G are given by [cf. eq. (8)] 

x2 )1  I+(1--XB--X2)20(I_xB_x2) ' 
A(xB,x2)=fA xB+x  2 xB+x2 

A=U,D,G, (15) 

where 

fg(X) =XfAIv(x, Q2)/a-- logQ 2 , A = u , d , g ,  

is the Q2 independent part of the distribution of an eq =2 ,  (u), eq 

(16) 

1 = - 3, (d) quark 
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or a gluon (g). For  numerical purposes we shall use the simple parametrizations [4]: 

fu(x)=O.16(x +½) , 

fd(x) = O.03(x + 1) ,  (17) 

fg(X) ----- 0 .174x-°6(1 -- x ) .  

E.g., fu(x) above differs from the exact result by less than 5% for 0.05 < x < 0.95. 
A more detailed parametrizat ion can be found in ref. [11]. In the Born approxima- 

tion 

B m l  2 u +xg) 
1 + ( 1 - x  B - x 2 )  2 

9 ( 1 - x B - x 2 ) ,  
( x a + x 2 )  4 (18) 

D a i B G a = ~ U  , = 0 .  

Note also that since the aim is to discuss the beam pipe jet, eqs. (13), (14) only 
include the processes where the e -  turns to a quark or gluon which collide with a 

photon from the e ÷ . If the direction of the e ÷ is defined as the positive longitudi- 
nal direction, the beam pipe jet  will then go to the negative direction. Also, the 

form of the Y-dependent factor in (13) is such that it corresponds to YI(Y2) being 
the gluon (quark) rapidity, i.e., the gluon prefers to go to the negative direction. 
The rates of 3-jet processes in which the roles of e ÷ and e -  are interchanged are 

simply obtained by permuting yi--->-Yr 
To give numerical predictions we choose ~/s = 140 GeV, nf -- 4 and fix the hard 

process so that the two large-pv jets are both at 90 °, Yl = Y 2 - - 0  (also Yl =Y2 = 2; 
jets at 15 ° to the beams) and let x T have the value 0.1, q T = 2 0  GeV (also 

x T = 0.2, 0.4). 

Numerical  examples of the distribution in the total energy x~ of the beam pipe 
jet  given by eqs. (12)-(17) are shown in figs. 6, 7. We can draw following 
conclusions from these figures. 

The beam pipe jet  has a rather broad energy distribution. In fact, the distribution 
d o / d x  B does vanish at xs---~0 for both of the subprocesses shown in figs. 6, 7, but 
this is not evident for yq--~gq due to the approximate parametrization (17) used for 
fqlY" Actually fqlv---~0 w h e n  x - ~  1 like l / log(1 - x),  the turnover being at x ~ 0 . 9 .  

The ),q---~gq subprocess dominates over 7g---~qEl at small x a while the latter is 
large at x a near its maximum value 1 - x  2. This reflects [eq. (17)] the different 
behaviour of the quark and gluon distribution functions fqlv(X) and fglv(X): the 
former dominates at x near I. 

1 The peaking at small x a is stronger for largey 1 a n d y  2 since x 2 - ~  x T ( e  -y~ -t- e -y2)  

is small then. 
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Fig. 6. The distribution of the total energy x a of the beam pipe jet of X / s =  140 GeV for values of 
variables marked on  the figure. 

The Born approximation alone gives a good estimate of the overall situation. 
Predictions calculated on the basis of eq. (9) (with dp2 /p  2 = d p 2 / p  2) are shown 

in figs. 8-10. The calculation is carried out by straightforward numerical integra- 
tion using eqs. (2), (6) and (9). The distributions in 2 2 PT, PTv, XB and z B are obtained 
by substituting suitable 8-functions under the integral signs. 

O,Ol 

dO" 

nb GeV 2 

0001 

Yl : Y2= 2 
X T -" 0.1 

05 
X B 

Fig. 7. As fig. 6 but  a t y  I = y 2 =  2. 
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Fig. 8. The distribution of the p2 T of the beam pipe jet  for values of variables marked on the figure. 
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Fig. 9. The distribution of the p T of the valence quark within the beam pipe jet for various values of its 
longitudinal momentum.  
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Fig. 10. The distribution of the momentum fraction z a of the valence quark within the beam pipe jet 
for x w = 0.2 and 0.4. 

3. The distribution of two partons in a photon 

Eq. (9) gives the distribution of a u and fi quark in an electron (or photon) in the 
valence approximation. To calculate the full QCD expression for fa,a21 ~(X 1, X 2, Q 2 ) 
we use the fact that the photon couples to quarks only via the pointlike y--~qF:l 
coupling and let the two quark lines evolve and branch to give the two partons a~ 
and a 2. The sum of all the contributions can be expressed in terms of the two-jet 
calculus diagrams of fig. 5. In the calculation of diagram (1) one has to integrate 
over the invariant mass p2 of the q coupling to the photon. This integral can be 
written in the following alternative forms: 

L f0 o 2 p2 2~r = raY as(p2 ) 2 p~ 2~r' (19) 

where pw(p2~  _ p 2 )  is the relative transverse momentum of a I and a 2 [see 
remarks after eq. (10)] and 

1 2) 1 2) 
Y = ~ log - - ,  y log (20) 

as(Q2)  = 2~-b~b a s ( p  2 ) 

In the following we use (Y, Q2) or (y, pZ o r p 2 )  interchangeably. Y, y defined by 
eq. (20) should be discriminated from the rapidity variables. The result is then [as a 
slight generalization of eq. (9)] 

2nf 

fo'dZdw, ~a2l',/~, I, 2 '  1 q 2)  

X ~ ( X  I --  Wl(1 -- z))fa,l~t(wl,Y)fa21q(W2, r-y)pq~t~,(z), 
(21) 
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where 

Pq~),( z ) = z 2 + ( l - z )  2, (22) 

and f~,l~ and fa:lq describe the evolution of a quark from the scale p2 (to be 
integrated over) to the scales #2 and Q2, respectively. Equivalently, in terms of 
x n- 1 moments we can write 

fa(~h,(n,, n2, Y) = 3Y~ e~for e~ dY~-~p2) fa,lq(/1''Y)fa21q(n2 r-Y)Pq~lv(nl, n2),  

(23) 

where 

Pq~l l y (n l , /12)  = B(/11 -.~ 2, n2 )  + B(/1I,/12---). 2) . (24) 

To discuss the px  dependence one may replace y in (21) by p~ r using (19) with the 
result [y also contains p2  via (20)] 

la21"t A , ' ~ I  , X 2 ,  1 - - x t  dz + - -  
= eq2--~r p2 2 1 - z  z 

, (25) 

For diagram (2) in fig. 5 one similarly obtains 

fa 2) t/1 y ) = 3 ~ e Z f r d y  a pqlr(n ,+nz_l)f~,a21v(/11,/12,Y_y) ,a,l~,', i ,n2 ,  "Jo c~(p 2) 

= 3  ~] e2qfordYa LVdy'fa,lb,(n,,y ') 
~ ( p 2 )  (26) 

x L2162(/12, r--y')eb,b2d/1l,/12) 

Xfjlq(n , + n  z -  1,y'--y)Pqh,(n, + n  z -  1), (27) 

where 

y , =  1 ~(~2) 
log - - ,  a(k 2) (28) 

fo l d x x  n -  I .4= ] 
n 

2 2 
n + l  n + 2 '  

(29) 
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and Pb,b~lj(nl,n2) is the double moment of the blb2j vertex. The complete result 
for the distribution of two partons in a photon is given by the sum of eqs. (21) and 
(27). Since f~lb(n,y) is a matrix exponential function in y, the integrations in (21) 
and (27) are easily carried out. However, the result is rather lengthy and will not be 
presented here. 

The necessity and sufficiency of the two diagrams is made obvious by checking 
the energy-momentum sum rule (1), which in terms of moments, gives 

~f~,~fv(2, n2, r )  =f~21v(n2, Y) -f~,lv(n2 + 1, Y), 
al  

(30) 

where [1, 6] 
2 r Y  a ~ 

f a l v ( n , Y ) = 3 ~ e q J  ° dyarpZ,Jalq(n,( ) Y-y)Pqlv(n), (31) 

is the moment of the single parton distribution function [see eq. (21) above]. Eq. 
(30) for the sum of eqs. (21) and (27) follows simply from the fact that the building 
blocks of eqs. (21) and (27) also satisfy energy-momentum sum rules. 

To understand the behaviour of fa,a21v(Xl,X2, Y) analytically we shall only 
consider the diagram (1) in fig. 5 in valence approximation, i.e., including only 
gluon emission in the evolution of the quark line. Experience with falv(X, Y) [2] 
indicates that this is a good approximation for values of x~>0.2. For smaller x 
there is anyway the uncertainty arising from the phenomenological vector meson 
contribution arising from the direct y---~V coupling. Also, one may note that the 
diagrams contributing to the jet calculus diagram (2) in fig. 5 are at least of the 

0 2 while diagram (1) starts with a s. order a s 
In the valence approximation 

I a~(Q2) ]d., 
f~lq(n, Y)=6~q a~(/x2 ) (32) 

where d,, is the standard non-singlet anomalous dimension satisfying 

CF 
d , = O ,  d2n_, ~ ~ [ l o g n - ( ~ - Y ) ] = A l o g n - B .  (33) 

Then 

V 
 qlT( n ' 

-Y qp - d . ,  - 

(34) 
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where _f~qBiv is the double moment of the Born approximation (summed over 
u, fi, d ,d  . . . .  ): 

fvt~ql.t(nl,n2, O2) = 3 ~  eZ-ff--- log Q2[ B(n I + 2, n2) + B(nl,n 2 + 2) ] .  (35) 
Zq7 

Note that the valence approximation to falv(n, Y) is obtained from (34) by putting 
dn, = 0. Then the last term (log~t2/log Q2)1+d,2 can be asymptotically neglected 
and the only Qz dependence of the result is a multiplicative factor log Q2 as in the 
Born approximation. However, in eq. (34) both terms have to be taken into account 
even at large Q2. 

The p~- dependence of the result is most conveniently analysed by starting from 
eq. (25). Consider further the limit 1 - x  I -x2---~0, in which the valence approxi- 
mation should be applicable. Then one can use in the integrand the x---~ 1 limit of 
the valence quark distribution in a quark [cf. eqs. (32), (33)]: 

e(3/4-'~)2CFY 
f q l q ( X , Y ) =  F(2CFY ) ( l - - x )  2cFr-~. (36) 

Inserting this into (25) one obtains, in the limit 1 - x ~ -  x2--->O, 

fF=l (I) / 'v X Q2,p~) 3E 2 a e(3/4-~)zcFr(l_Xl_x2)EC~r-I 
q]'r ' l , '~l ' 2 '  = eq ~ F(2CFY ) 

l [ Ots( p2T) ](CF/rrb)l°g(1/x2)[ as(p2) ] (CF/rrb)l°g(1/x') 
X(X 2 + 

(37) 

This is to be compared with the Born approximation 

fqBql.t(Xl,X2,Q2,p2T) 3 E  2 ot ( ~ ( 1 - x  I - x 2 ) ( x 2 1 + x 2 ) - ~  (38) e q ~  

P:r 

Eq. (37) can be used to make a rough estimate of the rates of e + e - e  + e - q v g  + 
(BPJ ~ Ft v (z B,p~)) in place of the numerical evaluation of eq. (9). The comparison 
of (37) and (38) shows the modification of the two-parton structure function due to 
gluon radiation. 

4. Charge correlations 

When the hard scattering process leading to the 3-jet topology is yq---~gq (fig. 
lb), the beam jet carries charge opposite to that of the high-pT quark jet. Denoting 
the electric charges of the two high-pT elementary quanta, gluon and quark by QI 
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and Q2 and that of the beam pipe jet  by QB the following charge correlations may 
be defined: 

Cl=(Q1Q2>, cz=<Qa(Ql +Q2)). (39) 

As the gluon is neutral Q I = 0 so for this subprocess 

C, = 0, Cz = ( Q a Q 2 ) ,  (40) 

The value of C 2 may be found by averaging over quark flavours. From fig. lb it 
can be seen that the cross section is weighted by the 4th power of the quark charge. 

2 I In the case that both the ~ and ~ charge members of a given quark generation are 
[ ( 2 )  i 4 , ] [ (2)4 4] above threshold Cz has the value: 4 ( _ ~ ) + ( 3 )  ( _ ~ )  / + (½)  = 65 153 ~ 

I independent of the number of generations. Between thresholds, if the charge 
member of the generation is lighter, C 2 will be smaller than this, the difference 
becoming smaller as the number of generations increases. For  example, well above 
the b~a threshold, but below the tt one (5 flavours excited) the expected value of C I 
is - 131 differing from the constant 'even flavour' value by only 2%. 

Because of the neutrality of the photon and the gluon, QB is expected to be zero 
in 3-jet events originating from yq ~ qF:l (fig. 2b). For the same reason Ql = - Q :  in 
this case. This implies that 

C, = - ( e 2 )  , (41) 

2 while the weighting factor for the different flavours now being eq, 

C 2 = 0 .  (42) 

For excitation of any number of complete quark generations 

(43) 

The charge correlations expected for the two different subprocesses are thus 
strikingly different. For a kinematic configuration such as that shown in fig. 7, 
where the relative contributions of the two subprocesses change strongly as a 
function of x B, a similarly large change in the charge correlation coefficients C 1, C 2 
is also to be expected. In practice, of course, the charge of the elementary quantum 
must be estimated from that of the leading z--~ 1 hadrons in the jet, the dilution of 
the elementary charge correlation, resulting from this depending on the details of 
the fragmentation mechanism. If the average charge of the jet ( Q j )  is used as a 
measure of the charge of the leading quantum QL, then for the quark jets, the 
'dressing' necessary to convert the primary fractional charge to the observed 
integral charge results in a dilution of the charge correlation [12, 13]. This dilution 
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m a y  be  expressed  as a un iversa l  add i t ive  cons t an t  [13, 14]. 

( Q j )  = QL ± T/Q, 
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(44) 

with the + ( - )  signs t aken  for  l ead ing  Fl(q) where  [14]: 

*/e = 0.07 ___ 0 .01 ,  for u, d ,  s q u a r k s .  (45) 

Rep lac ing  the quark  charges  in the charge  cor re la t ions  by  average j e t  charges  given 

by  (44), (45) results  in an  ~ 20% reduc t ion  in the abso lu te  m a g n i t u d e  of the charge  

corre la t ions .  The  s t r iking qua l i ta t ive  d i f ference  be tween  the two subprocesses  

"yq--->gq a n d  "Yg-->q~t is, however ,  no t  affected.  Af te r  the comple t i on  of  this pape r  

we no ted  that  charge  cor re la t ions  in "y~/collisions have also recent ly  been  s tud ied  

by  Soni  [15]. 
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