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Abstract:

A large variety of modern perturbative aspects of QCD is critically reviewed from a theoretical as well as phenomenological point of view. The
first part of this review is devoted to the classical more formal approach of summing leading logs: After a brief discussion of the basic concepts of
renormalization theory, we review the renormalization group and its predictions for the effective (running) coupling constant in any field theory
(asymptotic freedom as well as ‘fixed point’ theories). Using, in addition, the operator product expansion for deep inelastic scattering we calculate
scaling violations of structure functions and show how to compare these results with experiment. Furthermore, dynamical calculations of parton
distributions are discussed, as well as o /orr, jets in leptoproduction and subleading corrections. We then proceed to show how these renormalization
group improved results can be also derived using a simple perturbative language (Kogut-Susskind; Altarelli-Parisi) or by summing parton
(Bethe-Salpeter) ladders. The universal validity (process independence) of the resulting Q® dependencies of parton distributions is emphasized and
their factorization from the uncalculable non-perturbative piece (infrared divergences) is discussed. These latter results enable us to make rather
unambiguous predictions for processes other than deep inelastic scattering, to which the remainder of this review is devoted. The hard scattering
processes discussed in detail include hadronic (Drell-Yan) production of lepton pairs as well as their transverse momenta, the hadronic production
of heavy quark flavors, semi-inclusive processes and fragmentation functions, high-pr reactions and some recent topics and problems of jet
production in e*e” annihilation.

Introduction

This article originated from a series of lectures given at the Herbstschule fiir Hochenergiephysik at
Maria Laach in 1977. These lectures were intended for young (mostly non-expert) theorists and
experimentalists as an introduction to the theoretical basis of Quantum Chromodynamics (QCD) and its
application to leptonic and hadronic scattering processes. The aim of this introductory review is to
teach —hopefully —even the uninitiated how to calculate “from scratch’ scale violating effects and how to
apply them to actually measured quantities. In order to make these rather complicated field theoretic
techniques comprehensible, as far as possible, also to progressive experimentalists, this article will be
oriented rather pragmatically. Special emphasis will be given to show how various quantities of interest can
be and are calculated — details which are usually not found in the literature. By doing this I hope to reveal
the physics hidden behind the rather awkward formalisms more clearly and to help also experimentalists to
understand their (nowadays exciting) measurements in terms of modern field theoretic concepts.

These notes owe obvious important debts to original articles and reviews listed among the references.
There exists already a variety of excellent reviews [1-11] regarding the perturbative treatment of QCD
at small distances. We refer the German speaking reader also to the Maria Laach lectures [12] of 1977
(where not only strong interaction theories are discussed, but also the unified gauge theories of weak
and electromagnetic interactions are treated rather comprehensively) and to ref. [13]. A discussion of
the more formal and non-perturbative aspects of QCD, such as the path-integral formulation of
quantum field theories, vortex solutions, solitons, instantons and related questions of quark
confinement, can be found, for example, in refs. [14, 3 and 12].

In order to guide the theoretically not so well equipped reader through the jungle of presently
existing reviews, let me briefly discuss those reviews which appeared in the past few years, mainly in
Physics Reports. The article of Marciano and Pagels [14] concerns itself with the formal field theoretic
and non-perturbative aspects of QCD, but does not cover the vast area of phenomenological ap-
plications of perturbative QCD. Peterman’s review [10] deals with all the mathematical subleties
underlying the renormalization group and their connection with measured structure functions together
with a comparison with deep inelastic scattering data. Similarly, the excellent and very comprehensive
review of Buras [11] concentrates on leading order and especially on higher order QCD corrections to
structure functions using both the more formal language of the operator product expansion and
renormalization group, and the intuitive parton model picture of Altarelli and Parisi; furthermore a
systematic comparison of asymptotic freedom predictions with deep inelastic data is presented. The
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recent article of Dokshitzer, Dyakonov and Troyan [169] is very theoretically oriented in treating, using
the parton (Bethe-Salpeter) ladder approach, perturbative QCD corrections for various hard scattering
process, with little phenomenological applications. The present review is, as far as possible, theoretically
self-contained by discussing and comparing all three calculational approaches (renormalization group
and operator product expansion, Altarelli-Parisi equations, and parton ladders); the main emphasis is
then put on the phenomenology how to apply these perturbative QCD predictions to all presently
known hard scattering processes and to compare them with experiment.

The first part of this review (sections 1-5) is devoted to the classical more formal approach to
scaling violations using Wilson’s operator product expansion for deep inelastic processes. Here we shall
discuss not only how to calculate scale violating effects, i.e. Q*-dependent parton distributions, from
general field theories of strong interactions (QCD as well as “fixed point” theories), but also how to
compare these formal results with experiment such as x- and Q°-dependencies of deep inelastic
structure functions as well as their moments. We then discuss in section 6 how these renormalization
group improved results can be understood and derived from a simple perturbative language, which will
reveal the physics more clearly than the formal approach of the previous sections. Furthermore,
perturbation theory is an essential tool for studying whether asymptotic freedom can be used to make
predictions for processes about which the operator product expansion yields no information. In section
7 we shall see that the results derived for deep inelastic lepton—nucleon processes have indeed universal
validity such that the leading Q°-dependencies of parton distributions remain the same for all processes
studied so far (semi-inclusive reactions, Drell-Yan dimuon production, hadronic high-pr processes,
etc.), regardless of space-like or time-like momenta-transfer-squared; furthermore non-perturbative
infrared effects will factorize to all orders. Thus QCD can make unique, in principle parameter-free
predictions for a wide class of processes, once scale violating effects have been calculated for, say, deep
inelastic scattering. This ambitious, so far not fully solved program will be studied in the remainder of
this review (sections 8-12), and in the last section we briefly discuss some recent topics and problems
of jet production in e*e™ annihilation.

1. The concept of color

There are numerous empirical and theoretical arguments [15, 16] which made us believe that the
conventional quark model carrying only SU(N;=3,...) flavor degrees of freedom, i.c.
u,d,s,c,...quarks, should be extended to include additional “‘color”” degrees of freedom described by
the color-group SU(N, = 3).. The most convincing arguments in favor of the color quantum number are
the following:

(i) Fermi-Dirac statistics: It is well-known that in the non-relativistic naive quark model the
low-lying baryon states are totally symmetric in the quark- and spin-indices, for example

A L=+)=|u"u"u’). 1.1

Thus the ground state of the three quark system, composed of three identical u-quarks, corresponds to a
totally symmetric wave function. On the other hand, this cannot be the case if quarks, like other known
fermions with spin 1/2, obey Fermi-Dirac statistics. The by now most convincing way out of this puzzle
is to assume [15] that each quark flavor comes in three different “colors”, say red (R), green (G) and
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blue (B). In this case the wave functions of the ground states are still symmetric in space, flavor and
spin, but can be simply made antisymmetric in color:

|A++,Jz = +%>=_\}—6 z 3ijk|uiT u]_T ukT) (12)

R.G.B

with i, j, k being the color indices. Similarly, the Pauli-principle can be satisfied for any physical baryon
state consisting of three identical flavor quarks. In group theoretic terms the form of the wave function
(1.2) means nothing else that three quarks can form only a singlet under SU(3).

3R303=1H8HEPH 10 (1.3)

where a given flavor g transforms as a (color) triplet (g, g, gs) under SU(3).. The singlet state 1 in
(1.3) is just the one which is totally antisymmetric in the color index, given by eq. (1.2). Thus a
consistent way to describe the baryon spectrum would be to suppose that all baryons are singlets under
SUQ3)., i.e. |baryon) ~ T &;x|q:.gq«). Furthermore, the same principle can be applied to mesons (~|qq))
as well, since we can form SU(3). singlets out of quarks and antiquarks,

33=1P8 (1.4)

where the singlet 1 state, to be identified with physical mesons, is given by

1
|meson) = —= Gi). 1.5
V3.2 (1
Note that two quarks cannot form a color-singlet state since 33 =643 2 1, and a similar situation

holds for a four quark system. Fortunately, two- and four-quark states have never been observed.
Therefore a consistent way to describe the whole spectrum of hadrons is to postulate the

“confinement dogma”: all physical observables (hadrons, currents,...) are color-singlets,
i.e. are “colorless”.

It should be emphasized that the arguments presented above lead necessarily to a three color structure.
Any other number of colors is clearly ruled out since, for example, four colors would imply that the
simplest multiquark state is of the form |qqqq).

Thus we imagine that the world of observed hadrons can be described by colored quarks of the, so
far, following type

(UR U UB> (CR Cg CB) (tR tc ts ) (1 6)
dr dg dg/’ SR Sc Ss/)’ br bs bs/ " )
light heavy superheavy

where the light up (u) and down (d) quarks together with the strange quark (s) build up the
“conventional” hadrons (m, K, p, ...), the charmed quark (c) forms the ‘“hidden”-charm (J/§ = T, . . .)
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and “open”-charm (D, F, .. ) states, and the b-quarks are the constituents of the Y(=bb) family. The
even heavier t-quarks have yet to be discovered.

(ii) Seeing color “‘experimentally”: There are two processes which allow us to infer the number of
colors in a rather direct way, one of which is the decay w°— 2y. Applying PCAC one can describe [17]
this decay by relating it to the coupling of the axial-vector current to two photons which, to lowest
order, is given by the famous triangle diagram

no---
The decay rate is calculated to be [17]
2
ooy = ( ﬂ;’ﬂ N, s) (17)

with
§= 3 U)ed =107 - -
q

and where we have summed over color which gives N, times the amplitude corresponding to the naive
(colorless) quark model. For the semileptonic w-decay constant we take f.=93MeV. Using the
experimental decay rate I,o_.,, = (7.95%0.55)eV, eq. (1.7) implies

N:.=3.06+£0.10 (1.8)

in perfect agreement with the theoretically anticipated value of N.=3. Note that for N.=1 (naive
quark model) eq. (1.7) predicts I".o_., = 0.89 eV in striking disagreement with experiment.

The other experimental evidence for color comes from the cross section ratio for e'e > y*—>
hadrons relative to e*e” > vy*— p . Since, in the naive parton model the hadronic amplitude in fig.
1.1 (for g°>—> =) is, up to the fractional quark charges e,, the same as for e*e™ — u"n", the ratio of cross
sections should be

_oale'e —>hadrons)
R.-. e opp =N, Ze 1.9)
e* i 2
*(q?)
Z Y
q.i e 9{’ gi

Fig. 1.1. The cross section for e*e” —y* > hadrons. The sum runs over the flavors ¢ and colors .
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In the absence of color (N, = 1), this ratio would be 2/3 below charm threshold (q = u, d, s), and 10/9
above charm threshold (q=u,d,s,c). Experimentally [18] this ratio is about 2-2.5 below charm
threshold and about 4.5-5 above charm threshold. Allowing for one charge unit of R2*- due to heavy
lepton (77) production above charm threshold, these values are not inconsistent with R.+.- =2 and 10/3
expected for N.= 3.

(ii) Renormalizability of unified gauge theories: A related reason for color is the cancellation of the
Adler-Bell-Jackiw [19] anomalous triangle diagrams (i.e. triangle graphs with one axial-vector and two
vector couplings) which is required to ensure [20, 21] the renormalizability of a gauge theory of weak
and electromagnetic interactions. In all models based on SU(2) x U(1) which have been proposed so far,
the condition for having an axial vector anomaly-free theory reads [20]

Tr Otot = Tr(Qlept + Ohadr) = O (1'10)

with Q. being the total fermionic charge matrix of the theory. So, if the sum of the charges of all
(leptonic and hadronic) elementary spinor fields vanishes, the anomaly cancels. This condition can be
satisfied by arranging the quark charges in a suitable way. (Note, however, that it is not possible to
cancel the electron against the muon anomaly since they have the same charge.) Let us consider for
example a conventional theory with four leptons and quark-flavors, where the charge matrices are given
by

0 0\ v.
Tr Qlept = Tr _1 € = _2
0 v,
0 -1/ p
2/3 0 u
-1/3 d_ -
T adr = T = T3
T Qnaar = Tr -3 | sT
0 213/ ¢

which cannot satisfy condition (1.10). However, in a theory with 3 colors the sum over hadronic charges
will be three times as large, i.e. Tr Qp.a = +2, and eq. (1.10) is satisfied. Thus, our renormalizability
condition (1.10) directly implies the existence of three additional degrees of freedom (call them color) in
the quark sector. The requirement for having a strictly renormalizable theory, i.e. eq. (1.10), implies an
additional remarkable and far reaching consequence: It gives a close connection between the leptons
and elementary hadrons (quarks)! To see how this comes about, let us include the heavy lepton 77: in a
SU(2) x U(1) gauge theory this amounts to adding a third left-handed doublet (v., 7) to the “standard”
doublets (v, €) and (v,,, ). Thus, Tr Qe = —3. In a 3-color quark model this immediately implies, via
eq. (1.10), the existence of new quark-flavor degrees of freedom in the hadronic sector: The most
natural and so far the only extension, which is consistent with all present experiments (such as deep
inelastic neutrino scattering), is to add in analogy to the leptonic sector a new quark doublet (t, b) to the
“standard” ones (u, d) and (c, s). Thus

Tr Quaar = 32/3-1/3+2/3-1/3+2/3-1/3)= +3,
u d c S t b
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and again the renormalizability condition (1.10) can now be satisfied. Needless to say that one of these
anticipated new quark flavors b have been found already experimentally (Y =bb), whereas the
predicted t-quark states will be hopefully found at PETRA and PEP in the near future. This very close
and symmetric interrelation between leptons and hadrons, resulting solely from the renormalizability
constraint (1.10), is usually referred to as Glashow’s lepton—hadron universality.

Without going into details, we just mention that there are further more technical reasons for a color
field theory of strong interactions such as for example to account for the observed AI = 1/2 rule in
non-leptonic weak decays [22], or to resolve the U(l)-n problem (in order to avoid a pseudoscalar
meson with mass no larger than V3m.,; see for example refs. [14] and [9}]).

2. The Lagrangian of QCD

QCD is a renormalizable Lagrangian quantum field theory of the strong interactions. The for-
mulation of it is based on (i) the numerous successful predictions of the conventional (flavor)
quark-parton model as well as on the results of including color as discussed in the previous section, and
(ii) the successful description of dynamical effects in QED -a minimal locally gauge invariant field
theory. The fundamental spin 1/2 constituents in (1.6) are thus supposed to form color triplets of SU(3).
and the strong interactions between these colored quarks are mediated by an octet of colored vector
fields A%_, s, called gluons (not carrying flavor), which transform according to the adjoint represen-
tation of SU(3).. More explicitly,

Ur dr SR Cr
W uG) > dG) » (SG) , (Cg) e
Ug dB SB (5

——>

@.1)

suoorIDIUL
(10]00)Fuons

weak, elm. (flavor) interactions

Since by construction the strong interactions take place only in the color sector, being thus independent
of all other non-strong interactions, the strong gauge group will always be orthogonal to the weak gauge
group, say, i.e. G,X G, where G,=SU(3). and, for example, G, = SU(2)x U(1) according to the
standard Weinberg-Salam model of weak and electromagnetic interactions. Thus, the fields in (2.1) can
have for instance the following interactions

gluon gluon
strong: /& : but /E forbidden!

Ug Ug Ur dR

+

w* Y W
weak, elm.: /L )\ ; but )\ forbidden!
d Ur Ug Ur

R de Ug

The static baryon and meson wave functions discussed in the previous section, e.g. eq. (1.5), have now a
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simple dynamical interpretation: The strongly interacting colored quarks, being in a color-singlet state,
are bound together by colored gluon fields (gluons are the “glue of matter”). For example

Ug Us
ug u E u uUg
D~ si,-ku,-u,-dk = - & R
color S
4f do BT

UR Ug Ug

7T+~ Z u,'di = E E
color = = =

dr dg do

and, in addition, hadrons might also consist of two and more gluon bound states [23], the so-called
“glue balls”.

The main idea of QCD is to make the SU(3). color symmetry a local, rather than just a global
symmetry. QCD is thus a non-abelian gauge theory (gauge group SU(3).), in contrast to QED which is
an abelian gauge theory (gauge group U(1)). The formal Lagrangian of QCD is then given by

L= —iF %" Fou + il Dlscth — §iMuthic 22
where the first term is the pure Yang-Mills Lagrangian for self-interacting SU(3). gauge fields with
F% = 0*A% - 3"A% + gf., AL A 2.3)

and f,,. being the structure constants of SUQ),, i.e., [T,, T,] = if.s.T. with the SU(3). matrices T, = 3A..
The interactions of the quarks with gluons are described by the second term in (2.2) where the covariant
derivative acting on a quark field is defined by

Dﬁ‘ = Sjk a* - ig(Ta )jkA::. (24)

As far as light quarks (u, d, s) are concerned, we shall neglect the mass term in eq. (2.2), since we always
will consider energies or more specifically momentum-transfers-squared Q*=|q? such that
m2_ua/Q*=0. A few comments are in order regarding the structure of interactions implied by eq.
2.2):

(i) the strength of all interactions between quarks and gluons is specified by just one universal
coupling g;

(ii) the Feynman rules corresponding to ¥ are well known [1], but we would like to stress again the
most essential qualitative new features of interaction vertices of QCD. Only a non-abelian local vector
gauge theory implies, as we can read off egs. (2.2) and (2.3), besides quartic self-couplings of the vectors
fields also triple gluon couplings, namely

P00
4

= —gfavc[8ap (P1 — D2)y * 88y (P2~ P3)a + 8va (D3 — P1)s]- (2.5)

b )

[ 4
pz'b'B pglc:Y
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This gluon self-coupling is mainly responsible for “asymptotic freedom”, a unique feature of non-
abelian local gauge theories, which means that the interaction strength g becomes smaller the smaller
the distance R between two particles becomes (or the larger Q?, since R ~ 1/\/—07); asymptotically, for
R ~1/VQ?=0 the theory becomes a free field theory, i.e. g =0 (see section 4). Furthermore, the

quark-gluon vertex is similar to the electron—photon vertex of QED, but with the additional non-
abelian structure according to eq. (2.4)

'
//E\ = igy* (To)u; (2.6)

¥, ¥y
(iii) one can easily verify that (2.2) is invariant under local gauge transformations of the form
¢i(x)=> Ulx) ¢(x)

LAY U) TALW) U™ ()~ (-U)U /(o) @7

where U(x) = exp(-iT,a,(x)) with a,(x) being the space-time dependent parameters of the local SU(3).
gauge transformation U(x). Or, the infinitesimal form of (2.7) simply reads («,(x) infinitesimal)

8¢i(x) = —iTothy(x) @a(x)
1 (2.8)
3AL(x)=— E M, (X) + fapcas (x)AL(x).

For comparison recall that for an abelian local gauge theory such as QED, the Lagrangian is formally
the same as in eq. (2.2) but with all group indices dropped and instead of eqs. (2.3) and (2.4) we have

F* = g"A* - 3"A*, D* =" —igA* 2.9)

i.e. there exists now no self-coupling of the vector gauge field (photon) and we have only one interaction
vertex

B

A
/L\ = igy“'

¥ ¥

The well-known abelian version of the local gauge transformation (2.7) or (2.8) now reads
goe Wy, A% =- é— 3*a(x). (2.10)

Before going into the details of how to extract the numerous phenomenological consequences of the
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QCD Lagrangian (2.2), we will first turn to a discussion of the renormalization group - the “classical”
field theoretic approach for calculating scaling violations in deep inelastic processes.

3. The renormalization group

In general renormalizable field theories the basic interaction vertex g depends on the momenta ¢
which are fed into it, i.e. graphs like

1At

give rise to logarithms
g-g+0(E’ ng’)+0(g°n’q°)+---. (3.1)

Fortunately, in a locally gauge invariant QCD (triple gluon vertex!), where this expansion turns out to
be an alternating series, the leading logarithms can be summed exactly [24] and give an effective
coupling which decreases as |q*| - «

2( 42\ 52

This is in contrast to all other field theories known, e.g. no Yang-Mills vector gluons (where the last
term in eq. (2.3) is absent) or scalar gluons, where the interactions in finite order of perturbation theory
grow [25] as |g*| > . We will now see how these leading logarithms of perturbation theory can be
summed to all orders using the renormalization group [26, 27]. For an excellent general introduction we
refer the reader to Coleman’s Erice lectures [28], and a clear and thorough discussion for the case of
asymptotically free gauge theories (QCD) can also be found in refs. [1}, [5] and [10].

To avoid any double counting, let us consider a one-particle-irreducible (1PI) Green’s function
(which is the sum of all connected Feynman diagrams that cannot be cut in two by breaking a single
internal line) with n external lines denoted by

P
Ir'(p,,...,p.)= '/\Oé
P;

A renormalizable Lagrangian contains in general, besides dimensionless coupling constants, a number
of terms with dimensions of masses, such as myay, m>¢> A¢>, etc. An intuitive statement is that at high
values of all external momenta the Green’s functions should be independent of the mass. To be more
precise, consider some Feynman diagram with all four-momenta being (nonexceptional) deep Eucli-
dean; that is to say, p; = (ip!)*— p7 > — with p; - p/=%_, pi finite for all i and j. In this case the above
statement can be proven order by order in perturbation theory (Weinberg theorem [29]). This
restriction to the deep Euclidean region at nonexceptional values of momenta (i.e. the sum of any
subset of momenta does not vanish) is necessary in order to stay away from thresholds and to make sure

Pn



206 E. Reya, Perturbative Quantum Chromodynamics

that the momenta flowing in the internal lines are all large. As a consequence, the asymptotic behavior
of Green’s functions in the deep Euclidean region should naively be independent of any mass in the
theory and consequently amplitudes would scale in terms of ratios of kinematic invariants in a way
determined by dimensional analysis, as in a massless theory. This naive expectation is, however, not the
case. The reason is that in order to give sense to the theory through a renormalization procedure a
subtraction point

pi=-p* (3.3)

must be selected, where for example ultraviolet divergences in Feynman integrals are regulated in some
way (p7 = 0 is excluded because of infrared divergences), which necessarily introduces a parameter with
dimensions. This arbitrary mass parameter u is introduced solely to define the theory, but is without
any physical significance. Thus, any measurable physical quantity must not depend on different choices
of . The renormalization group expresses the fact that any physical amplitude is invariant under
changes of u, i.e. 8T =0 for x - u + 8u, or formally

I™pi p, 85 Z)=T""(p, b + 8u, g +8g; Z +82) (.4)

where the variation 8g = B(g)du/u of the renormalized coupling g(ux) is described by the Callan-
Symanzik function B(g)=u dg/du. In addition, any Green’s function depends also on the nor-

malization of the fields, generically denoted by Z(x), the change 8Z = y(g)Z du/u of which is fixed by
the so called “anomalous dimension” 7y. To formulate these intuitively qualitative remarks in a
mathematically more precise language, let us briefly recall the main ideas of renormalization theory.

In a theory with n, external bosons and n,, fermions, our 1PI truncated Green’s function I is defined
by removing from the Green'’s function G all external propagators, i.e.

F("A’"")( D ) = [ G(Z,O)( pA)]—nA[ G(o,z)( pd‘)]“"\luG(nA,”du)( Pi)- (3_ 5)

Suppose there is a bare YA coupling g, so that (in Oth order)

__E_ 0 T6?=go (3.6)

(we suppress obvious factors such as Dirac matrices and/or Gell-Mann matrices which depend on the
specific theory under consideration). Higher order graphs in perturbation theory like

LA

will modify the simple vertex in (3.6). We denote the result of adding them to (3.6) by I'{"” - the so
called unrenormalized Green’s function. This quantity is in general infinite because of divergent loop
integrals. There is a variety of ways to make I', finite, one of which would be to introduce a cut-off A
into the divergent loop momentum integral:

rflnA,m») = I"ﬁnA.nw)(pi’ 2o, A) (37)
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There is then a theorem [30] that in any gauge theory one can introduce multiplicative factors Za(A)
and Z,(A) with the property that

lim Za(AY*ZyA YT, go, A) (.8)
A—-x

exists and is finite. (More generally, we call any quantum field theory with this property ‘‘renormaliz-
able”.) This implies that we can define renormalized Green'’s functions by

"an) = [im ZZAZ‘;-IwFflnA'"w) (39)

Ao

which are finite and cut-off independent. As we have already emphasized, one can perform these
subtractions of infinities in divergent loop integrals (which amounts to introducing a cut-off A) at any
convenient spacelike (Euclidean) subtraction point p7 = —u”. Thus the dimensionless numbers Z can
only depend on dimensionless ratios A/ and go, i.e. Z = Z(g,, A/p), and our renormalization condition
(3.9) can be finally written as

TO(p, g 1) = lim Za(go, AluY" Zulgo, AlBY*TEA"(p, go, A) (3.10)

where for convenience we have replaced the g, dependence of the physical renormalized Green’s
function in terms of a dimensionless physical renormalized coupling constant

g = 8(8o, Al). (3.11)

These finite renormalized amplitudes I, or equivalently the renormalization constants Z are in praxi

fixed by the renormalization condition at some arbitrary p; = —p*:

Za: F(2‘0)|p2= - = 2AF$12,0)|172= -ut= —guvpz + Pups
wa ['(O‘Z)IPZ=—#2 = ZiF(O’Z)IpL—#Z =y (312)
g: T"20,p, ~p)ly-—u2= ZaZil $20, p,~plp--u2= 8

where the A-dependent I',’s are calculated from the well known diagrams

2,0),
I"f,’. e 4+ wwmQew - - -

1"(0 ,2).

SR

It should be noted that I'*? refers to the transverse (conserved) part of the boson propagator and that,
for simplicity we use always the Landau gauge (@ =0) in the boson (gluon) propagator —(i/k?)x
[g.. — (1 — @)k, k,/k?]; this will make the renormalization group equations independent of the gauge
parameter a.
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We are now in the position to derive the renormalization group equations which follow from the
requirement that any physically observable (renormalized) quantity must be invariant under changes of
. Referring back to eq. (3.10) we recall that '+ and Z,,, depend on the renormalization scale g,
whereas I""*"¥ is independent of u. We now calculate u (d/du) '™ by using eq. (3.10):

0 J (naung) 1 0Z4 1 (9Z.,, g (ALY
(w wth ag)r (Pogo1t) = o hm[nA 7 et g ]z Zogans (3.13)
and define

Be)= lim i 5 880 Alu)
(3.14)

_ .13
¥(g)=-lim p 7 Z;(go, Al).

The Callan-Symanzik function B and the anomalous dimensions y and 7y, referring to the A- and
y-fields of the theory respectively, are dimensionless and depend therefore only on g. It should be
emphasized that, according to eq. (3.14), these functions 8 and v; are intrinsic quantities of a theory and
are independent of the specific Green’s function (scattering amplitude) chosen. Equation (3.13) can now
be rewritten in a more convenient form [26, 28]

[ 50+ B&) 35+ maya®) + manele) |0 g.1) =0 6.1

which is the famous renormalization group (RG) equation of Stueckelberg, Peterman, Gell-Mann and
Low, or the homogeneous Callan-Symanzik equation [27]. The physical interpretation of this equation
is straightforward: for any small change in x there exist appropriate changes in g and in the
normalization Z; of the external fields such that any physical quantity I remains unchanged.

The RG equation tells us about the behavior of a scattering amplitude for varying u at fixed
momenta p;. The value of x, however, also fixes the scale of momenta in the theory, and therefore the
knowledge of how the I'’s react to a change of u contains all the information on how they change when
the p; are changed at fixed u. This translation is easily achieved by using naive dimensional analysis. If I’
has naive mass dimenston d, then

I*(nA,M)(Api, g,ﬂ)= l»‘df(/\zpi 'Pj/#z) (316)

where A scales the momenta up and f is a dimensionless function of kinematic invariants. Introducing
the variable ¢ = In A and differentiating I" with respect to ¢ and s one obtains

_a_ i _ na,ny) . -
[ 50| T~ g.m)=0 (3.17)
which, when subtracted from eq. (3.15), gives

[~ 3+ B@ 35+ 4+ nayale) + nonle) [P0, g,) =0, (3.18)
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This equation expresses directly the effect on Green’s functions of scaling up the momenta by A. (In
actual calculations this scaling parameter has to be identified with those momenta which become large;
for example, for deep inelastic processes we will have A = VI]q7/u?.) The following simple consequences
of eq. (3.18) are apparent:

@) If all interactions are “turned off”’, B =y =0, then scale invariance with naive canonical
dimensions holds for the massless theory (and hence asymptotically in the deep Euclidean region) and
eq. (3.18) gives

re~™(\p,)=A°, (3.19)
(1) If B =0 but y;# 0, then scale invariance holds but with “anomalous dimensions”
I"(nA,nq,)( A Pi) ~ Ad"‘”A‘YA'*‘M‘Yw (320)

and therefore the y;(g) are called “‘anomalous dimensions”.

(iii) If B(g) # 0 and v,(g) # 0, scale invariance for the massless theory is lost completely. In this case
the general solution of eq. (3.18) can be obtained in the following way. For brevity, let us first write eq.
(3.18) in the form

[-a/ot+ B(g) alag + y(@)IT'(Ap, g) =0 (321)

which is conveniently solved in two steps. First we solve the equation

(~0/0t+ B 3/dg)¢ = 0.

The solution is

¢ =9 1) (3.22)

where g satisfies the ordinary differential equation

dg(g, 1)/dt = B(g) (3.23)

subject to the boundary condition g(g, t = 0)= g. This equation-describes the change of the “effective
coupling” & when changing the distance R ~ 1/p between two particles. The fact that (3.22) is a solution
of the homogeneous equation can be checked by noting that solutions with different g’s are related by a
translation of the origin in ¢

- Glg+Dg,t)
glg.t)

where 3g = B(g) 8¢, so that

dg/dt = B(g) dg/dg
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which implies
d d - ag g db(g
[-2+86) 2] 6@)=[- L+ 5 E] L&),

The general solution of the complete RG equation (3.21) is then obviously given by

I0p,8)=T(p, ) exp| [ ¥(@(g, ) dr | = I(p. yexp f 7&) ag'| (6:24)

which is the famous prediction of the RG for the ultraviolet (large A) momentum dependence of
Green’s functions, and will be the basic starting point, together with eq. (3.23), for our studies of scaling
violations in deep inelastic reactions. Thus the large-A behavior of a scattering amplitude is controlled
by the effective coupling constant g(g, ¢) and the anomalous dimension y(g) in the renormalization
group exponent of eq. (3.24). This exponent, being an asymptotic series [28] in all leading logarithms
and in all orders of g (see for example eq. (3.1)), is uniquely determined by calculating 8 and y in
lowest order (1-loop) of perturbation theory, provided of course g is small. Therefore, the only
requirement for our RG improved perturbation theory to be useful for practical calculation is, that the
effective coupling ¢ satisfies

<1

(or more precisely the effective expansion parameter g°/47° must be small), whereas all large
logarithms, such as in eq. (3.1), are automatically taken care of by the RG exponent in eq. (3.24). This is
in contrast to conventional order-by-order perturbation theory where a perturbation expansion makes
sense only if

g<l, ghqgu*<1,....

because of the appearance of large logarithms in each order of the perturbation series in (3.1).

To summarize, the renormalization group enables us to compute all the leading logarithms to all
orders of g in any Green’s function [28], just from the first non-trivial (1-loop) order in perturbation
theory in g. Likewise, by going to the next order in g, we can get all the next-to-leading logarithms,

etc.

4. The effective coupling constant g

In order to calculate the large (ultraviolet) momentum dependence of scattering amplitudes as given
by the RG solution in eq. (3.24), we first need to know the effective coupling g. This can be obtained by
calculating B(g) in lowest 1-loop order, B(g)~ g’ + 0(g’), and then solving the RG equation (3.23)
dg/dt = B(g). This we will do first for the case of QCD and then, for comparison, we will briefly discuss
other possible field theories of strong interactions and QED.
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4.1. g in QCD: asymptotic freedom

Provided there is a value of the normalization point x4 for which the effective expansion parameter
g’/An* <1, the B function, defined in eq. (3.14) as the variation of the renormalized coupling g with u,
may be evaluated perturbatively from the corresponding diagrams contributing in lowest non-trivial
order to '™~ This well known result [24] can be derived most easily in the Landau gauge (a = 0)
where one obtains [1]

%0 = www + oy + mr(’(‘}w + mﬁw+ W@'ﬂﬂ"

= (=8wP’+ pup) [1+( CAG)- 3T(R))Tg°_2—2 _Iﬁ]
reo=——— + & @.1)

=p+0(g")
F(1‘2)=_E . %’ +4&

_ _3 Y i
- gTaYu [1 4 CZ(G) 16772 In #2 ]

where we have kept only the physical transverse polarization part of I"*®, and the inverse propagators
have been calculated for momentum configurations (pi, p.) = (—p, p) and the three-point function for
(1, 2 p3) = (0, —p, p). The dashed line in I'"®® refers to the gauge-fixing Feynman-Faddeev-Popov
ghosts [1, 24], whereas the lowest-order self-energy diagram in I'®® does not contribute in the Landau
gauge a = (. Inserting the various Green’s functions of eq. (4.1) into the renormalization group
equation (3.15) and then evaluating at p° = —u”’ yields

ra=[2c6)-3T®)] o+ 08"

Ye=0+0(g*)
3

3 ? 11 4
B=—[m+2m+2;60) e =[5 O -3T®] @2
The group theoretic color factors derive from the basic building blocks (7). and f,,. of the non-abelian
Yang-Mills interaction in eqgs. (2.2)~(2.4) and are related to the following vertices:

C

:1’"@?"? = C;] facdfbcd = Cz(G)Sab
Em(')"? = ii (T.)i(T,)y = T(T,T,) = T(R)S., (423)
j J=1

S - S S (T)w(To)y = S (L), = CAR),

I a=1k=1
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where we have written only the color content of each diagram. For G = SU(3). and R denoting the
fundamental (color) triplet representation, and for a flavor SU(N;) group these color factors are given
by

3 foru,d,s

/

CZ(G) = 3, C2(R) = %9 T(R) = %Nf = \ (44)
2 foru,d,s,c.
This allows us to calculate the final leading order result for the 8-function in eq. (4.2)
1 133 2
B@)=—16.2 [g—ng]zf =-bg’. @5)

The important result is that B(g) is negative for sufficiently small g as long as N; =< 16 (for the time being
we have experimental evidence for five quark flavors Ny=5:u, d, s, ¢, b, ... ?). This unique feature of a
locally gauge invariant non-abelian vector gluon theory is entirely due to the triple-gluon-vertex
contributions in (4.1), i.e., the term proportional to C,(G) in B(g), which does not exist in any other
known field theory [25]. Inserting eq. (4.5) into the renormalization group equation (3.23), dg/dz = B(g),
and solving for the eftective “running coupling” g yields

FO= 4.6)

Because of the positive sign in the denominator, a direct consequence of B being negative, we can take
the ultraviolet (UV) limit ¢ = In A - 4+ which implies

2(t)~>0 for -+, @.7)

i.e. “asymptotic freedom’’: the larger the scale parameter A, i.e. the larger the momenta, or the smaller
the distance between two particles, the smaller becomes g and thus the more reliable perturbation
theory becomes for strong interactions! This is the enormous advantage and beauty of the locally gauge
invariant field theory QCD. Asymptotically the theory becomes a free field theory and therefore the
origin £ = 0 is called “UV fixed point”.

Let us rewrite eq. (4.6) in a more convenient form. Since A is an arbitrary parameter to be identified
with the large momentum scale of a given process, we choose A =V Q%u? appropriate for deep
inelastic processes where the momentum transfer squared from the leptonic to the hadronic system
Q’ =—¢*> 0 constitutes the only large momentum scale of the problem. Therefore, eq. (4.6) gives, for
t=1InA=3In(Q*u?),

g __ 1
1+ bg° In(Q*/n?) ~ b In(Q%/A?)

§(Q)= (4.8)

with A” = u” exp(—1/bg®) and g = §(Q* = p°). Using eq. (4.5) gives us the final result for the “strong
fine structure constant”
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e (07 flavor SU(3)
(@) =8P 2= “9)
s 4 (33-2N,) In(Q*/A%)  \ 2 )
——=T__ flavor SU(4)
25In(Q?%/A%)

with A being the only free parameter of QCD which has to be fixed by experiment. However, it is
possible to set some a priori limits [31]. From eq. (4.9) it is clear that A is the value at which @, becomes
large and perturbation theory breaks down. We know that for Q®=(r2)™' = (0.8 fermi) > < (0.3 GeV),
the typical scale of the intrinsic transverse momentum in the parton wave function, the strong
interactions must indeed be strong, for they must provide for quark binding not amenable to a
perturbative analysis. On the other hand, approximate (precocious) scaling is observed in deep inelastic
lepton-nucleon scattering processes at Q> =2 GeV?, implying that the effective coupling

a2 GeV?)/m <1.
Since we know the behavior of a,(Q?) for small a,, these two requirements limit A to the range

0.2GeV =4 <0.7GeV 4.10)
as can be seen by inspection of fig. 4.1 which shows a,(Q?) as a function of Q? for different values of A.

It is now straightforward to calculate the momentum dependence of scattering amplitudes as
predicted by the RG in eq. (3.24) when the momenta are changed by p - Ap. Using eq. (4.6), the RG

| ‘ I \\ ] \\ I I
|
B ‘\ \ \ \ i
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>4 \ \ \Q \
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Fig. 4.1. aJ= as a function of Q for various values [31] of A.
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exponent in (3.24) becomes

. (N di” , . dr' gz c/2b
CXP[ f 7(8(r) t]— exv[cg f W] = (?) (4.11)
0 0
where we have set y(g)= cg” with ¢ calculable perturbatively as we shall see later. Thus, eq. (3.24)
yields
I'Ap,g)=T(p,8)[g’/g°]"  with a=c/2b. 4.12)
Since [g°/g’]* ~ [In A]°, the Green’s functions depend logarithmically on the momentum scale, which is

so very typical for an asymptotically free theory (QCD)!
To summarize, we have found that for sufficiently small g the Callan-Symanzik B-function is negative

for a non-abelian gauge theory (QCD)
B
‘LT‘ 9

and therefore g =0 is a UV stable fixed point since the “running coupling” g(¢) decreases (dg/dt <0)
for increasing momenta or the smaller the distance R ~ 1/V Q? between two particles becomes:

gt

or
~9

t=1nQ%u? R~ 11Va?
IR (Q2=0) UV (QZ=es)

where for comparison we also show the opposite behavior of § as expected in conventional field
theories such as QED. The infrared (IR) long-distance region, where g increases, is obviously not
accessible to perturbation theory and is usually referred to as the “confinement region” (a, = 1). On the
other hand, the small distance region (Q large) will prove to be a unique perturbative test-ground for
QCD-a region where deep inelastic or “hard” processes are operative, such as lepton-nucleon
scattering, Drell-Yan processes, high-pr reactions etc.

Qualitatively, the asymptotic freedom behavior of QCD can be understood in a simple intuitive way
[32]. QCD can be viewed as an extension of QED in which the vector field carries (color) charge and, in
contrast to all other conventional field theories, due to the local gauge invariance there exist
self-interactions of these vector fields as in eq. (2.5) which allow for a charge transfer from the field ¢ to
the field A% and vice versa. Thus we find two opposite effects which contribute to g. On the one hand
the bare (color) charge go(>0) will produce a vacuum polarization of the same type as in QED: this will
induce a “negative” (color) charge density in the neighborhood (R < m™") of g, as shown in fig. 4.2(a).
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Fig. 4.2. Quantum corrections contributing to g: (a) vacuum polarization; (b) charge exchange with field (exists only in non-abelian Yang-Mills theories).

On the other hand, the gluon self-couplings also produce a charge exchange between the source g, and
the field surrounding it, as shown in fig. 4.2(b). This effect produces a “positive” (color) charge density
in the neighborhood of g,. This virtual charge creation is of the same sign as g, and is therefore called
“anti-shielding”. There is no simple way to show which of the two effects is the stronger one. As
discussed above, only a detailed calculation reveals that the positive charge density wins, except in cases
where there are a large number of different flavor ¢ fields (N; > 16 in lowest order perturbation theory)
which can be virtually created via the vacuum polarization in fig. 4.2(a) - an understandable effect. Since
the total charge is fixed, the bare charge must vanish at the centre in fig. 4.2(b); the theory is
asymptotically free.

4.2. The effective coupling in QED and the “rest of the world” ( fixed point field theories)

Usually the complication of a Q° dependent coupling does not concern us in QED because the rate
of change (~a In Q?) is very small. Since all other possible known field theories of strong interactions
have, except QCD, the same basic structure with respect to the virtual quantum corrections as QED, it
is instructive to study the well known case of QED first. In electrodynamics the physical coupling e, or
a = ¢*/4m, is defined by the large distance behavior of the electric potential (Thomson limit) V = —a/R
for R> m_'=10"" cm with R being the distance between the two charges +e¢ and —e. This charge e is
smaller than the effective coupling constant ¢ one would measure at small distances R <m_’, due to
the presence of vacuum polarization effects as shown in fig. 4.2(a) and since no anti-shielding effects
(triple gluon vertex) as shown in fig. 4.2(b) exist. The vacuum polarization gives the famous Uehling-
correction to Coulomb’s law for R <m ;"

vR)=-%]1 +§—j‘71n;32-+ 0@)]= -HR) @.13)

which, in lowest non-trivial order, describes the potential of two interacting charges whose virtual
vacuum polarization clouds overlap. The leading logarithmic term obtained in lowest order perturbation
theory in the effective coupling

&(R)=a[1+§—%ln;';j+---]>a (4.14)

can be summed to all orders by simply using our renormalization group equation (3.23): From eq. (4.2)
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we can read off the B function for QED where C(G)=0 and T(R)=1 (since we have only one
fermion field):

4 ¢
Boep = + 31672 4.15)
which upon inserting into dé/ds = B(€) yields
- a2
a(r)= T 2(@l3m) (4.16)

with ¢ = In(1/m.R)=InV Q*/m2. Thus, in contrast to the effective QCD coupling in eq. (4.6), we have a
negative sign in the denominator of eq. (4.16) because of Borp being positive for sufficiently small e in
eq. (4.15), and therefore e = 0 is not UV stable (for t— « or R - 0) but instead IR stable since dé/d¢ >0
as illustrated in fig. 4.3. Nonetheless, in the case of QED perturbation theory is applicable and
meaningful even in the UV region (large momentum transfers Q° or small distances R) because of the
smallness of a: The first few terms in the perturbation expansion (4.13) should suffice unless R is as
small as m "' exp(-3m/2a)=10">"cm [or V' Q2 less than 10*”” GeV], a ridiculously small distance. In
fact, we have no reason to believe that at such distances quantum electrodynamics has any validity
whatsoever, particularly when interactions of the electromagnetic field with particles other than the
electron are ignored.

The positivity of the B-function near the origin as well as the asymptotically non-free behavior of the
effective coupling constant as illustrated in fig. 4.3 is basically the same for all conventional field theories
[25] which might be alternatives for describing fundamental strong interactions [33-35]. Although
theoretically far less appealing and elegant, examples for conventional (asymptotically non-free) strong
interaction field theories are as follows (for reasons discussed in section 1 we always stick to three colors
of a given quark flavor):

(i) An abelian vector-gluon theory (non-colored gluons) with an interaction similar to QED, i.e.,
gUy,.WA* . In this case we have:

The B-function, as given in eq. (4.2), is then positive. _
(i) Non-abelian scalar-gluon theories with an interaction term proportional to gyA.¢. and where

the group invariants are given by

CAG)=0, CR)=3  T(R)=2N. (4.18)

m

Fig. 4.3. The B-function and the effective coupling in QED. The same qualitative feature holds for all other conventional field theories.
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(iii) Abelian (Yukawa) scalar-gluon theories with an interaction gyayp have “group invariants” as
given in eq. (4.17). The Callan-Symanzik function for scalar-gluon theories is then given by [36]

Becarar = +5T(R) g°/167°. (4.19)

Thus, to lowest order, the effective coupling of conventional field theories behaves as in eq. (4.16), i.e.
g2(t) = g°/(1 - 2bg?t), since B = +bg* >0, which should be compared with the QCD coupling in eq. (4.6).
Clearly, g is IR stable since only the limit > — (Q*— 0) exists. Nevertheless, these theories could in
principle be also applied to deep inelastic processes in the presently measured range of Q” without any
additional assumptions as those made in QCD, provided one chooses x and g such that §*/167° is small
(in this case g is only slightly increasing for Q<200 GeV?). In order to study the true asymptotic
behavior of these theories one has of course to assume that the UV limit ¢ -+ (Q* ~ 1/R? - «) exists,
which means that there exists a finite UV stable fixed point g*, i.e. 8(g*)=0, such that the effective
perturbation expansion parameter g*’/16w°<1, in order to account for the approximate scaling
observed in deep inelastic reactions. Since dg/df= B(g), any value of g in the vicinity of g* will
approach g* asymptotically, lim,_ ... Z(¢) = g*, as shown in fig. 4.4. We have therefore a similar situation
as in QCD, namely that perturbation theory becomes better the larger Q°, provided g**/167 is small.
Of course, these conventional field theories are asymptotically non-free because g* # 0, and therefore
the name “fixed point theories”.

Apart from the ¢* theory [37], the fixed point structure of quantum field theories is an entirely
unsolved and unclear matter [3, 37]. For phenomenological purposes we will therefore simply assume
the existence of a finite ultraviolet fixed point g*, and look how conventional field theories compare
with experiment. However, it should be noted that any quantitative calculation requires the ap-
proximation y(g*)=Z5_, c,g**" = c,g**, although higher-order terms are certainly important in the
perturbative expansion of 8(g) = Zy_, b.g>""" at g = g* since cancellations between different orders are
needed to get B(g*)=0. It should be emphasized that only g**/167°><1 will be used throughout our
analysis to be discussed later.

Again, as in the case of QCD, it is now simple to calculate the momentum dependence of scattering
amplitudes according to eq. (3.24) for conventional field theories at fixed g = g*. Defining y(g) = cg*>,
the RG exponent in (3.24) is simply

eXP[ f y(&(r)) dt'] = explcg**1]

and thus
IF(Ap,g)=T(p,g*)A’)*  with a=3cg* (4.20)

which, contrary to the QCD result in eq. (4.12), gives a power-like dependence on A>~ Q*/u’.

B g(t) N
g* = 0 ek — - — =

»*
g 9 /

Fig. 4.4. The UV behavior of the effective coupling of conventional field theories, provided there exists a fixed point g* in .
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We are now equipped with most of the theoretical artillery in order to confront renormalization
group improved quantum field theories with experiment. The ideal reactions for applying this formalism
are deep inelastic lepton-nucleon scattering processes where Q7 is large, i.e. a,(Q?) small, and therefore
calculations based on RG improved perturbation theory should become reliable. As we shall see in the
next section all conventional fixed point theories are strongly disfavored by experiment. However, it
should be emphasized that all present measurements of scaling violations in structure functions are
rather insensitive to the gluon content of the nucleon and therefore also to the gluon self-couplings
(triple gluon vertex) which are so very essential for asymptotic freedom.

5. Deep inelastic lepton—nucleon scattering

When a very low mass virtual photon (Q?=—g><1GeV?) scatters off a proton, the photon “sees”
only the total charge and magnetic moment of the proton and the scattering appears point-like (fig.
5.1(a)). A higher-mass photon of (a few hundred MeV)? is able to resolve the individual constituents of
the proton’s virtual pion cloud, as shown in fig. 5.1(b), and the proton appears as a composite extended
object. At high momentum transfers the photon probes the fine structure of the proton charge
distribution and sees its elementary constituents (fig. 5.1(c)); if quarks were non-interacting, no further
structure would appear for increasing Q° and exact scaling would set in. However, in any renormaliz-
able quantum field theory, we have to introduce a Bose-field (gluon) which mediates the interaction in
order to form for example bound states of quarks, i.e. the observed hadrons. In such a picture, the
quark is then always accompanied by a gluon cloud which will be probed as the momentum transfer is
increased. The effect of gluons is then two-fold as illustrated in fig. 5.1(d): A quark carrying a fraction x
of the longitudinal momentum of the proton will be seen by the high-Q? virtual photon with a
momentum fraction smaller than x, just because the radiated gluon carries away some of the quark’s
original momentum; similarly this photon may resolve the radiated gluon into a quark-antiquark
pair —a process to be regarded as quark pair creation in the strong gluon field of the nucleon. Both
effects will distort a given nucleon structure function F(x) to lower x, and specifically quark pair

yv* a2« mﬁ, vy Q7% mp
---T

p
(a) (b)
2 2
Y*\Q: >m v* “rm
M N
q g L I

(’ ——
p-Cé p p
(c) (d)

Fig. 5.1. The proton as seen by a “microscope” = virtual photon: as Q? increases, {c) a quark may be resolved into (d) a quark and bremsstrahlung gluon g
or into a quark—-antiquark pair.
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creation will enhance the sea contribution at small x. It will be our aim in this section to calculate these
effects quantitatively: Thus, for a given wave function F(x) of the nucleon (or pion), we have to
calculate its dependence on Q2 F(x, Q°), from radiative corrections as depicted in fig. 5.1(d). These
effects are usually referred to as “scaling violations”. (Note that, because of our confinement hypo-
thesis, all fundamental constituent interactions such as in fig. 5.1(d) are supposed to take place in a
region R <ix 10" cm.)

Before going into the rather involved field theoretic evaluation of scaling violations, we will first
briefly recapitulate the basic ideas of the naive parton model.

The cross section for the deep inelastic scattering process £+ N— ¢’ + X can be formally written as

=L"W., ¢.1)

where ¢ and ¢' are leptons, and the square of the trivial leptonic vertex in (5.1) is given by [38] L**,
whereas the hadronic tensor W, describes the strong interaction dynamics explored by this process as
shown, for example, in figs. 5.1 (c) and (d). General invariance principles tell us [5,38] that the
dimensionless tensor W,, can be decomposed into the following structure functions (the covariant
normalization of states is (p’| p) = 2p,6°(p’ - p))

W,,= ;11; 2 @m)'8(p + 4 - px) (P LONX) X1 O)lp)

1 .
= — | d*z €9 =(p|T (), (0)| p)
47 I ¢2)

- # j &z €4 *(pl[J (), LO))Ip)

_(_ M) L( _p4q )( _u) i EumsP ¢
(g,w+ qz W1+m12q D qz q. 1\ D qz q, W, —i Zm%q W,

where the spectral-condition (energy-momentum conservation) allowed us to replace the product
J.(2) J.(0) by a commutator, and W; contributes only to neutrino scattering since it describes parity
violating effects which arise from a vector and axial-vector interference. In general we have W, =
Wi(v, Q?), with the kinematical variables defined by

'=-¢°=¢°-q3=0, v=p-g/my=E-FE' (5.3)

The inclusive differential cross section for electroproduction (in the one-photon approximation) then
reads

do 4ma’® E'

- E J
dQ’dv myQ*E

[2 W, sin? 2

+ W, cos? g] (5.4)
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and in the case of neutrino or antineutrino scattering, i.e. v(¥)+ N—> pn (") + X, we have

do'® G: E'( ML V? . 50 — E+E' .
dgzdfzm::{é( 5 va) [2W1 sin’ 2+ w, c052§(+)m—NW3sng] 5.5)

where M, is the intermediate vector boson mass and Q° = 4EE’sin” §/2. For many practical purposes it
proves convenient to introduce new dimensionless variables defined by

=£_E_E’_Ex‘mN
9 y_E_ E - E (5.6)

where x is the famous Bjorken scaling variable with 0 <x <1, and y is the fractional energy transferred
to the hadronic system. Note that x = 1 corresponds to elastic scattering since in this case the total
invariant hadronic energy W = my, where W is defined by

W2=(p+q) = ma+ Q*(1/x - 1). (.7)

In the deep inelastic region (Q?, mny, W? > m3, with x fixed) we encounter the naive Bjorken scaling
[39] which says that the dimensionless quantities W,;, »W./my and »W,/my approach nontrivial
functions of only one variable x:

14

Wi(v, Q®)-> Fi(x), m_N‘ W, _2a(v, Q%) > Fi(x) (5.8)

for Q°, v > « with x fixed. The naive parton model is defined in this deep inelastic region (based on the
impuls approximation idea [40]) with the electromagnetic and weak currents defined in terms of the
fundamental quark fields ¢, by

Jim= %lzu')’ulﬂu - %‘ﬁd'}'u‘/’d - %‘/;s')’u‘ps e (59)
Tk =08 0. Puyu(l = ysWat sin e gy,(1— sl + - - (5-10)

where the dots indicate all possible new heavy quark (c,b,...) contributions which go beyond the
conventional SU(3) quarks, and the Cabibbo angle is sin 6. = 0.23. The hadronic part of the process in
(5.1) is now viewed as an incoherent scattering of the virtual photon (or W*) off the fermionic
constituents in the hadron

Xp+q
xp

where the fractional momentum x carried by the quarks is defined in eq. (5.6). The total hadronic tensor
W,.. in (5.1) is then directly related to the “hand-bag” diagram as shown in fig. 5.2. Cranking through
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q

P

Fig. 5.2. Deep inelastic scatteringy in the (naive) parton model: The hand-bag diagram.

this hand-bag diagram one finds [5, 38] for electro(muo)production
F$"=x 2 e3lq(x) + G(x)]
q

with an obvious interpretation according to fig. 5.2, and where the quark distribution g(x) in the
nucleon is formally defined, apart from the trivial Lorentz structure in eq. (5.2), by (Fourier trans-
formation is always implied)

(plgatdlp) =g+ 4. .11)

Thus ¢g(x) dx is the expectation value of the number of quarks of type g having fractional momentum
between x and x + dx. More specifically we get for the proton (~uud) and neutron (~udd) structure
functions

F =3x@u+@)+3x(d+d)+sx(s+85)+---

F5 = F(with u < d), (5-12)

and the corresponding structure functions for neutrino and antineutrino scattering through the current
(5.10) are
FP=2x(d+ua)+---=F3
Fy=2x(@u+d)+:--=F%
FP=2@a-d)+:--=F7%
y=2d-u)+---=F7

(5.13)

and it is a child’s play to extend the parton calculations to heavy quarks [41] (indicated by dots).
An immediate consequence of the spin-3 structure of quarks is [5,38] the famous Callan-Gross
relation [42] (helicity conservation)

Fx(x)=2xF,(x) (5.14)

which is an exact relation only if there are no strong interactions between the quarks in fig. 5.2 (free
parton model). (On the contrary, spin-0 partons would imply F,(x)=0.) Because of charge, isospin,
baryon- and strangeness-number conservation the quark distributions must satisfy the following general
sum rule constraints
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1 1 1
f(u—ﬁ)dx=2, f(d—a)dx=1, f(s—s)dx=0. (5.15)
0 0 0

Furthermore, since f; xq(x)dx is the total fraction of the momentum carried by quarks of type g,
momentum conservation tells us that

; f dxx[g(x)+g(x)]=1-¢ (5.16)

with ¢ = 0 if quarks and antiquarks are the only constituents of the nucleon. Experimentally, however,
we have [43-45] & = (.5 and hence not all the nucleon’s momentum is carried by (fermionic) quarks and
antiquarks; within QCD it will be natural to expect the gluons to carry these remaining 50% of the
momentum. Further very important relations between structure functions are provided by the Adler
sum rule [46]

1

1

g—;(F;P—F;P)=J'dx(u—a—d+a)=213=1, » 5.17)
0]

the Gross-Llewellyn Smith sum rule [47)

1 1
fdx (F;P+F§P)=—2fdx(u+d~ﬁ—a)
1] 1]

=_zfdx[(u+d+s—ﬁ—a—§)—(s—§)]

=-6B+285=-6 (5.18)

and
FP—-F%=12F?-F5) (5.19)
FP+Fr= %(ng +F) (5.20)
i=<F$y/FP=a. (5.21)

Note that integrally charged Han-Nambu quarks would, instead of eq. (5.21), imply F5*/F$=3.
Experimentally [48] the en/ep ratio falls close to 1/4 near x = 1 which favors the fractionally charged
Gell-Mann-Zweig quarks.

In order to learn more about the qualitative feature of the parton composition of the nucleon, let us
consider some measured properties of structure functions. Experimentally it seems likely, as we shall
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frequently see, that
Fi(x)~1/x, Fxx)->const. asx—>0 (5.22)

indicating that partons have indeed a bremsstrahlung spectrum g(x)~1/x, and that the parton
multiplicity in the nucleon grows with increasing energy

m9=fquyu~fdﬂx~muﬂ (5.23)

since the kinematic assumptions we have made so far are only justified for x|p+ q|> Mparon OF
X > MZaon/ W2, The behavior (5.22) can be understood in terms of good old Regge phenomenology
where, in the limit » » < and Q7 fixed, one expects [49]

Wiy, Q%) ~ v fi(Q%),  vWay, Q) ~ v 'f$A(Q%) (5.24)
with a being the appropriate Regge intercept: ap =1 for the Pomeron, and for the leading Reggeon

exchanges a,,..,. .= 3. The Reggeon exchanges contributing to W, and W, in the Regge limit (x = 0) can
be illustrated as follows

If W, and vW, scale in the Bjorken limit (5.8), then according to eq. (5.24) we need for the Regge
residues f;

f(la)(QZ) ~ (QZ)—a’ f(za)(QZ) - (QZ)x—a as 02_> .
which implies
Fi(x)~x™, F(x)~x'"" asx-0. (5.25)

Thus the observed behavior in eq. (5.22) corresponds to an exchange of the leading trajectory with
a = 1-the Pomeron.

The Pomeron carries per definition vacuum quantum numbers (C = +1, I = 0) and therefore cannot
“see” flavor degrees of freedom (e.g. I# 0, S# 0) of the nucleon but recognizes only the flavor singlet
content of hadrons (e.g. qq pairs). Therefore, as far as Pomeron exchange is concerned, we expect the
scatterings of the leptonic currents J, in egs. (5.9) and (5.10) from p, p, n or 7 all to be identical as
x - 0: from this and eq. (5.25) it follows that

ll R

G~d=d~x"=1/x
f i }mx%& (5.26)
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q

4
P d

Fig. 5.3. A qq pair configuration of “sea” partons.

This part of the parton content of the nucleon is usually referred to as “sea” of quark-antiquark pairs
which are important near x = 0. In the quark-gluon language of QCD this “sea” of quark-antiquark
pairs could arise from the mediation of gluons along the lines suggested in fig. 5.3.

The largest identified fraction of the nucleon momentum is carried by the ‘“valence” quarks which
carry the target quantum numbers: this flavor non-singlet (I# 0, ...) piece of the parton content in the
nucleon corresponds to Regge exchanges with a <1 (p, , .. .) and eq. (5.25) implies

u~x*=1Vx, d.~1Vx as x-0 (5.27)

where the subscript v denotes the valence part of the appropriate parton distribution. In this case, for
example, the electromagnetic scattering on p, n, . . . is different since the probe (y*) can “see” the flavor
content (non-singlet) of the hadron.

To summarize, the proton, for example, will in general consist of three different pieces

p=@u+u+d),+@ui+dd+ss+---)+gluons
valence sea
(large (x)) (small (x))

and because of fig. 5.3 we expect the average (x) of the gluons to be intermediate between that of
valence and sea quarks (momentum conservation!). This decomposition implies the following ansatz for
parton distributions

I
Il
&

tE d=d,t+¢ (5.28)
zszfzf

&
R
]

where, according to egs. (5.26) and (5.27), xu,~ Vx, xd,~Vx and x£~ const. as x > 0. This ansatz
(5.28) corresponds to a SU(3)-symmetric sea, although kinematic effects of quark masses (m,> m, )
may imply that strange and non-strange sea quark distributions are not identical as x>0. As Q°
increases the ansatz (5.28) should become more and more appropriate since symmetry breaking effects
(~m3/ Q) are less important. A possible test of eq. (5.28) is provided by the sum rule

1
1
[SFr-F)=5
0

Exact scaling in the form (5.8) as predicted in the naive parton model does not hold in present
electron, muon and neutrino scattering data over a wide range of Q°. In addition, exact scaling seems to
be unobtainable in the context of any quantum field theory (except possibly for Q%— ), Within the
framework of field theory one expects, due to the effects of field quanta (“gluons”) which mediate the
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(a) (b)
Fig. 5.4. Deepinelastic scattering (a)in the naive parton model and (b)in the field theoretic version of the parton model giving rise to “scaling violations™.

strong interactions, that structure functions depend always on two variables x and Q7 say, i.e.
F,=F(x, Q%) (5.29)

for any finite values of Q. This additional Q° dependence is usually referred to as “scaling violation”
and typical graphs responsible for it are depicted in fig. 5.4(b), whereas fig. 5.4(a) corresponds to the
naive parton model which does not give rise to an additional Q® dependence in F. We will now
calculate this Q° dependence of structure functions, i.e. the effects of gluonic corrections as shown in
fig. 5.4(b).

5.1. Calculating scaling violations

In order to calculate the Q dependence of deep inelastic structure functions F;(x, Q%) we will first
use the classical tool of the renormalization group (RG). The momentum dependence of a Green’s
function I is then given by eq. (3.24) or, in leading order, by eq. (4.12). However, these results apply to
scattering amplitudes with external momenta p; in the (unphysical) “deep Euclidean region”. It is a
unique feature of deep inelastic processes that we can use Wilson’s [S0] operator product expansion
(OPE) on the light cone [51] for the two currents in eq. (5.2), which connects the deep Euclidean RG
information to the behavior of deep inelastic structure functions in the physical region. This always
leads us to the prediction of the Q” evolution of moments of structure functions which formally can be
written as

f dx x"2 Fy(x, Q%) = C"(Q%) (N|O"|N) (5.30)

where the Q” dependence of the light cone expansion coefficients (Wilson coefficients) C"(Q®) can be
uniquely predicted by QCD (using the RG equations) and the (non-perturbative) bound state of the
target is described by the expectation value (N|O"|N) of the Wilson operator O". This latter Q?
independent quantity cannot be calculated perturbatively and has to be taken from experiment at a given
Q?= Q3%: we shall relate (N]|O"|N) to the parton distributions g(x), §(x), . . . to be fitted to experiment.
Schematically, we shall pursue the following line of arguments:

v* 2 . N
Y Y
*N —_
o3| 2 Y e 53
T,

theorem
Ww,. .
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where the virtual Compton amplitude 7,,,, defined by
T.=i f d“z €% 6(z0) (pI[J (2), . (0)]| p) (5:32)

is related to the deep inelastic scattering amplitude W,,, via the optical theorem

1

W,w=§;

ImT,, (5.33)

which can be simply derived from eq. (5.32) by using the well known integral representation for
exp(igozo) 8(z0). We then write an OPE for T,,, at —g° - (or z°>-0)

Jloh Jjl2) 0lo)

v
OPE

P (5.34)

— gl

(z2-0)

where the matrix elements of the local Wilson operators O(0) between target states will be related to
measured parton distributions. Adding the appropriate radiative gluon corrections to the diagrams in
(5.34) will allow us to calculate, using the RG equation, all leading In Q corrections to all orders in
;.

Simple arguments suggest [51, 5] that at large values of Q*(>m%) the region 0 < z* < 1/Q? dominates
the integral over the one-particle matrix element of a current commutator in eq. (5.2). Matrix elements
of current commutators are singular (a typical example would be Gell-Mann’s current algebra) on the
light-cone and the degree of singularity on the light-cone can be shown [51] to fix the asymptotic
behavior of the Fourier integral in eq. (5.2) at high Q?. To this end we expand the commutator (or in
general the product) of two local operators near the light-cone z? =0 which is a generalization [51] of
the short-distance operator expansion suggested by Wilson [50] that holds near z, =0, i.e. only at the
tip of the light-cone. In the simplest case of two scalar operators the light-cone expansion can be written
as

A(z) B(0)= 2 CH2H) z,, ... 2,04 *(0) (5.35)

where the sum runs over the spin (n) and over the different possible types (i) of operators O to be
specified later. These operators O%'**(0) are a string of local, symmetric, and traceless operators
which are the same for the product, the commutator, the time-ordered product etc. of the two operators
A and B. The expansion parameters C7 —the so called Wilson coefficients - are c-number singular
functions at z? =0 which may be taken to behave as

1 ) [da+dp—(do;—n))/2

€t 7, (7

Z2

(5.36)

where d; denotes the naive mass dimension of the appropriate operators in eq. (5.35). Thus the
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strongest singularity is obtained for light-cone operators with minimum twist 7
t = (dimension-spin) = do, — n, (5.37)

whereas less singular terms do not contribute, as we shall demonstrate below, to the leading power
behavior in Q? of the Fourier transform. Simple non-trivial examples of local operators O%!*" of
definite twist would be (recall that d,, = 1 and d,, = 3 for scalar and Dirac-fields, respectively)

T= 1: ¢’ ap.¢’ 6,,6,,4), P
=2 v ... ..
., . ...

etc.

where the 7=1 operators do not contribute in our case, since they yield vanishing diagonal matrix
elements. Therefore the leading dominant contributions come from operators with twist 7 = 2 which are
dominant for deep inelastic scattering processes and, in lowest order, yield [52, 51, 5] the usual scaling
laws suggested by Bjorken. For our further discussion it is important to realize that the OPE (5.35) is a
genuine operator statement, i.e. taking matrix elements

(a|AB|B)= 3 Ci(a|O}|B) (5.38)

the C’s are independent of the target states, i.e. of the specific reaction considered.

We will now demonstrate how one can obtain predictions for the (Mellin) moments of measured deep
inelastic structure functions from an OPE of the virtual Compton scattering amplitude in the unphysical
region along the lines illustrated in (5.34). For the sake of clarity and simplicity we will suppress all obvious
Lorentz indices and functional dependencies. For the virtual Compton amplitude we write

T(; Q%)= [ &z " (plio(zo) 7" (), J OV p)

=3 [dze7 CrY 2 2 (plOF - Olp)
2,0 Ln

z

" (5.39)
= 22 2 56y [ @z e scr) plor-#0)p)

=2 (@12 g+ 4., CHQ)pIOF (O p)

and, according to their most general Lorentz structure, we can express the spin-averaged matrix elements of
the O; as

(plOF* " (O)|py = AN(pr - p* = mPgip-- ) (540)

where the terms proportional to g** (the so called ‘“trace terms”) ensure the symmetric rank-n tensor
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which can be formed with the target momentum p to be traceless (operators with definite spin).
Equations (5.39) and (5.40) then yield

T(v, 0% =3 CHQ)x"A7 + O[x "*m*/Q?). (5.41)

Note that the origin of the neglected terms is twofold: on the one hand they derive from the trace terms
in eq. (5.40) and one usually refers to these suppressed contributions as “target mass effects” which we
shall discuss later; on the other hand these subleading contributions can also result from higher twist
terms with 7> 2 which are suppressed as (m?/Q°)"*"' where the mass scale m? is not necessarily the
target mass since higher twist terms correspond to interactions of the scattered parton with the
remaining spectator quarks in the nucleon. These eftects are in general not calculable and go beyond
the simple hand-bag structure in fig. 5.2 or eq. (5.34). According to the momentum dependence of
general Green’s functions as given for example in eq. (3.4), the momentum dependence of the above
dimensionless Wilson coefficients in any interacting field theory has to be interpreted as C7(Q%) =
CH(Q*/u?, g(u)). Since so far we are still in the deep Euclidean limit (g, — i), we can write at this stage
a RG equation for C7(Q?) which allows us, as discussed and shown in section 3, to compute the leading
Q*-dependence of eq. (5.41) to all orders in a, provided we know the first non-trivial (1-loop) order of
the anomalous dimensions of O%'-*". This we shall do below. Finally, the connection with the physical
deep inelastic region where 0 <|x| =<1 can be obtained by taking Mellin moments of eq. (5.41) and using
the optical theorem (5.33): in this region the sum in (5.41) clearly diverges and what is therefore needed
is an appropriate analytic continuation in x of eq. (5.41); in this way x-moments of the deep inelastic
structure functions naturally arise. Equation (5.41) suffices to define T as a function of complex x which
is analytic as |x| > and has a cut from —1 to +1. (T is an analytic function of » with a cut from
2muv = Q7 to =, according to eq. (5.7) with hadron masses neglected, and a cut for the crossed process
from — to 2myv = —Q?.) The coefficient of x ™" in the expansion (5.41) can now be isolated by taking
the x*~! moment and integrating along the contour C indicated in fig. 5.5:

1 -1 n 2 n
.- f dxx"' T(x,0%)= 3 CH(QY) AT. (5.42)
C

Shrinking the contour C to the physical cut, where the discontinuity is W, according to the optical
theorem (5.33), we finally get

4 [arsm Wi 09=3 (07 AT (5.43)

Fig. 5.5. Integration contour C used in evaluating eq. (5.42).
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This equation uniquely predicts the Q? evolution of the measured deep inelastic structure functions
W(x, @), once we know the Q°-independent (non-perturbative) input wave functions A7 which
describe the bound state of a hadron and which will be related to the parton distributions to be fixed by
experiment. Taking care of the detailed Lorentz structure of the hadronic tensor W,, the final form of
eq. (5.43) reads (1, 34, 53, 54]

1
[axx2 P 0= 3 o0 suar (5.44)
b i
with F = xF,, F, or xF; and for brevity we define the Mellin moments by
1
(F(Q?), = f dxx" 2 F(x, Q7). (5.45)
0

Before confronting eq. (5.44) with experiment we have first to work out the explicit Q® dependence of
C? and then we have to relate the so far theoretically unknown matrix elements A7, defined in eq.
(5.40), to measured structure functions at a fixed value of Q*= Qj or, equivalently, to parton
distributions.

In order to obtain the explicit Q® dependence of C} we have to derive a renormalization group
equation for these Wilson coefficients. Remember, according to our discussion in section 3, that any
measurable physical quantity has to satisfy a RG equation (3.15) in order to remain independent of the
renormalization convention chosen. The light-cone expansion in eq. (5.39) is given generically by (for a
given operator of type i)

iTUn =7 Cro:. (5.46)

Since conserved currents J must have anomalous dimensions [5] y; =0, the RG eq. (3.15) for
{e|T(UT)|e), with ¢ = A% or ¢, denoting the fundamental fields of the theory, reads

d d B

(1 55 B g 20 Yol TN} =0 (5.47)
and, because of (5.46) and since different n have different tensor structure,

(12 +B 2+ 27 ) CHQ I, (1)Ko |OTIe) =0

#ou T Bagt2ve ) IOk g(r)Xel|O%le) = 0. (5.48)

Furthermore, (¢|O7]¢) must satisfy a RG equation, since it will correspond to measurable parton
distributions,

) 3 .
(150 * B g+ 2%+ vor )(@lOFley=0 (549)
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where, in order to specify the normalization of O, their matrix elements should satisfy similar
renormalization conditions as the Green’s functions in eq. (3.12)

(0|O7|@Mp2=—u2=1. (5.50)

Then for a different value of the external quark or gluon momentum p, the normalization of O7 will be
modified by radiative corrections (fig. 5.6)

(¢|OFle) =1+ g°b7 In (-p?/p?)+ O(g*) (5.51)
where b7 is a constant. The anomalous dimension of Wilson operators is then given by
Yor =28°b} =2y, (5.52)

which follows from eqs. (5.49) and (5.51). Equations (5.48) and (5.49) then yield the RG equation for
Wilson coefficients

(w j’;w%—m)cno% g(u))=0 (5.53)

which is the basic equation for calculating the Q* dependence of eq. (5.44), i.e. the scaling violations in
structure functions F(x, Q). So far we have assumed that we have only one Wilson operator of type i.
If there exist several operators of type i (carrying the same internal quantum numbers and having of
course the same Lorentz structure n), then the O} are not separately multiplicatively renormalizable as
above but instead they will mix under renormalization since yor will become a matrix of anomalous
dimensions for Wilson operators and eq. (5.53) turns therefore into a matrix equation

3 [0k 55+ 8 55) - 73] CH@m g(un =0 (5:54

7

with ¥ = yor,07. We shall deal with this so called flavor singlet mixing problem in the next subsection.
The solution of eq. (5.53) can be read off eq. (3.24) and is given by

1/2)1n(Q%Y/u?)

Cr@n, gu)= Cr1, 8@ exp| [ vore@par] (559)

According to our previous discussion the physical interpretation of this solution is obvious: whereas
expl[...] includes the leading logarithmic contributions of the fundamental parton scattering cross
sections such as shown in fig. 5.4(b) which are summed to all orders in as by just knowing the first

Or};gw or\}zA

fNoA S ACA

Fig.5.6. Processes contributing to the effective normalization, i.e. to the “‘anomalous dimensions” of fermionic (O%) and gluonic (O%) Wilson operators.



E. Reya, Perturbative Quantum Chromodynamics 231

non-trivial 1-loop order contributions to yor (fig. 5.6), the Wilson coefficients C7(1, §(Q?)) correspond
to the remaining “finite” (i.e. non-logarithmic) terms of the cross sections in fig. 5.4. From fig. 5.4 it is
clear that the fermionic and gluonic Wilson coefficients Cr and Cg, where a quark and a gluon,
respectively, in the initial state scatters off the leptonic current, are of the general form

Cr(1,8)=1+0(es), C5(1,8)=O(ay) (5.56)

where we have normalized the naive parton model contribution of fig. 5.4(a) to C== 1. In the leading
logarithmic order approximation (yor ~ O(as)) we just have to take Crx=1 and Cs=0. For a given i,
egs. (5.44) and (5.55) yield

(F(Q*), = A7 C7(1, §) exp[. . ]. (5.57)

It is convenient to express the unknown Q%*independent matrix element A7 by the experimental
structure function measured at an arbitrarily chosen momentum transfer Q3:

(F(Qd). = ATC?(1, §) expl. . Jo-03

which, inserted into (5.57), finally gives

Q). = (FQD). [%g%]'“‘”’ | (5.58)

with a; = ¢;/2b according to eq. (4.11), i.e. yor = c;g” and B = —bg”. This is the basic equation for the Q°
evolution of a given (non-singlet) structure function F; predicted by the RG improved QCD. So far we
have not specified the index i, but this we shall do in the next subsection. Before entering some more
technicalities it should be noted that, in our leading logarithmic approximation, all non-perturbative
effects which describe the bound state of a nucleon are lumped into (F;(Q3)), in eq. (5.58) which
factorizes to all orders a, from the high-Q? dependences in (5.58). This so called infrared (IR) factorization
property is a typical and very important result of the renormalization group. We shall come back to this
crucial point later.

For all remaining conventional (fixed point) field theories, we have instead of eq. (5.58), according to
eq. (4.20),

(F(Q%), = (F(Qd)).[Q* Q7] ** (5.59)
with a; = 3y0r = 5c,g*?, provided of course that a fixed point g* exists such that perturbative calculations
are justified. In contrast to the In Q® behavior predicted by eq. (5.58), we expect from eq. (5.59)
structure functions to have a power-like behavior in Q? for fixed-point theories with g* to be
determined by experiment.

5.2. Anomalous dimensions of Wilson operators and singlet structure functions

Now we will discuss the various types i of Wilson operators O} and their related anomalous
dimensions in order to derive the explicit form of scaling violations in eq. (5.44) for a general measured
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structure function. There are three different types of operators [1, 53, 54] with minimum twist 7 = 2. For
the flavor non-singlet (NS) case we have just one operator which carries flavor quantum numbers, such
as isospin,

sn—1

ORs = ln' [gy*' D*: - - - D*"A + perm.] (5.60)

with the covariant derivative defined in eq. (2.4) and where A, are the usual flavor Gell-Mann matrices
on the space of physical symmetries; the permutations refer to a symmetrization with respect to the
vector indices. Note that, for the time being, we neglect trace-terms in (5.60), i.e. the g“*-terms in eq.
(5.40) which are suppressed as m%/Q>. The 1-loop contributions to the matrix elements of the fermionic
NS operator in eq. (5.60) for fermionic (F = i) external quark states yield [53-55]

Vo= g2 G| 1- 725+ 4 3] (560
with a straightforward notation according to fig. 5.7. It should be noted that the last term in eq. (5.61)

Z =¢g(n+1)+ys-1 (5.62)

\-IH

with yg=0.5772, and the digamma function ¢(z)=1I"(z)/I'(z) results from the second and third
diagram in fig. 5.7 which, as we shall see, determine the Q° dependence of structure functions for large
values of x (x—1). These diagrams are typical for gauge theories and do not exist in scalar-gluon
theories, for example, where only the first diagram in fig. 5.7 contributes and thus we expect a totally
different threshold (x — 1) behavior of structure functions than for QCD. The scaling violations of a NS
structure function are thus simply given by eq. (5.58), i.e.

(Frs(Q%)), = (Fus(Q3))n exp{—sans(n)} ' (5.63)
with
i (@74 ) (5.64)

" Bray " (03

and b = (11-3N;)/16m°. Experimentally measurable non-singlet structure functions which can be
directly compared with the predictions of (5.63) are, for example,

FNS - F2 - ’ F;p - ng’ xF;N, etC. (5.65)

LA
FoFzy

Fig. 5.7. Lowest order contributions to y¥(n).
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In contrast to the NS case, there are two types of flavor singlet Wilson operators, one fermionic (F)
and one gluonic (V) operator which carry no flavor quantum numbers:

san—1
O;‘: _ ln' [‘p,y;uDﬂ-z Ce. D”"!/I + perm]

(5.66)

o0y = - D#m1F%" + perm.]

with D*F? = (8,.0* + gfascA%)F??. Since Of and O% have identical quantum numbers, they will mix
under renormalization and consequently we get a 2 X 2 anomalous dimension matrix §(n) which forces
us to deal with the matrix equation (5.54). According to the two possible external states F =y, and

V = A%, this matrix has the general form

0y

i R
A& ﬁ%‘ﬁ;{ | (5.67)

_ (y‘ép, 7¥F)
YI\:/V, YY’V

with yEr given by eq. (5.61) and [53-55]

YW {C2(G)[3 n(n4 0 (n+1;(n+2) 2}]%”’1)}

F . a, 4n*+n+2
Yov=-5= mn:—l)'(lT"—%)- T(R) (5.68)

v__a2n’+tn+2)
YT T on n(n®—1) GR)

where a,= g’/4m and the color factors are given by eq. (4.4). The calculation of the y’s, using the
Feynman rules implied by the above Wilson operators, is rather involved but in section 6 we shall give a
simple derivation of these expressions by just using the basic order-a, parton processes of fig. 5.4b. We
can solve the RG equation (5.54) by first diagonalizing the singlet anomalous dimension matrix y(n) by

j=vy-P +vy,P* (5.69)

where the projection operators are constrained by

PP =5, P +P=1 (5.70)
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and with the eigenvalues

ye=lyEe+ YWV (yvv = yEr) + 4Y Vv Y] (5.71)

i.e. y. <y.. From eq. (5.69), together with (5.70), we obtain for the projection operator

Bt P
P21 1-p7

with

) Yre— ¥ YV
a, Ep;l(n _ +, ﬁn Epgl(n)= XV
Y-—7+ Y-—7+
v (5.72)
YFrF
Y-—Y+

pr(n)=

where for later convenience we have defined two matrix elements by a, and B.; these two quantities
will play a crucial role for discriminative tests of QCD.

An important special case is the situation where n = 2, since this corresponds to the area under a
structure function, (F(Q?%),= fo F(x, Q*)dx which in turn can be related to the total fractional
momentum carried by quarks. In this case we have

a, 4
73 [2CAR)+ T(R)]

o — = @ 4 (2C(R), —2CKR) _/
#n=2)=723(" . rd)=
2173( T(R), T(R) ) N\ 0 5.73)
—p-_ TR) 1y = 2CAR)
“ThTem TRy PO aem) TR)
i.e. for a four-flavor QCD (N; = 4) we would have for example
Q)= (g g) (5.74)

We shall come back to these important n = 2 results when comparing moments of structure functions
with experiment in section 5.5.

Our diagonalized y-matrix in eq. (5.69) allows us now to define operators OZX and related Wilson
coefficients C- which obey simple linear RG equations (5.53), as was the case for non-singlet structure
functions, with the anomalous dimensions y. given by eq. (5.71):

O1CUQIp*,8)= 3 OIPiCH(QIu’.g)

ij=F,
=(puCr+ P12CY)OF+ (p2CE + p2CY)Ov
= Cr(p1:0% + p5:0%) (5.75)
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where in the last line we have already made use of eq. (5.56), i.e. C¥(1,£)=1 and C%(1,8)=0 to
leading order. Note that, although gluons do not directly couple to leptonic currents, they will play a
crucial role in calculating the scaling violations for structure functions because of the appearance of the
gluonic operator O% in eq. (5.75): This is the so called singler-mixing and eq. (5.75) is the very reason
why the gluon distribution in hadrons, to be identified as the target expectation value of Oy, enters the
problem. Using

1/21n(Q?%p?)

cu@iu, = i ex[- [ r@enar]

0

the Q-evolution of a general structure function is predicted to be

(F(Q*)» = (Fus(Q?)) exp{—sans(n)} + z; (F:(Q?)) exp{—sa;(n)} (5.76)
with
¥: In(Q?/A?) (5.77)

%= e S M0

and b = (11 -3N,)/167>. The matrix elements of O% have been denoted by (F.(Q3)),. It is of course
possible to compare eq. (5.76) directly with experiment [56] by fitting the unknown input structure
functions F;(x, Q?) at a fixed value of Q3 to the data. In this way one looses part of the predictive power
of eq. (5.76) since it requires to refit the input functions at QF for each different structure function
F(x, Q°) considered. One can avoid this by relating the Q* dependent structure functions Fys and F. to
parton distributions which then in turn can be used to make also predictions for processes other than
deep inelastic reactions. This physically most transparent way of treating scaling violations, partly based
on eq. (5.75), will be discussed in section 5.4.

The scaling violations predicted by conventional fixed-point field theories are formally the same as in
eq. (5.76) but, according to eq. (5.59), we have instead of eq. (5.77)

a=%, s=m(Q¥Q3) (5.78)

where now the value of the UV finite fixed point a,=a* = g*’/47, appearing in v, has to be
determined by experiment. The appropriate anomalous dimensions in eq. (5.78) for fixed point theories
are summarized in the following subsection.

It should be noted that

yas(n =) =yre(n=1)=0 (5.79)
y-(n=2)=0. (5.80)

Equation (5.79) implies that the fundamental baryon-number conservation, etc., laws (5.15) hold at all
values of Q7 whereas eq. (5.80) tells us that the operator O? is conserved, i.e. is not renormalized by
the strong interactions. This operator therefore retains its naive mass dimension and is identified with
the conserved energy-momentum tensor: 8,, = O = O+ OX..
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5.3. Anomalous dimensions of Wilson operators for fixed point theories

In an abelian vector-gluon theory (¥y,A*) the fermionic and gluonic Wilson operators in eq. (5.66)
become [34, 35]

in—1
O = ln’ [gy"'D*?- - - D*" + perm.]
s (5.81)
n _ 1 "apL] 2... n—1 n
oy = P Fe#1g#z. .. gintF 4 + perm.]

with D* = 9* —igA*, F** being the usual field tensor defined in eq. (2.9), and no covariant derivatives
appear in OV because of the absence of gluon self-couplings. The anomalous dimensions are then the
same as in eqs. (5.61) and (5.68) with the color factors given by eq. (4.17) and where a,=a*.

Since scalar-gluon Yukawa-theories (yafp) are not gauge theories, only simple derivatives occur in
the Wilson operators [34, 35]

in—1
=" [y*19 - 8"+ perm)]
n (5.82)
0:: — i"¢3m . 3#n¢
which imply the following anomalous dimensions [34]
* 2 2a* 1
YiE= ‘% Cz(R)[l —m] ' Yee =~ —fr— T(R)-
(5.83)
o ot o —_ @ 1

with a* = g*?/47. For non-abelian scalar-gluon theories (YA, ) the color factors are given by eq.
(4.18), whereas abelian scalar-gluon theories (ajp) are characterized by eq. (4.17). It should be noted
that now the digamma ¢-function (5.62) does not even occur in yEg, in contrast to eq. (5.61) for
vector-gluon theories, because only the first diagram in fig. 5.7 contributes for theories with no
gauge-fields.

5.4. The Q* dependence of parton distributions

Instead using eq. (5.76) for comparing the predictions of scaling violations with experiment, we shall
now relate the quantities Fys(x, Q%) and F.(x, Q°) to Q*-dependent parton distributions for which we
then can use the well known naive parton model relations [41] to predict any measured structure
functions or even different reactions (such as Drell-Yan dilepton production, high-p+ reactions etc.). To
achieve this it is useful to make a change [57] of basis from Ons and O. to operators O, O;, Os and
O;s of definite transformation properties under flavor SU(4), say. Suppressing all obvious factors like
Dirac matrices and Lorentz indices, this procedure can be generically illustrated in the following
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intuitive way. Let us consider the electromagnetic current and a four-flavor (u, d, s, ) theory where

= utba = Satha = athi+ S (5.84)
Reducing the time-ordered product in eq. (5.46) by the usual contractions
T(J () J(0)) = 59u(2) du(2) $u(0) ¥ (0) + 50> d) + 5(u >5) +5(u > €) -

= 5hu(2) $u(0) + 50a(2) $al0) + 59(2) . 0) + 59(2) ¥(0) (5.85)

where in the last line we have kept only the field operators and have suppressed the c-number
contractions (Feynman propagators). In the language of the Wilson expansion, the terms kept in eq.
(5.85) correspond to leading twist 7 =2 operators, i.e. where the same quark propagates between the
two external current vertices and which does not interact with the remaining spectators in the nucleon
as shown for example in fig. 5.8(a). The neglected terms in eq. (5.85) refer to non-leading higher-twist
contributions [58,31] which correspond to configurations where the external currents scatter off
different quarks (cat’s ear diagrams) or where the struck quark interacts with the spectators in the
nucleon as shown in fig. 5.8(b). Taking the expectation value of eq. (5.85) between external proton
states, say, immediately gives via eq. (5.11) the parton model relation (5.12). We can now rewrite eq.
(5.85) as

5 0 Y
TU=dQw wih &*=| . | ¢= ://:d (5.86)
0 3 oe

and expand Q7 in a basis with definite SU(4) transformation properties:

02 = C()Ao + C3A3 + CsAg + C15A]5 (587)
dvyDY dyDY
(a)
®w¢wYD¢ do FYD'JJ )
(b)

Fig. 5.8. Diagrams illustrating the meaning of twist with the corresponding operator written above each picture: (a) shows typical twist-2 effects (no
communication between struck quarks and spectator quarks), and (b) illustrates twist-4 contributions.
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where the coefficients ¢; can be easily calculated using Tr(A,A,) = 28,,. This gives

T(JJT) = 1500+ 505+ 1505 — 150;5 (5.88)
with

00 = ‘Zu‘/’u + (zd(//d + szs + !ZC‘/JC

03 = ‘;u‘pu - Jd‘pd

OS = lﬁu(pu + Jj-ddld - 2‘/75¢S

Ous= utpu + Yatba+ hith = 3
where O, transforms as a SU(4) flavor-singlet to be identified with the fermionic singlet operator O in
eq. (5.75), and O,_, g are the flavor quantum-number carrying non-singlet operators related to the NS
structure functions in eq. (5.63). Defining the parton distributions as in eq. (5.11), the amplitudes with
specific singlet and non-singlet SU(4) transformation properties are given by

S=(p|lOdp)=u+ii+d+d+s+5+c+é=uy+dy+6£+2¢

3E<p|03|p>= u+ﬁ*(d+(i)= uV‘_dV
As=(p|Odpy=u+ia+d+d-2s+5§)=uy+dvy
Ais=(p|Olpy=u+ii+d+d+s+5-3(c+¢)=uy+dy+6¢&—6¢

(5.89)

with 3 = 3(x, Q}), A; = Ai(x, QF), u = u(x, Q%) etc., and where we have also used the SU(3) symmetric
ansatz (5.28) and for the charmed parton distributions we have taken

c~é. (5.90)

I

gl
Solving eq. (5.89) for the parton distributions we get the desired result

Uy = %(AS + As)’ ¢= é(%z - Agt JTAIS)
(5.91)

dV = %(AS - A3)7 fl = é(z - A]s).

This allows us to calculate the Q® dependence in a rather straightforward way since the Q” evolution of
the A; is given by eq. (5.63) whereas the singlet combination 3 evolutes according to the (+)-component
in eq. (5.76), using eq. (5.75), to which we will now turn.

For completeness let us first state the result of the above decomposition for a three-flavor SU(3)
theory (u, d, s quarks): Instead of egs. (5.89) and (5.91) we have

S=u+ia+d+d+s+5=uy+dy+6¢

As=u+tia—-(d+d)=uy—dy (5.92)
Ag=utia+d+d-2s+5)=uv+dy
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and

uy=3Act As), E=43- Ay

dv=3As— Aj). (5.93)

Because of eq. (5.75) the Q7 evolution of the fermionic singlet structure function 3 will be influenced
by the gluon distribution G(x, Q%) in the nucleon: since

x3(x, Q) =(p|Oelp),  xG(x, Q%)=(p|O:|p) (5.94)

eq. (5.75) implies
(F@n = (1% Y 209 7 8GO (5.99)

where we have used eqs. (5.70) and (5.72). Solving these equations for (x¥), and (xG), and using the
RG exponents in eq. (5.76) for (F.(Q%), we can reexpress the Q*-evolution for singlet components
entirely in terms of parton distributions: remember that generically we had

O.=a,0+ BnOV r=0_+0,
O0.=(1-a,)0¢- Bnov} 2 .0y = (1-a,)0- - a,0, (5.96)

from which we can directly read off the Q*-evolution of 3 and G:

(xZ(Qn = [an(xZ(QPn + Ba{xG(QO))n] expl-sa_(n)}
+{(1 - 2 XxZ(Q05). — B.(xG(Q0))] exp{-sa..(n)} (97)

(GO = [(1- @, )xG(QR) + 222 (x3(0R, | expi-sa(n)

t+ [antxG(08, - 2022309, | expl-sa. ) (5.98)

and the non-singlet pieces evolute according to
(xAi=3,8,15(02)>n = <XAi=3,8,15(Qg))n CXP{"SaNS(n)}- (5.99)

Equations (5.97)~(5.99) are the basic predictions for scaling violations in structure functions according to
QCD as well as to conventional fixed point theories with a;(n) and s given by egs. (5.77) and (5.78),
respectively, and a, and B, defined in eq. (5.72). The basic algorithm for comparing egs. (5.97)(5.99)
with experiment is the following:

(i) parametrize the parton distributions at a fixed value of Qf according to some power law
ux, Q3)~ x*(1 - x)’, etc. and fit these x-dependences to experiment at Q> = Q3 using the naive parton
mode] relations (5.12) and (5.13), for example;

(i) calculate via eq. (5.89) the input amplitudes 3(x, Q3) and A;(x, Q3);
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(iii) insert these expressions into egs. (5.97)~(5.99) in order to obtain their Q*dependence;

(iv) these Q* dependent moments of 3(x, Q%) and A;(x, Q) allow us to calculate the Q® dependent
parton distributions using eq. (5.91);

(v) the connection with measured structure functions at Q°# Qj is then again given by the parton
model relations such as egs. (5.12) and (5.13).

Equation (5.97) is of utmost importance since it allows us to determine the gluon content of the
nucleon from the measured Q° dependence of structure functions: For this purpose we use, for
example,

F5P(x, Q%)= fx3(x, Q)+ ix[u+i—-d—-d-s-5+c+¢] (5.100)
FN@&x, Q%)= x3(x, Q7 (5.101)

with N = (p +n)/2, u = u(x, Q°), etc. and where we have assumed s = § and ¢ = ¢ in F3"; the NS expression
in square-brackets in eq. (5.100) evolutes according to eq. (5.99). Then the only unknown in eq. (5.97) is
(xG(Q3)).,, besides of course the scale parameter A in s, which can be fitted to the measured Q° dependence
of Fx(x, Q) or of (Fy(Q?),.

Since the input parton distributions, which describe the bound states of the considered hadron, are
so far theoretically not calculable one usually refers to theoretical prejudices as far as their x-
dependence is concerned, At small values of x one uses the Regge constraints (5.26) and (5.27) whereas
at large x one resorts to naive dimensional counting rules [59-61] to fix their threshold suppression
which tell us that

glx,0)~(1—-xy*"7 asx->1 (5.102)

where n is the minimum number of the possible hard constituents in the hadron. The value of Qj where
these rules apply is unknown but optimistically we may expect (5.102) to be valid at distances where the
naive parton model starts to make sense (“‘precocious scaling”), i.e. Qf=2-5GeV>. As an example let
us consider the most important case of parton distributions in the nucleon:

0= DU, d,~(1-xyP=(1-x)

£ G ~(1-xP* 3= (1-x) (5.103)

Og : {~(1-xP7=(1-x).

Needless to say that any other input parametrization which fits the data will do as well. However,
because of momentum conservation, the parton distributions are expected to have in general the
qualitative structure as shown in fig. 5.9. This is obvious from fig. 5.3 where, because of the gluon
bremsstrahlung, the sea quark (qq) will carry the least amount of large (hard) momentum in contrast to
valence quarks, with the gluons lying in between. The charmed sea distribution ¢’ =c¢ = ¢ in fig. 5.9 is
always expected to be much steeper (“softer’’) than the SU(3) sea ¢ since heavy quarks carry on the
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E': charmed sea

E: SU(3) sea

Fig. 5.9. Qualitative behavior of parton distributions at large and small values of x.

average less large momenta than the light SU(3) quarks. Finally, for practical purposes, the moments in
egs. (5.97)-(5.99) of a given parametrization of an input parton distribution xg(x, Q3) = x*(1 — x)’, say,
can be simply calculated by

(xq(Q3n = (x*(1-x))n=Bla+n-1,b+1) (5.104)

with the Euler beta function B(x, y)= I'(x) I'(y)/T'(x + y). Later we shall use this equation to analytic-
ally continue our real-n moments to complex values of n which will be necessary to obtain, via a Mellin
inversion technique, the explicit x-dependence of structure functions from their moments in egs.
(5.97)-(5.99).

In the next two subsections we shall discuss how to compare the predictions (5.97)-(5.99) for scaling
violations with experiment.

5.5. Comparing moments of structure functions with experiment

The most straightforward and simple, although in many cases not very stringent and instructive, tests
of field theories are to compare just moments of structure functions with experiment which, as we have
seen, are directly predicted by any field theory. However, it should be noted that even the experimental
determination of moments, defined in eq. (5.45), is problematic since for a given value of Q° one has so
far measurements of F(x, Q°) available only in a limited region of x; therefore in order to calculate the
moments in (5.45) one has to make one or another ad hoc extrapolation into regions of x experiment-
ally not yet accessible.

Let us start with the theoretically most simple case of non-singlet structure functions, i.e. with eq.
(5.63) which, for QCD, tells us that

(Frs(Q?)5 V™ ~ In(Q%/A?) (5.105)

i.e., the (—1/ans)th power of the nth moments are expected to lie along straight lines when plotted
against In Q” with a common intercept In Q° = In A>. These predictions have been found to be in very
good agreement [62] with the data of Fys=xF3" for A =0.5GeV as shown in fig. 5.10(a). Similar
conclusions have been reached from analyzing the BEBC data [43] but it should be emphasized, however,
that these latter results rely heavily on measurements between Q= 0.6 and 2 GeV>- a region neither
appropriate for the parton model nor for the legitimacy of perturbative calculations. Even in the CDHS
experiment [62], where Q” = 6.5 GeV?, ill understood kinematical target mass effects (~x2m %/Q>) play a
non-negligible role: Assuming that these effects can be in part accounted for by “Nachtmann moments”
[63, 64]



242 E. Reya, Perturbative Quantum Chromodynamics

L

100 -

TT 1T T T TT Ty

(b)

100

i 1
- - ————— _ﬁ,’

o 80r B » 80

=] 5

% €

v,(, [ <

" £
c

o~ <

) (=}

Z¢ 60 - £ son §
£

ot st !

= 2 :

Ez J‘ 7 z" *:

= I y
"z

2 40 4 = 40 4

v 2

E %

20[ j 20 1
O] L fETa| togoapxdnal o el 1 n‘{ 0 doa gt Lo el 1L tyggd
[eX] | 10 t00 [e}) | 10 100
2 2
Q% (Gev/c) ? (Gevye)?

Fig. 5.10. Fit to the Q° dependence of (a) ordinary Cornwall-Norton x-moments M, = (xF5¥(Q?)),, and (b) Nachtmann moments according to QCD.
The figures are taken from ref. [62].

1
n+1 T LA 272
fdx £x3 }t(:zirl)\/lltmc mx/Q x Fy(x, 0%) (5.106)
pd v 4
with
2 (5.107)

VI oo

then the fitted slopes decrease by more than 10% as shown in fig. 5.10(b). The importance of this
statement will become clear in a moment. The target mass effects in eq. (5.106) result from the
trace-terms in the NS Wilson operator of twist 2 and with definite spin in eq. (5.60), i.e. from the g**
terms indicated in eq. (5.40). (Higher twist 7>2 effects as in eq. (5.41) are of course still neglected.)
Besides using the rather heavy artillery of the operator product expansion, the Georgi-Politzer
[65, 31] &-scaling variable in-eq. (5.107) can be derived in a physically more transparent way by using the
on-mass shell covariant parton model [66]. The parton language is a useful mnemonic for the form
[67,65] of £ in eq. (5.107): If a massless quark carries a fraction ¢ of the proton momentum and is
kicked onto its mass shell by the collision, then (ép+q)° =0=£m+2ép - q+q° and the positive
solution of this quadratic equation gives (5.107). It should be emphasized that these kinematical
rescaling effects due to target masses alone cannot adequately describe [66] scaling violations and
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therefore the renormalization group improved QCD effects (radiative gluon corrections) discussed so
far are significant and probably dominant in explaining the observed deviations from exact scaling.

Since n =3 moments weigh mainly the large x region, one has to choose rather large values for o’
(=10 GeV?, say) in order to suppress subasymptotic kinematical terms since

£=x-x’my/Q*+ O(mn/Q%), (5.108)

or for the purely phenomenological Bloom—Gilman scaling variable [68] we would have

ST SN Y U} (m)
x—1+xm§/02—x x OZ+O o) (5.109)
These differences between the rescaling effects of £ x',...and the truly asymptotic Bjorken scaling

variable x can be suppressed by directly studying F(x, Q°) for x <0.6 and Q*= 5 GeV?, say, since a
transition from x to ¢ or x’ amounts practically to adding O(m%/Q*) terms to the slopes of structure
functions as is immediately evident from the following relation

ox

dF(x, 0®)] _9F(x, Q%) | , IF(x, Q°)
= o2 aoz

302 Ix aQ? I)? l 6x

(5.110)

for ¥ = ¢ x', etc.
The measured NS moments of F%" in fig. 5.10(a), however, can be equally well explained by

conventional fixed point field theories [69]. For an abelian vector-gluon theory egs. (4.4), (4.17), (5.61),
(5.64) and (5.78) tell us that (for N; = 4)

*
vector __ 25a

an~s 167 ans (5.111)

and thus eq. (5.63) predicts, in contrast to eq. (5.105),
(Fus(Q), ™™ = C,(QINQ*/ Q)™ (5.112)
where the unknown normalization constants C,(Q3) = (Fus(Q3))» ™ have to be fitted to the data at an

arbitrary value of Q= Qj. A similar power-like behavior in Q° is predicted by, for example,
non-abelian scalar-gluon theories where, according to eqs. (4.18), (5.78) and (5.83),

scalar a* =
ans” =g lx (5.113)

with @, = 3[1 — 2/{n(n + 1)}] which gives for eq. (5.63)
(Fus(Q?) """ = C.(QNQ* QoY . (5.114)

The predictions of abelian scalar-gluon theories are as in eq. (5.114) with a* multiplied by a factor of
3/4, which follows from eqs. (4.17), (4.18) and (5.83). From fig. 5.11 it can be seen that the predictions
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Fig. 5.11. Comparison of measured [62] moments M,, = (xF'}¥(Q?)), with the predictions [69] of abelian vector-gluon theories (a, = ans(n)), eq. (5.112)
and non-abelian scalar-gluon theories, eq. (5.114) for various choices of the fixed point a *. The low-statistics data (open circles and triangles) are from ref.
[43].

according to egs. (5.112) and (5.114) are in equally good agreement [69] with experiment as are the
straight line fits in fig. 5.10. Thus non-singlet quantities can only provide us with a consistency check of a
given theory but cannot discriminate between QCD and other finite fixed point theories of strong
interactions [70] (unless precision measurements can be extended to Q=200 or 300 GeV?, as it is
evident from fig. 5.11). This, however, is not too surprising since the Q® dependence of NS moments is
uniquely determined by just one anomalous dimension and, therefore, quantities such as (Fys(Q%)); V*™
are mainly sensitive to differences in a logarithmic and a power-like behavior in Q7. This is in contrast
to structure functions which receive also contributions from flavor-singlet Wilson operators, such as F,
the Q® dependence of which is determined by three different anomalous dimensions in eq. (5.76): These
subtleties of singlet-mixing will play a crucial role in discriminating between different field theories
which will be discussed in a moment.

Another theoretically very attractive test of field theories, which measures ratios of anomalous
dimensions directly, is obtained [43] by comparing the logarithms of two moments (Fys),. and (Fug)n:
which, according to eq. (5.63), should result in straight lines (in the 1l-loop order) with slopes

ans(n)/ans(n'):

d ln<FNS(_02)>n _ aNs(n)
JI(Ens(O),. ~ ans(n’) (5.115)

These slopes are obviously independent of A and a*, as well as of the number of flavors. Moreover it
should be emphasized that eq. (5.115) can discriminate only between vector and scalar gluons, but not
between subtleties such as their abelian or non-abelian group structure: This is because the only
difference between an abelian and non-abelian structure of the qqg-coupling in vector-gluon theories is
due to the “color charge of a quark” C,(R) in eq. (5.61) which cancels in the ratio in eq. (5.115); and
similarly for scalar-gluon theories. For illustration we compare in table 5.1 a typical prediction for the
ratio of anomalous dimensions, according to eq. (5.61), with the measured [62, 43] F3"-moments. As we
can see, the measured slope [71] of ordinary x-moments (xF3"(Q%), is in good agreement with the



E. Reya, Perturbative Quantum Chromodynamics 245

Table 5.1
Comparison of the theoretical predictions for the n/n’=6/4 moment ratio
with CDHS measurements [62, 71]; the ordinary x-moments are defined in eq.
(5.45) and Nachtmann moments in eq. (5.106)

experiment theory
GFY, Nachtmann vector scalar
ans(6)/ans(4) 1.34+0.07 1.18+0.09 1.29 1.06

predictions of vector-gluon theories. However, as in the previous case, target mass effects (Nachtmann
moments) play a non-negligible role, although Q*=6.5GeV? for the CDHS experiment [62], which
decrease the slopes by more than 10% as compared to our ordinary moments. On the other hand the
slope predictions of scalar theories are typically 20% smaller than those of vector theories. Thus, at
present, not even scalar-gluon theories can be ruled out within lo on the basis of this non-singlet
moment-slope test in eq. (5.115).

In order to proceed we should make use of the full content of the theoretical predictions in eq. (5.76)
or egs. (5.97)5.99) by studying structure functions such as F,(x, Q°) which contain dominant singlet
components. This should prove more awarding since fixed point theories differ from QCD mainly in
their singlet mixing properties, because of their very different gluonic anomalous dimensions as implied
by egs. (5.68) and (5.83) together with eqgs. (4.4), (4.17) and (4.18). The most important and instructive
moment to study [72] is the lowest n = 2 moment of F,, i.€. the area under F»(x, Q7). From eqs. (5.100)
and (5.101) we have for (F(Q?), = [o Fx(x, Q®) dx

(F5(Q%): = 15x 3(Q7)), + (x[u(QF)~ du(Q7) - 2¢(Q7) + 2¢'(Q7)))- exp{—sans(2)} (5.116)
(F(QY) = (x 3(QY)): (5.117)

where the non-singlet component in eq. (5.116) can be estimated to be small [72], and the Q°
dependence of the singlet piece follows from eq. (5.97)

(x 2(Q%): = a2 + [(x Z(Q0)). — @] exp{-sa.(2)} (5.118)
where we have used a, = 8>, a_(2) =0 and
(xG),=1-(xZ), (5.119)

which, by momentum conservation (see eq. (5.16)), holds for all values of Q® The physical inter-
pretation of eq. (5.118) is obvious: a; is the asymptotic value of the total fractional momentum carried
by the fermionic constituents of the nucleon in the limit Q- o; because of the gluon self-couplings,
quarks are much more effective in radiating gluons and can therefore easier transmit their momentum
to gluons in QCD than in conventional fixed point theories which naively implies

D fixed-poi
aZQC <a2xe pomt-

Thus eq. (5.118) plays a unique role [72] in discriminating between QCD and all other conventional



246 E. Reya, Perturbative Quantum Chromodynamics

fixed point field theories. This comes about as follows. At moderate Q° =2-4 GeV?, corresponding to
our input QF, experiment tells us [43-45] that the total fractional momentum carried by quarks is
(x3(Q3)),=0.52 and hence, according to eq. (5.118) and since a.(2)=56/75>0 (using N;=4),
(x 3(Q%), is an increasing or decreasing function of Q° depending on whether a; is larger or smaller
than 1/2, respectively. Substituting the different possible values of the group invariants of egs. (4.4),
(4.17) and (4.18) into eq. (5.72), it turns out that a, < 1/2 only for QCD where a, = 3/7 (see eq. (5.74)).
1t is a unique feature of all other presently known field theories that a, > 1/2 (specifically [72] a. = 6/7,
9/10 and 72/73 for abelian vector-gluon, non-abelian scalar-gluon and abelian scalar-gluon theories,
respectively) which forces [ Fx(x, Q%) dx to increase with Q7. Since [; Fx(x, Q) dx is experimentally
observed [43, 44, 73, 74] to decrease with Q7 (or at most to be constant), all theories except QCD are
already excluded on the basis of this single qualitative observation! In fig. 5.12 we compare these
predictions with experiment, where for the abelian vector-gluon theory we have taken the fixed
point a* to be 0.5 in agreement with our analysis [69] of NS moments in fig. 5.11. The predictions of
scalar-gluon theories are in even worse agreement with the data since their values for a, are always
larger than 6/7. Similar conclusions have been already reached some time ago by a more detailed
quantitative analysis [75, 76] of F5*™(x, Q%) and also by studying the timelike ¢° {77, 78]. It should,
however, be noted that, although for n = 2 we have (using y_(2) = 0 in eq. (5.71) and eq. (5.72))
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Fig. 5.12. Comparison [72] of the Q evolution of the area under F», predicted by vector-gluon theories, with the vN data of refs. [43, 45] and with the pp
data of ref. [73].
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Table 5.2
Values for the renormalization group exponents a;(n)
and for the projection matrix elements a, = pyi(n)
and B, =pa(n) in eq. (5.72) for a four flavor QCD

(N;:=4)
n  axs(n) a-(n) adn) a, B
0427 0 0747 0429 0429

0.667 0.609 1.39 0925 0.288
0.837 0.817 1.85 0.98 0.17

0.971 0.960 2.19 0992  0.119
1.08 1.07 246 0.996  0.091

[« NV - VI o)

the Q? dependence of (x 3(Q?). in eq. (5.118) is not directly sensitive to the triple gluon coupling since
the coefficient of C»(G) in y3v(2) in eq. (5.68) vanishes. Therefore the whole contribution to yvy(2) is
due to the term proportional to T(R) in eq. (5.68), i.e. to the external wave function renormalization
( #Owr) corresponding to the last term in eq. (5.52). Thus, a, measures mainly the color charge of
quarks, i.e. the quark-gluon coupling in (3.6) but not the self-interactions (2.5) of gluons, i.e. the
Yang-Mills structure of eq. (2.3). Needless to say that gluon self-couplings are required in order to
render a non-abelian vector-gluon theory renormalizable leaving QCD unrivalled.

Since higher n(=3) moments weigh mainly the large x region (x = 0.3), the study of n >2 moments
of any structure function cannot provide us with additional information on the gluon structure of QCD.
This is so because from eq. (5.71) one obtains

7—(n)=7§F(n)—0( . )

n‘lnn
for n>2 (5.121)
y+(n)>v_(n)

and thus always just one anomalous dimension yns = yEr in €q. (5.76) dominates: any structure function
such as F,(x, Q%) will, for x = 0.3 (i.e. n = 3), essentially behave as the non-singlet function in eq. (5.63).
Table 5.2 illustrates how well (5.121) is already satisfied for n =3. Therefore, the subtle and very
important singlet-mixing properties of the theory, which allows us to study the detailed gluon structure,
is only effective for small n, i.e. in the small x-region, not accessible to any moment analysis. We will
therefore try to extract from the predicted moments of structure functions in egs. (5.76) or (5.97)-(5.99)
the explicit x-dependence of F(x, Q°) which is after all the quantity directly accessible experimentally.

5.6. Inverting moments

The general procedure to obtain F(x, Q%) from given moments (F(Q?)), = [; dxx" > F(x, Q%) is to
perform a Mellin inversion [79]

c+ic

Flx, 02)=§%i j dn x~""(F(Q?), (5.122)

c—ioc

where the integration contour has to lie to the right of the rightmost singularity of (F(Q?)), in the complex
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Fig. 5.13. The integration contour for the inversion of the Mellin transform (F(Q?)), = (F(Q3)).. exp{—sa(n)}in eq. (5.122). The crosses (x) denote the
singularities of (F(Q?)), which are either simple poles (stemming from the input distributions (F (O ~ Bla +n — 1, b+ 1)in eq. (5.104)) or essential
singularities (stemming from exp{—sa(n)} due to the poles of a(n)).

n plane as indicated in fig. 5.13. The inversion of asymptotic approximations (leading log’s) of moments,
like eqgs. (5.63) or (5.76), via the continuation in n is certainly suspect. By inverting the moments to
deduce the behavior of F(x, Q°) one must assume that all possible subdominant higher-order terms in
anomalous dimensions and Wilson coefficients are negligible uniformly in n. Thus, all subdominant
terms on the right-hand side of eqgs. (5.63) or (5.76) have to be negligible once Q® exceeds a certain
limit, call it Q3, where Q3 is independent of n. These corrections are indeed negligible provided [80, 6]

3
as[lnm<l for x=1
Inx

ln x 3/2
as[g e as] <1 for x<l (5.123)
with
g=GR)___4 (5.124)

167°b  33--2N;

For general (singlet) structure functions, eq. (5.122) can only be calculated numerically [56] but for
special cases, such as NS structure functions or for x - 1, one can handle eq. (5.122) analytically which
we shall do first.

Although for practical purposes it turns out that the numerical evaluation of the integral in (5.122) is
the most efficient one, it is possible and also instructive to reduce this complicated integral to a more
simple expression for non-singlet structure functions. We start from the NS-moment prediction in eq.

(5.63)
(Fus(Q?) = (Fns(Q3)). exp{—sans(n)} (5.63)

and use the following convolution theorem of Mellin transforms: If two moments are given by

fdx x"fi(x) = gi(n)

then

jdxx"_2 1% f>= g(n) g2(n)
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where
1
fixfo= f %fl(x') fz(%;)- ' (5.125)
From this one simply obtains for eq. (5.63)
1
Fus(x, Q) = f %FNS(;}” 03) T(x', Q% (5.126)

with the Mellin-inverse of the RG exponent given by

c+ie

T(x', Q%)= ﬁ f dn x"" exp{-—sans(n)}. (5.127)

c—ix

For the general ans(n) in eq. (5.61) this kernel T cannot be evaluated exactly because of the
exponential. Therefore one should instead differentiate [81] eq. (5.63)

dFns(Q?),

R = —ans(n) (Fns(Q*)n (5.128)

which upon using the above convolution theorem (5.125) gives

1 c+io
dFus(x, Q%) dx’ 1 Hen
NS((li Q = %FNS(%, 02) i I dn x""""(—ans(n)). (5.129)

Now the relevant integrals over n can be done explicitly {79] to give (note that this would not be
possible for the singlet structure functions F. because of the square-root terms in a.(n) in eq. (5.71))

QF—%@ = G{[3 +41n(1- x)] Fus(x, Q%) + f dx’ (2-2x) FNS<;’:—,, 02)
et [{ [ Rl ) - R 0]} 130

This is Parisi’s integro-differential equation [81] which can be solved [82] for the scaling violations of
Fns(x, Q). Figure 5.14 shows the QCD predictions [83] for Fys = F$? — F$" taking the measured values
for F{" as input [84]. The agreement with the data is good.

Furthermore, eq. (5.126) allows us to derive an explicit analytic expression for the threshold behavior
of any structure function [85], i.e. for the Q® dependence of F(x, Q°) at large x, because of (5.121) the
Q? evolution of any (singlet or non-singlet) structure function will be dominated by just one anomalous
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Fig. 5.14. Comparison of the experimental data [84] with the predicted variation of Fns = F§P— F§" in eq. (5.63), using the neutron data as input [83].

dimension yns = ygr for large n (i.e. large x). In this region we can therefore use the asymptotic
expression for the ¢-function in eq. (5.62),

U(z)=lnz+0(1/z) for z- oo,
which, inserted into egs. (5.61) and (5.64), yields
aNs(n) = G(C] Inn+ Cz) + O(I/n) (5131)

where ¢;=4, ¢;=-0.69 and G is given in eq. (5.124). Note that the Inn term stems from the
second and third diagram of fig. 5.7. For this simple case the kernel in eq. (5.127) can be calculated with
the result

T, Q%) =exp(—c26s)&“}—1(/}’,‘%1:, P=cGs. (5.132)

Assuming now an input distribution in (5.126) of the form F(x, Q3)=(1— x)* we finally get

F(x, Q%)= (1-x)* (ln %)P exp(—c,Gs) F_(%% (5.133)

This is the famous Gross inversion formula [85] for large x, which for practical purposes is sufficiently
accurate for 0.3=<x=<1. A similar expression can be derived for just the F, amplitude, (F.(Q?), =
(F+(Q?)), exp(=sa.(n)): In this case one obtains [56] ¢, =9 and c, = —1.06, which clearly shows that
F.(x, Q% is much stronger suppressed in (1-x) as x—1 than eq. (5.133). Since for non-gauge
(scalar-gluon) theories only the first diagram in fig. 5.7 contributes to yfr in eq. (5.83), there will be no
Inn term in eq. (5.131); thus P in eq. (5.133) vanishes which implies that F(x, Q%) ~ (1~ x) has the
same power behavior in (1 - x) as the input F(x, Q3)~ (1—x)® This is in contrast to gauge (vector-
gluon) theories where the input (1— x)* will be changed to F(x, Q%) ~ (1 — x)*** according to (5.133).
First attempts [86] to compare the scaling violations predicted by eq. (5.133) with data for F$® in the
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large x-region resulted in a good agreement between QCD and experiment. Equation (5.133) will also
be useful for describing the scaling violations of fragmentation functions D?(z, Q?) for large values of z
to which we shall turn in section 10.

Similar analytic expressions for F(x, Q%) can be derived [56, 87] in the small-x region where only the
contributions of the rightmost singularities of the anomalous dimensions are assumed to dominate. For
these one can use the saddle-point method to evaluate their contributions to the inverse Mellin
transforms (5.122) as done in ref. [87], or even better one can perform the inversions exactly [56] which
allows F(x, Q%) to be expressed by modified Bessel functions. Unfortunately, for x even as small as
0.02, these results deviate by about 20%-30% from the results obtained from exact inversion
procedures [56] for presently available values of Q.

In general one has therefore to perform the Mellin inversion (5.122) numerically [56] in order to
obtain the required accuracy. For this it is convenient to rewrite eq. (5.122)

F(x, )=~ [ dz Relx = (F (@} (5.134)

Choosing ¢ = 2.5, which is appropriate for all structure functions and field theories studied so far [56],
an upper limit of integration in (5.134) of about 50 suffices to guarantee an accuracy of 107>, It is now
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Fig. 5.15. Comparison of the predictions {72} for scaling violations with pp data [73] (solid points) and ep data [94] (open points).
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straightforward to invert the moments in egs. (5.97)+5.99), for example, once we have fitted the parton
distributions to experiment at Q7 and using eq. (5.104) to calculate their analytically continued moments
needed in (5.134). Scaling violations in F>(x, Q%) have been studied in the past using a variety of
different input distributions [88, 56, 76, 89-93]. As an example, we compare in figs. 5.15 and 5.16 the
predicted scaling violations [72] in F%® and F3" with recent data [44, 45, 73, 94] using A = 0.5 GeV and
the following input quark distributions at Q3 = 4 GeV?, with the decomposition (5.28),

x(u, + d,) = 4.546x°5%4(1 — x>
xd, = 2.715x%77(1 - x)*’
x¢=017(1-x)
x£' = 0.05(1 - x)*.

(5.135)

The steep charm distribution ¢’ results from the virtual Bethe—Heitler process y*g - QQ which, due to
the large mass of heavy quark flavors Q=c¢, b, .. ., is expected [95] to be the dominant contribution for
heavy quark production [96,97] and is directly proportional to the gluon content G(x, Q%) of the
nucleon (fig. 5.17). To demonstrate the sensitivity of the predicted scaling violations to the choice of
G(x, Q) in eq. (5.97), we have performed the calculations once with the “standard” counting-rule-like

Fig. 5.17. Bethe-Heitler process for heavy-quark production.
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gluon distribution
xG(x, Q%) =2.6(1-x)’ (5.136)

implied by eq. (5.103), and once with G(x, Q3)= 0. This latter choice obviously violates the energy-
momentum sum rule,

(xZ(Q):+(x G(Q):=1,

and is intended only as a check on the above mentioned sensitivity to G(x, Q). As one can see from
figs. 5.15 and 5.16 the scaling violations with the “standard” counting-rule gluon distribution (full lines)
do not differ significantly from the ones with a zero input gluon distribution (dashed lines). Within a few
percent these ‘“‘standard” predictions in figs. 5.15 and 5.16 (solid curves) remain unchanged if one uses a
broad gluon

x G(x, Q2) = 0.88(1 + 9x)(1 - x)* (5.137)

as suggested by the Caltech group [98]. This huge gluon distribution with an abundance of hard gluons
in the large-x region appears to be in better agreement with recent deep inelastic experiments
[43, 44, 74); especially it seems to be required by deep inelastic J/ production [99] and for explaining
the hard transverse momentum spectrum (pr=1GeV) of Drell-Yan dilepton pairs to be discussed in
section 8.1. The fact that the predictions for scaling violations in F, are insensitive to the gluon content
of the nucleon for large x (=0.3) can be easily understood from the explicit values of the projection
matrix elements a, and B, and how they enter eq. (5.97): From table 5.2 we see that @, =1 and B, <1
for n >3 and therefore (x G(Q3J)). in eq. (5.97) is strongly suppressed for large n (i.e., large x). Thus
any moment analysis of F, with n =4 for testing QCD and determining the gluon distribution via eq.
(5.97), using presently available data, is rendered meaningless and statistically insignificant. Only future
high-statistics measurements of F, for 0.05 < x <0.3 (heavy quark production should become important
[96] only for smaller values of x) and for Q° up to 100-200 GeV?, say, should shed further light on G(x,
Q7). Needless to say that this small-x region is not accessible to any n >3 moment analysis.

The general pattern of scaling violations, illustrated in figs. 5.15 and 5.16, is generally expected from
any field theory: F(x, Q) decreases with Q7 at large values of x, whereas it increases with Q7 at small x.
This qualitative behavior can be easily understood because of the radiative gluon corrections (figs. 5.3
and 5.4(b)) and momentum conservation: increasing Q, the hard valence quarks will loose momentum
by radiating gluons (fig. 5.3) and thus the valence distributions have to decrease at large x and increase
at small x as illustrated in fig. 5.18(a); on the other hand, the larger Q> the more qq pairs can be

valence

sea

X 1 X 1
(a) (b)
Fig. 5.18. Qualitative pattern for scaling violations for (a} valence distributions (xu,, xd,, Fxs = F$* - F$, etc.) and (b) for singlet “sea” distributions (x¢,
xG, etc.).
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produced by the radiated gluons (fig. 5.3) and thus the sea distribution, which dominates F(x, Q) at
small x, has to increase at small x as shown in fig. 5.18(b). This qualitative interpretation of the pattern
for the scaling violations in F; follows of course directly from our formal calculations of radiative QCD
corrections to moments of F: from egs. (5.116), (5.118), (5.73) and (5.63) we obtain

1

. 5 5 3N,
ep,en 2 - = i SN
(;121_1:m F5P"(x, Q%) dx 8%~ 1816+ 3N, (5.138)
0
1
lim [(F-Fs)dx=0, (5.139)

0

From eq. (5.138) we conclude that asymptotically the total area under F, remains constant, but it
squeezes progressively into smaller and smaller x as indicated in fig. 5.18. Since the difference (5.139) of
structure functions vanishes asymptotically, it seems that valence quarks are gradually disappearing as
Q?- x; the asymptotic constancy of the singlet moment (5.138) suggests that everything finishes up in
the “sea” (fig. 5.18(b)), which however also changes its shape, shrinking towards x = 0 at Q- x,

Having fixed all input parton distributions and A = 0.5 GeV, it is now straightforward to calculate
further, essentially parameter-free scale-breaking predictions for deep inelastic neutrino reactions such
asa’/a”, (y)’, explicit y distributions etc. [57, 100, 76, 89, 101-104]. Again the agreement with experiment
is good [103, 104] by using the weak quark couplings implied by the standard Weinberg-Salam model.
Since o receives its dominant contributions from valence quarks, we expect it to be governed, at
presently measured energies, by the decrease of the valence quark distributions, i.e. o*/E is expected to
fall with increasing energy (see eq. (5.5)). For v scattering the decrease of the valence quark
contribution is roughly compensated by the increase of the sea (fig. 5.18); thus o”/E is expected to be
approximately constant at moderate energies, and to rise slowly at higher energies where charm
production is at full strength. Asymptotically, o°/E should approach ¢*/E and consequently ¢*/o” is
predicted to increase. All these general expectations implied by QCD are confirmed by recent high
energy experiments.

For alternative, non-field-theoretic (Regge-like) approaches to scaling violations we refer, for
example, to refs. [105-108]. However, such (generalized) vector-meson dominance models can be
“trusted”” mainly in the small x-region. The power and beauty of explaining scaling violations with field
theoretic methods (i.e., radiative corrections in QCD) remains, however, unchallenged in as much as
they provide us with a framework for the whole x-region with essentially only one free parameter A.
Furthermore, it appears to be a unique feature of the parton model combined with QCD to predict in
terms of a single set of distribution functions (and decay functions) together with all possible a.
corrections and without invoking new free parameters, all known inclusive processes simultaneously
such as pp—>puw+ X, pp—> pn'pn” + X (Drell-Yan), pp— (heavy quark pair) + X, pp— (high-pr jet)+ X,
vyp-> (heavy quark pair) + X, e"e” - qg-, qgg- and 3g-jets, and many others more [109, 110}].

5.7. Dynamical calculation of parton distributions

An intriguing possibility to determine the theoretically ill understood singlet parton distributions is
to calculate the sea and gluon distributions dynamically [88, 111, 112] using the RG equations (5.97)-
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gluon sea
= e

valence valence

Q2=p.f) G2>u£

Fig. 5.19. Valence quarks at Q= u} generate dynamically sea quarks through gluons at Q%> 3.

(5.99). This idea [88] is based on the observation that setting (x £(x3)}), =0 and (x G(u3)), =0 at
Q*=pu? in (5.97) and (5.98), then at Q*>> uj we have (x £(Q%)),# 0 and (x G(Q?)).# 0. Thus all the
glue and qQ pairs seen in the nucleon are produced via gluon bremsstrahlung oft the valence quark
system. This situation is exemplified in fig. 5.19. To illustrate this in more detail let us consider [112] a
three-flavor (N;=3) QCD and using the parton decomposition of eq. (5.28). We start with the
assumption that at “large” distances Q°= uj=10.1-0.5 GeV? the nucleon consists of valence quarks
only, i.e.

xE(x, ud)=xG(x, u3)=0 (5.140)

which allows us to calculate all parton distributions at Q* = Q> u 3, using egs. (5.97)(5.99), in terms of
u,(x, £3) and d.(x, u3) only:

(X uQ3)n = (x (1 &) Lo (5.141a)
(x d(Q3))n = (x du(pd))n Lo ™™ (5.141b)
(x E(QD)n = &x u )+ x dupd)n [@nLo® + (1 — a,)L5* — Lo™™] (5.141c)
(x GO, = (xuud) + x d(pd). (1- a,) % [Ls* - Lo™) (5.141d)

where L, = L(Q7?) with

L=L(Q)= “S(”E 0) 1n(0§/@|§) .

s

The theoretically unknown valence distributions at Q%= u§ can now be related to the measured deep
inelastic structure functions F5>" at Q® = Q3 =2-4 GeV’>> u}, using egs. (5.141a,b): Recalling

FN=XFP+ F$") = #s(xu, + xd,) + 4x¢
and sustituting egs. (5.141a—) into it, one obtains

2 2 18(F5"(Qo)n .
(x uV(”' 0) +x dv(y’ O»n - da, Lo + 4(1 _ an)L6a+ + Lo (5142)
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Thus, according to eqs. (5.141c,d), £(x, Q) and G(x, Q3) are uniquely determined in terms of
F5%(x, Q3) once Lo (or u) is given. L, follows from eq. (5.142) for n =2 by using the energy-
momentum sum rule (5.119) at Q* = u3, i.e. (x u(ud)+ x d(ud)). = 1:

(FSN(Q2)). = 55 + 22La ™) + 1sLo >, (5.143)

Experimentally [73, 74, 48] (F5"(Q3 =3 GeV?)), = 0.15£0.01 which implies L,= 7+ 2. (For example,
5=3GeV? and A°=0.1GeV” implies u§=0.16 GeV> where our boundary condition (5.140) is
supposed to hold.) To separate u,(x, u3) from d,(x, u3) one further uses

F$P(x, Q%) — F5"(x, Q3) = 3[x ufx, Q3)— x d.(x, Q3)]

together with egs. (5.141a,b) and (5.142). The distributions at Q®> Qj are now obtainable by replacing
in eq. (5.141) Q3> Q?, Ly~ L = L, In(Q*/A%)/In(Q3/A>).

Figure 5.20 shows the predictions [112] for the momentum distributions within the nucleon. Already
for Q%=1 GeV? we obtain a reasonable agreement with the experimental result [43-45, 113] that at low
values of Q° about 50% of the nucleon momentum is carried by gluons. This gives us some confidence
in these dynamical predictions as long as Q> = 1 GeV?, whereas predictions for Q% < 1 GeV? are clearly
not to be taken seriously due to the strong variations in this region as shown in fig. 5.20. Inverting the
moments in eq. (5.141) numerically, as discussed in the previous subsection, we compare in fig. 5.21 our
predictions for the quark- and antiquark-densities g(x, Q%) and G(x, Q>), respectively, at Q*> =3 GeV>
with the Gargamelle experiment [113]. Note that the sea distribution g is now a genuine parameter-free
prediction of QCD. Comparing, however, these dynamically predicted sea and gluon distributions,
£(x, Q%) and G(x, Q®), with the ones expected by the naive counting rules (5.103) and also with more
recent neutrino experiments [45] and with Drell-Yan dilepton production [112], for example, we find
that in the intermediate x-range (0.2<x =<0.5) these dynamical distributions underestimate the
required sea distributions by about a factor of 2 [112, 114]; this is not entirely unexpected in view of the
boundary conditions (5.140). In the small x-region, however, these dynamical predictions agree
[112, 114] with most ad hoc sea and gluon parametrizations and with the data, and confirm roughly also
the naive counting rules (5.102) in the large x-region [112] where they are supposed to hold. For more

10
0.5 |
(xuy+ xdy),
i . (xE), -]
VAR t 10 10° 10°
Ho al 2 2
Q’(Ge v?)

Fig. 5.20. Dynamical QCD predictions for the momentum distributions within the nucleon. The ‘static point’ #3= 0.3 GeV?, where the nucleon
consists of valence quarks only, corresponds to A = 0.45 GeV, for a given Ly= 7 and Q=3 GeV2.
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Fig. 5.21. Comparison of the dynamically predicted [112] amounts of quarks q = x(u + d) = x(u, + d. + 2¢) and antiquarks (sea) § = x(i + dy=2x¢t
at Q%= Q%= 3 GeV? with the Gargamelle data [113].

details and also for explicit analytic parametrizations of the predicted x- as well as Q*-dependence of
parton distributions we refer the interested reader to refs. [112] and [114].

The same techniques can be applied to calculate parton distributions for the pion {112, 114] where
these dynamical predictions might be a useful guide to the ‘real truth’, since even less is experimentally
known about pionic sea and gluon distributions than in the case of nucleons.

5.8. The ratio of the longitudinal to transverse cross sections: R = o /o

One of the most fundamental and cleanest tests of “finite”” (i.e. non-logarithmic) terms, and thus of
QCD itself, is provided by the measurement of the longitudinal cross section oy, or in other words by
deviations from the Callan-Gross relation F, = 2xF) in (5.14) since [40, 38, 5]

oL _ F2 ZXF1 FL

R EO'T Fz F2

(5.144)

Remember that F; =0 is a simple consequence of helicity conservation in the naive (massless) quark
model in the limit of vanishing transverse momenta pr of quarks in the nucleon: in the frame where the
spacelike current carries no energy, g = (0, Q, 0, 0), the hit quark reverses its momentum and also its
spin (since vector- and axial-vector interactions of massless fermions imply helicity conservation);
therefore angular momentum conservation forces the current to carry one unit of spin, since the process
is collinear, and hence g = 0. Apart from the small quark masses, a finite o is due to pr # 0 which can
be either generated perturbatively (dynamically) by radiating a hard gluon off a collinear quark, say, or
stems from non-perturbative effects of finite “intrinsic” transverse momenta of quarks in the nucleon
wave function. Let us consider the former perturbative case first.

The fundamental parton processes Vq—gq and Vg— qq with V=+* or W, as shown in fig. 5.22,
imply (115, 116] that F; ~ O(a,). Furthermore, since differences of structure functions appear in eq.
(5.144), the longitudinal cross section o~ Fy is well defined even in the massless theory, i.e. is
independent of any infrared cut-off. Disregarding the electromagnetic and weak charges of quarks, the
longitudinal projections of the fundamental parton processes in fig. 5.22 are given by [115, 31, 89]

Fi(x)= "‘Sx{ Fi(x)=2 52(1 x) (5.145)
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V*orw
F, (x,0%) Glx,a%)

Fig. 5.22. Lowest order-a; contributions to the longitudinal structure function Fi, and to jets in leptoproduction (crossed diagrams are not shown).

where the superscripts q and g refer to the initial quark and gluon, respectively. (A detailed discussion
of the calculation of these quantities will be given in section 6.1.) The moments C}, = f; dx x" *Fi(x)
are then simply

a _ 4a(Q°) g 2a(Q%) .
"“Ian+l) | T mmrnt2) (5.146)

The results for an arbitrary physical scattering process are then obtained from convoluting eq. (5.145)
with the appropriate RG-improved wave functions, i.e. with the probabilities of finding quarks and
gluons in the initial state as indicated in fig. 5.22:

Fi(x, 07)= 252 ) f dy( ) Py, 02)+a%02) f %X[(%)—(i)s]y G(y, Q) (5.147)

or, in terms of moments where parton cross sections and parton distributions always factorize,
(FL(Q?))n = CUFAQ + aCi{xG(Q*))s (5.148)

with a=3,e. (=6/9 for N;=3) for electroproduction and a =4 for v and ¥ scattering on matter.
Remember that the convolution (5.147) with parton distributions, having the same form as eq. (5.126),
corresponds to integrating over all possible parton momenta by imposing momentum conservation:

1 1

Fx, 09 = [ dy [ 26— 20) f2) 903, @)
- J' dyy fe) 90, Q) (5.149)

where y is the fractional momentum of the primary parton which fragments into a parton carrying
momentum zy. Equation (5.147) is the fundamental prediction of QCD for o which tells us that

R%P(x, Q%) = F.(x, Q})/Fx(x, Q°) ~ a(Q*) ~ 1/In Q* (5.150)

vanishes only logarithmically as Q°— . This is a purely dynamical (perturbative) prediction and since
F; vanishes in zeroth order, in contrast to F, say, non-perturbative effects such as kinematical target
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mass effects will play a dominant role for subasymptotic values of Q. Simple kinematics give the well
known relation of the naive parton model [38, 40]

(kD) +m3

R intrinsic _ 4 5

(5.151)

where the ‘intrinsic’ or primordial transverse momentum kr refers to the parton momentum transverse
relative to the direction of the virtual y* or W and which does not originate from the dynamical gluon
radiation effects (fig. 5.22). Equation (5.151) can be also obtained from the on-shell version [65, 66, 31]
of the covariant parton model [117]. Although the intrinsic kr of a parton is a purely non-perturbative
component of the nucleon’s wave function we can try to estimate its size using the on-shell covariant
parton model [118] which allows us to express (k%) entirely in terms of the well known (longitudinal)
structure functions by considering just the handbag diagram of fig. 5.2. An analysis similar to the
famous £-scaling analysis [65, 66, 31] then yields [118], to leading order in m%/Q7,

kit Q)= s f % R, @) (515)

which determines R™"" in eq. (5.151). For the measured values of F, the corresponding intrinsic
transverse momentum per parton turns out to be [118] V{kZ)=<0.3GeV in agreement with naive
expectations \/(kT) my/3. Any estimate of the ill understood non-perturbative effects is, however,
strongly model dependent and one can easily arrive at drastically different results [119, 120] using the
off-shell parton model [117]. All we can say is that non-perturbative contributions to R fall off like
powers of Q7 eq. (5.151), in contrast to the perturbative a, corrections predicted in eq. (5.147).
Therefore at high enough values of Q° (=20 GeV?, hopefully) it should be possible to test eq. (5.147)
with the non-perturbative contribution (5.151) being suppressed.

Good data on F,(x, Q%) would allow us to test the prediction (5.147), or (5.148), in to two different
ways. Either we assume F.(x, Q°) and G(x, Q%) to be known, the latter could for example be
determined from the Q°-dependence of F, using eq. (5.97), then F. can be predicted. Using a
“standard” gluon distribution x G(x, Q3)=2.6(1— x)° as input the detailed predictions for R?“" have
been studied by several authors [31, 89, 92, 121]. To illustrate the expected [118] x- and Q*-dependence
of R(x, Q%)= R™™+ R we give a few predictions in table 5.3. These values can be increased if
one chooses a harder (flatter) gluon distribution than our “standard” choice. Although one cannot draw
any definite conclusions from the presently available scarce measurements of R, it appears that at least
the expected qualitative trend (R increases for decreasing x) in table 5.3 is not inconsistent with the
data: The SLAC ep measurements (0.3 x 0.8, 3 GeV’> = Q> <18 GeV?) give on the average [122]
R =0.21+0.1, whereas the Fermilab pp experiment (0.003 < x <0.1, 1 GeV*> < Q? <30 Ge V") gives an
average value of [74] R =0.52+0.35. We stress again that the verification of the QCD prediction
(5.147) is of utmost importance since it represents one of the cleanest and most direct tests of “finite”
terms due to gluon bremsstrahlung (fig. 5.22).

On the other hand we can use eq. (5.147), or (5.148), to determine the gluon content of the nucleon
in a most direct way: measuring F, (x, Q°) in addition to F(x, Q) gives us directly G(x, Q°). Comparing
the Q*-dependence of this measured gluon distribution with the RG prediction in eq. (5.98) would then
provide us with a direct and sensitive test of the triple-gluon vertex [123], i.e. of the Yang-Mills



260 E. Reya, Perturbative Quantum Chromodynamics

Table 5.3
Predicted values [118] for R(x, Q%)= Ri™winsic 4 RACD g4
electroproduction according to egs. (5.147) and (5.152). The
Q? dependent parton distributions of ref. [114] have been
used with the standard gluon input x G(x, Q3) = 2.6(1 - x)'.
The predictions at Q?=2GeV? correspond to naive (Q%
independent) parton distributions

OZ(GCVZ) x R Rintrinsic ROCD
0.8 0.1 0.08 0.02
2 0.5 016 0.1 0.06
0.2 0.19 0.04 0.15
0.02 0.53 0.0 0.53
0.8 0.025 0.015 0.01
10 0.5 0.05 0.02 0.03
0.2 0.08 0.01 0.07
0.02 0.23 0.0 0.23
08 0014 0.006 0.008
20 0.5 0.035 0.01 0.025
0.2 0.063  0.003 0.06
0.02 0.18 0.0 0.18
0.8 0.007  0.002 0.005
100 0.5 0.02 0.002 0.018
0.2 0.04 0.0 0.04
0.02 0.12 0.0 0.12

structure of QCD: Since @, =1 and B, <1 for n = 3 (see table 5.2), eq. (5.98) tells us that (x G(Q?)), =
(x G(Q?))» exp(—sa.(n)) with a.(n) being critically dependent on [123] yVy(n) in eq. (5.68) and thus on
the triple-gluon vertex. All tests of QCD studied so far are mainly sensitive to the quark—gluon coupling
but not to the gluon self-couplings which are so very essential for asymptotic freedom. It should be
emphasized that the predictions (5.98) for {(x G(Q?), cannot serve as an independent test of QCD if
one determines [43, 44] the gluon distribution from fitting to the scaling violations of F, predicted by
(5.97) since, once (x 3(Q3)), and (x G(Q?)), are fixed by experiment via (x 3(Q?), in (5.97), eq. (5.98) is
trivially satisfied.

5.9. Jets in leptoproduction

A closely related consequence follows from the above discussion for the pr distribution of jets.
Neglecting the intrinsic pr spread of quarks in the nucleon which is damped by the wave function and
does not increase with Q (see eq. (5.152)), we expect in the naive parton model two hadronic opposite
side jets (fig. 5.4(a)) arising from the fragmentation of the quark on one side (current region) and from
the remaining nucleon on the other side (target fragmentation region). In QCD, the existence of hard
gluon interactions in fig. 5.22 provides the quark with a hard tail in its pr distribution which, unlike the
intrinsic component, increases with Q? at fixed x. Intuitively this can be easily understood since

~0Q?

2
(PP~ a. f pT % ~ a,Q” + const. (5.153)
T
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where the factor 1/p7 results from the quark propagator in fig. 5.22, while the constant term refers to
the intrinsic wave function effects and cannot be evaluated. We thus expect a fraction of events of order
a, to have a three jet structure [124, 125]: The target fragmentation jet with small pr aligned along the
collision axis, and two jets with large and almost opposite pr due to the fragmenting quark-gluon and
quark-antiquark final states (figs. 5.22 or 5.4(b)). For the time being we will consider a jet as being just a
quark or the gluon itself and neglect the small non-perturbative transverse momenta of hadrons in the
jet which arise from the decay of partons into observed hadrons (jet broadening).

For a more quantitative discussion of pr distributions one has now to evaluate just the differential
angular distributions do/dp% of the fundamental hard parton scattering processes in fig. 5.22 (in contrast
to the phase-space integrated total cross sections (5.145) for obtaining F ) which have to be convoluted
with the appropriate parton distributions, as was done in eq. (5.147), in order to obtain measurable
physical quantities [124, 126-132]. In this way one obtains for the average p7 of the final parton jet [126]

(PY) _al@)  x 1 dz {ﬂ 4(x/z)’ - 2x/z+7
Q> 27 Ex 0%)) 213 12x/z

(34 B[ (- o 01+ a3 (- e

qQ

+(Ze)3(1-2) 266 ]} (5.154)

q

£ 2(2, 02)

The y-dependence of this expression turns out to be almost negligible, while the marked x-dependence is
mostly related to the variation of the invariant mass squared W? of the hadrons (eq. (5.7)) for x not too
small. This x-dependence can almost completely be taken into account by the empirical formula

(p7)=0.031a,(Q*)W>. (5.155)

It should be also noted that the naive parton model relation (5.151), F /F,=4(p3)/Q? is not
reproduced even approximately in QCD by comparing eqs. (5.147) and (5.154) quantitatively [126]. At
given values of Q° and x, the predicted tail of the perturbative pr distribution in (5.154) should be
clearly visible above the intrinsic component [124, 128-130] which does not increase with Q* (see for
example eq. (5.152)). This is illustrated in fig. 5.23 where an exponential fall-off of the intrinsic kr
distribution has been assumed; this latter assumption, however, is questionable within the framework of
the covariant parton model [117] where one expects [133] at most a power like fall-off (~ k1 for valence
quarks ~ (1— x)?). Although this tail extends up to p7~ Q7 it is rather small (of order a,) and therefore
hard to observe apart from uncalculable contributions due to the fragmentation properties of the parton
into the observed hadrons. In other words, since the slope in W? of the linearly rising (p%) in (5.155)
is small, it is not very surprising that at present energies (W?>=<200GeV?) the presence of this
hard component is still not clearly visible [134, 130]: The increase of (p3) with W? is observed in v
scattering, while the same effect is not visible in ¥ scattering where the statistics is more limited.
Further tests of QCD involving three jet events, and which depend also on the transverse momentum
of the active quark in the interaction, concern azimuthal corrections between the final lepton and the jet
axis. These so-called ¢-asymmetries have been originally suggested by Georgi and Politzer [135] and
result from the differential parton cross sections for the processes in fig. 5.22 which are of the form
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s [do/d(Z,/s)]

Fig. 5.23. Predictions [128] for the transverse momentum distributions in the variable 1= (; |p4])°, where i runs over all final hadrons, for wp
interactions at various beam energies. Note that 37 is insensitive to fragmentation dynamics since it allows in principle to reconstruct the pr of the
decaying parton itself. The dashed curves are estimates of the intrinsic, non-perturbative (NP) components.

[127, 135-137]

ﬁ;@=AO+A+Bc0s¢+Ccos2¢ (5.156)
where Ay is the zeroth order (naive) parton cross section, and with the QCD contributions A, B, C~
O(a.) and z being the momentum fraction of the decaying quark carried by the observed outgoing
hadron. (A detailed discussion of fragmentation functions can be found in section 10.) Convoluting eq.
(5.156) with the appropriate parton distributions and fragmentation functions allows us to calculate the
average values (cos @) and (cos2¢) which have, according to fig. 5.24, a straightforward physical
interpretation: The first quantity (cos ¢) measures the front-to-back asymmetries of hadrons, whereas
(cos 2¢) measures the accumulation of hadrons at the lepton scattering plane. Detailed analyses
[127,135, 137} of these quantities show, for beam energies E =200 GeV and in the current frag-
mentation region, that they are of the order

(cos p*™"N=—-0.1, (cosp)™=-02 and (cos2¢)™ =+0.01.

Although {(cos ¢) is rather sizeable, it will not be easy to disentangle these perturbatively predicted
correlations from the data, because the same sort of effect can be also produced within the naive parton
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Fig. 5.24. Kinematical configuration of the process ¢ » ¢'hX in the nucleon’s lab system.
model by the presence of non-perturbative intrinsic k+’s of partons in the nucleon [138]:

(cos )~ 2k-)/V Q7

(cos 2) ~ 4B/ O G.157)
These ill understood non-perturbative effects can, however, be suppressed by making py-cuts in the data
(pr=1.5GeV) which practically eliminates the intrinsic smearing (5.157) in azimuth due to the
fragmentation process [139]. Furthermore, experimentally it should be easier to determine p.-
distributions [127] (fig. 5.24)

(pau) = (p3sin® ¢) = Xp?) — X pF cos 2¢)

since their measurement requires only the knowledge of the leptonic scattering plane. This is in contrast
to the ¢-asymmetries about the momentum transfer direction and to pr measurements which depend on
the accurate determination of the ¢ direction in the leptonic plane (see fig. 5.24).

Finally we would like to emphasize the importance of those three jet events where one of the
hadronic jets is replaced by a hard real photon [140] as shown in fig. 5.25(a). The theoretical beauty of
this ‘direct photon’ process is that even its absolute magnitude can be calculated and not just the
Q*-evolution of an uncalculable input wave function as has been done so far and as would be the case for
the additional hadronic contribution to the hard photon jet in fig. 5.25(b). This latter hadronic
background should be suppressed relative to the Born-term of fig. 5.25(a) in the region where the (hard)
photon carries most of the fractional momentum z of the original quark (z = 0.6). The quark - photon
input fragmentation function D}(z, Q*)®°™ can be simply calculated from the Born diagram in fig.

Y, Born
v* D v 0g
\ N
q y q Y
N
(a) (b)

Fig. 5.25. Diagrams which contribute to the fragmentation into real photons: (a) uniquely calculable Born term which dominates hard ‘direct’
photon emission, and (b) hadronic contribution with the theoretically unknown input fragmentation function D3(z, Q3).
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Fig. 5.26. QCD corrections to the g—+ Born term.

5.25(a),
orn a 1+(1-zP, Q°
DYz, Q°)*™ =¢] g—%lln 1z (5.158)
and the leading logarithmic QCD corrections to it (fig. 5.26) can be resummed to all orders in a using
renormalization group techniques (or using physically more intuitive approaches to be discussed in the
next section) which yield [140, 141]

(zDYQ*) = [ ¢g-i5 5 1+a xV] <Elz zDz(QZ)B°’“> (5.159)

l+ans 18 K, n

with K, = 14 ans+ avv + ansavv — area’yv and where the anomalous dimensions are defined by egs.
(5.64), (5.68) and (5.77). A similar expression can be derived [140] for the much softer gluon— photon
decay function D}(z, Q). The predicted z-dependence [140] of the observed hard photons in (5.159),
which is significantly different from the one of the input Born term in eq. (5.158), will provide us with a
clear cut test of QCD especially in the large-z region where the hadronic background is suppressed.
Of similar importance for testing the existence of gluon jets are those 3-jet events which are initiated
by a real photon [142] (QCD Compton effect) such as yN - (large-pr jets) + X. This process is depicted
in fig. 5.27(a) and is proportional to a,q(x). It should be possible to select experimentally these three-jet
events from those (non-gluonic) four quark-jet events which originate from the hadronic component of
the photon (p meson, etc.) as shown in fig. 5.27(b): The additional fourth jet in the forward direction is
thus produced by the constituents of the vector mesons which do not take part in the hard scattering
process and this process is proportional to a2qq with g” being the quark distribution inside the photon
[140]. Thus the observation of three-jet events in yN collisions would provide us with direct evidence for
the existence of gluons! The cross section for these gluon-jet events can be easily estimated [142] to be

3-jet
< E do

iE dn')mgw,er:w = 12a,nb (5.160)

9 q

/f

qY
q
(a) (b)

Fig. 5.27. QCD Compton effect giving rise to (a) 3-jet events and to (b) non-gluonic 4-jet events due to the hadronic component of the real photon.
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for EY,, =200 GeV (EY... = 10 GeV) and where the primed quantities refer to the c.m. kinematics of the
gluon in fig. 5.27(a). Thus o>t =107 o i.e., the cross section for events due to the QCD Compton
effect where a gluon and a quark jet carrying a few GeV each emerge at large angles in the c.m. system
is about 107 of the total photon-nucleon cross section for Ep, =200 GeV.

5.10. Non-leading corrections: 2-loops and ‘‘finite terms”

Before closing this section, I finally would like to comment briefly on various recent analyses
concerning subleading a, corrections to Wilson coefficients (*“finite terms”) and 2-loop a? contributions
to anomalous dimensions and to the B-function. So far we have considered only the leading order
contributions to Wilson coefficients, i.e. CE(1,g)=1 and C%(1, §)=0 in eq. (5.56), and the leading
1-loop contribution to anomalous dimensions y ~ a,. Taking into account non-leading terms we have to
consider the following terms in the power expansions of 8, y! and C7:

g g
ﬁ(g) = _BO 1677'2 - 31 (16‘77'2)2 (5161)
-2 2
"(g) 710 16g 2 Y. 1(16g‘n' ) (5162)
gz
Ci(,8)= 8 +cl ¢ (5.163)

with 8r =1 and 8 = . = 0. (L stands for longitudinal structure functions.) Inserting egs. (5.161)-(5.163)
into the renormalization group solution (5.55),

CHQIw*, ™) = 11, 2@ exp| - [ ;ég a'] (5.164)

and expanding in §*(Q?), the Q° dependence of moments of non-singlet structure functions in eq. (5.63)
is now predicted to be

(Fs( @ = (Fus( @ {1+ T BT [ Vs oy 1]}[2%82]‘”"‘“”"“ (5.165)

and the corrected form of a;, is

a(Q)_ 1 __Binln(0%4?) 1
ar B,n(Q7AD) B3 In(QYAY) +O(ln3(02//12)) (5.166)

where A has been arbitrarily chosen so that there are no further terms of order 1/(In*(Q?/A?)) with

In

167> B 1677]
Bog® B3 " Bog?

A?=p? exp[-— (5.167)
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Because of the freedom we have in defining o.(Q?) when solving the renormalization group equation,
this choice of A is clearly not unique and one could use other definitions of A as well. For a detailed
discussion of other choices as well as of non-leading contributions to singlet structure functions we refer
the interested reader to the comprehensive review of Buras [11]. It is clear from eq. (5.165) that O(a)
corrections to the Wilson coefficients C}' have to be taken into account once the 2-loop contributions 8,
and y7; to B and y! are considered, in order to include consistently all contributions in a given order of
perturbation theory. It should be emphasized that only the whole eq. (5.164) corresponds to a physical
measurable quantity, whereas the individual quantities C7(1, g) and expl. ..] depend upon the precise
definition of the Wilson operator (the renormalization prescription): Although the parameters y7,,
Bo=11-3N; and [143] B, =102—%N; are gauge and renormalization prescription independent, the
quantities ¢; and y}; depend on the renormalization prescription and on the gauge chosen. Thus ¢} and v,
must be calculated in the same renormalization scheme in order to obtain a physical, convention
independent answer for eq. (5.165): In this case the quantity cns + Y s, 1/2B01in €q. (5.165) is renormalization
prescription independent. The 2-loop contribution y7; for non-singlet structure functions (i = NS) have
been calculated in ref. [ 144] and the ones for singlet structure functions in ref. [145] using ’t Hooft’s minimal
subtraction scheme to renormalize the amplitudes. The appropriate Wilson coefficients (‘“finite terms”) ¢}
have been evaluated in ref. [146] within the same dimensional regularization scheme. Calculations of the
finite terms c} in different renormalization schemes have been performed in refs. [31] and [147-149];
needless to say that these results differ from each other due to the different renormalization schemes used.

As in the case of leading order contributions, the most useful and reliable quantitative comparison of
subleading contributions with experiment is achieved by studying the explicit x- and Q*-dependence of
structure functions: Studies of non-singlet [121] structure functions F4?(x = 0.4, Q°) as well as singlet
[150] contributions in F,(x, Q%) have shown that the 2-loop approximation gives also an equally good
agreement with experiment as does the 1-loop approximation, provided the scale A of the effective
coupling constant is changed by about 20-30% as compared to the value of A obtained by fitting the
leading order (1-loop) expressions to experiment. At the present state of art, the most sensible and
reliable way to study the effects of higher order QCD corrections is to consider [151] combinations of
structure functions which are independent of the renormalization scheme used to define a;: the effect of
these corrections are found to be very small, generally smaller than the errors'in the existing data!
Therefore, although further detailed analyses are certainly required before we can draw definite
conclusions, it appears that non-leading terms do not significantly alter the successful quantitative
results based on the 1-loop approximation; this gives us some additional confidence in the usefulness
and validity of perturbative lowest order calculations in QCD.

Based on moment analyses of F, there have, however, been made recent claims that data on (F5™"),
require [74] the non-leading 2-loop corrections, or that the non-singlet data for (F4°— F4"), are not in
good accord [152] with either leading or non-leading order predictions of QCD. It should be
emphasized that these conclusions rely entirely on n =5 moments, which weigh the large-x region only,
and therefore should not be taken too seriously. The reason for this is twofold: The experimental
determination of n=5 moments depends heavily on the ill understood elastic and quasi-elastic
contributions at large x; theoretically large-n moments receive sizeable contributions from ill under-
stood target mass effects at moderate values of Q° and in addition can be totally contaminated by the
theoretically even less understood higher twist contributions [153] to eq. (5.41). Note that higher twist
contributions to moments are expected [31] to be proportional to na/Q? with a = (k3)"""%°~ 0.1 GeV>,
The only sensible way to avoid these difficulties related to ill understood 1/Q* contributions encoun-
tered in ref. [153] is, of course, to study not high-n moments or equivalently just non-singlet structure
functions, but instead to consider the Q? dependence of the general structure functions F5?, F3", etc. in
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the whole x-region where all singlet components fully contribute; only these general structure functions
provide us with decisive tests of QCD and do not allow for the presence of large 1/Q” contributions
[72,75, 76, 154).

For illustrative purposes let us briefly consider the ratio of slopes of the logarithms of two different
moments in eq. (5.115). In the non-leading approximation (5.165), these quantities will now depend on
the specific choice of Q and A: For Fys = F5®— F4" one expects d In{Fus)s/d In{Fxs)s to change from
1.29 in the 1-loop order to 1.33 in the 2-loop order (for [145] QF=4GeV? Q%=50GeV* and
A=05GeV), to be compared with the measured value of [74] 1.6=0.2. Similarly
d In(xF3N)e/d In(xF3"), is expected [153] to change to about 1.45 (as compared to 1.29 in leading order)
which is not in disagreement with the observed value of [62] 1.34 0.07.

For practical applications a very convenient definition of parton distributions has been suggested
[149] to facilitate the study of “finite” a, terms in C7: The effective Q*-dependent parton distributions
are defined relative to F, i.e., by demanding that F,(x, Q) expressed in terms of them should have the
same form as in the naive quark model (F, is given a special status because it satisfies the fundamental
Adler sum rule (5.17) which is exactly valid at all Q%):

(q(Q*), = C3(1, a(Q%) Aksexpl. . | (5.168)

instead of the usual definition (§(Q?)), = ARks exp]. . .] where exp]. . .] is our general RG exponent in eq.
(5.164) and AYs are the matrix elements of the local Wilson operators between target states (see eqgs.
(5.40) and (5.57)). Similar definitions [149] apply to singlet (gluon) densities. Thus, once the input parton
distributions g(x, Q3) are fitted at Q* = Q} to Fx(x, Q%), using egs. (5.100) and (5.101) for example, one
can study the effects of finite terms in structure functions (or processes) other than F, since

an _ Ci(1, a(Q%) -, 20 4 n
(F(Q?), = 5;(1—;(0—)% Ci(, a(QAT expl. . |

_Ci(,a/(Q?) 2
= m@(() Mn (5.169)

which is of course a fully gauge invariant and renormalization prescription independent procedure and
where (q(Q?), generically denotes the moments of the appropriate combinations of quark and
antiquark distributions. Thus, expanding in a,, we get always differences c¢; —c5 of “finite” terms
contributing to F; with i# 2:
(F5(Q = (—(xq(Q*n + (xG(Q*Na) [1+ 2 (Q7)(c3.— c50)], ete. (5.170)
where the fermionic Wilson coefficients c?, result from [146, 149]
YIwW

and gluonic Wilson coefficients ¢} are calculated from

Y’.'\Aj: +‘>d:



268 E. Reya, Perturbative Quantum Chromodynamics

The importance of these “finite” a,(Q?) corrections for phenomenological applications are obvious: For
example their effect in total neutrino cross sections and their y-dependence is sizeable [149, 154] and
therefore the effect of “finite” (gluon) corrections cannot be neglected for a precise quantitative
determination of sea densities. Similarly, one has to check simultaneously, using the same parton
distributions determined in deep inelastic reactions, the importance of “finite”” terms in other reactions
such as Drell-Yan dimuon production [149] (pp— n"p~ + X) as we shall discuss later. Here “finite”
terms are obtained [148, 149, 155-159] from the same, but crossed diagrams which yielded the above
quantities c¢7q and c7g.

6. Scaling violations a la Altarelli-Parisi and Bethe-Salpeter ladders

So far the discussion of the Q” dependence of structure functions was based on the rather formal
approach using renormalization group techniques. We will now turn to an alternative method of
calculating scaling violations which is not only physically more transparent but also shows that the
(logarithmic) Q® dependencies of parton distributions considered so far have universal validity, i.e. are
process independent and remain the same whether Q7 is space- or time-like. This physically transparent
method is, as a generalization of the Weizsicker-Williams equivalent photon approximation
[160, 161, 4] in QED, based on the intuitive parton picture of Kogut and Susskind [162] which imagines
to find partons in partons in . . . by resolving the nucleon at smaller and smaller distances (fig. 5.1(d)): By
increasing the power of our “microscope” from Q3 to Q> > Qf we can resolve a quark with momentum
fraction x into a quark with x'<x and a gluon with x” = x — x’ as illustrated in fig. 6.1(a). Similarly a
gluon with momentum fraction x can be resolved into a qd pair as shown in fig. 6.1(b), and there exists
also the process of fig. 6.1(c) which can be interpreted as resolving a gluon into a gluon pair. On account
of these decay processes we then can define probabilities P;(x) for finding a parton i in a given parton j,
with x being the longitudinal momentum fraction carried by i. These decay probabilities will then
determine the structure of a nucleon at a given momentum scale or, equivalently, parton distributions
will depend on Q°. Quantitatively this picture has been developed by Altarelli and Parisi [163, 4] who
derived integro-differential equations describing the Q° dependence of parton distributions. These
a,In Q? terms can be also resummed by the closely related and physically even more transparent
method of summing Bethe-Salpeter ladders which will be discussed at the end of this section.

Before writing down the most general form of the Altarelli-Parisi evolution (“‘master’’) equations, let
us first discuss the basic physical ideas which lead to these equations. This is easiest done by considering
first the nucleon to consist of valence quarks only [8], i.e. neglecting for the time being the gluon
content of the nucleon. In the naive parton model (fig. 5.4(a)) the structure function is then formally
given by

v 2
%Fz(x)z \ )”V q ‘
q
= fdy dz 8(x - zy) q(y) 5°™(2) 6.1)

= eaq(x)
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Y 4
—»—41 Trﬂrﬂﬂ<
{a) (b) (c)

Fig. 6.1. Basic processes describing the decay probabilities (“splitting” functions) of (a) Poq and Pyq, (b) Pqg and (c) Py

since the F--projection of the pointlike fundamental parton cross section is given by o5°"(z)=
e58(1— z). The &-function occurs because of momentum conservation since the original parton cannot
loose momentum since no gluon emission exists in the naive parton model. This situation changes of
course when we consider the parton model in the context of QCD where the quark—gluon interactions

modify eq. (6.1) to
y* 2
A
y
q

- f dy dz8(x - 29)907) [e3 6(1 - 2) + 07 *(z, O] 62

- [0 [s1o1-3)rorn(s 0]

pd

‘Y#
1o
=

where the fundamental parton cross section has the following general form
2
0Tz, Q)= e gt [Pf2)in -3—2 +2)+0(/Q)] 6.3)

with p being some convenient but arbitrary normalization mass. While the function P(z) is uniquely
defined as the coefficient of In Q7 the definition of the “finite” (scaling) term f(z) depends on p? and
does not depend on In Q%: changing u> to m? adds to f a term P In(m?/u?). The neglected terms of
order 1/Q? correspond to the already neglected non-leading singularities on the light cone in eq. (5.41).
The origin of the structure of eq. (6.3) is easily understood by recalling that any differential cross section
involving one fermion propagator as in the diagrams of eq. (6.2) is of the form do/d¢ ~ 1/t with the usual
Mandelstam variable —¢ ~ p7. Thus the total phase-space integrated cross section becomes

d 2
g [ Ln L 64)

where we have cured the infrared divergence at the lower (soft) limit of integration by integrating only
from m?, i.e. by working with off mass shell quarks with zero rest mass. Different choices of infrared
regularization schemes will only affect the “finite” term f(z) in eq. (6.3) whereas the In Q? term, i.e.
P(z) is well defined even in the massless theory.
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Whenever there are well identified partons in the initial or final state, the zero mass limit m>— 0 will
not be regular in perturbation theory in the sense that In(Q*/m?) singularities will show up. (This is in
contrast to a fully inclusive process with no well identified parton lines in the initial and final state, as is
the case for the ratio R.+.- of hadronic to leptonic yield in e*e™ collisions in eq. (1.9).) The physical
origin of these so called ‘“‘mass singularities” is easily understood by observing that a massless quark can
emit a hard collinear massless gluon and still remains on its mass shell. This process is kinematically
allowed and will produce a divergence if the phase space is large enough. Indeed, if we consider the
process quark(p) - quark(p’) + gluon(k) we obtain for the virtual mass of the outgoing quark

p?=(p~ky=-2pk=-2poko(l-cos 6) (6.5)

with 6 being defined as the angle of emission of the gluon with respect to the direction of the incoming
quark. Clearly, if the emission is collinear (6 = 0) the outgoing quark is on its mass shell. Therefore,
collinear emission of hard gluons induces dangerous propagators which are responsible for the
logarithmic mass singularities in eq. (6.4). Since these In(Q*/m?) terms will spoil any naive use of
perturbation theory for light partons, m”>< Q7 all leading powers of logarithms of the form
a(Q%) In"(Q%*m?) have to be summed up in order to reestablish an improved perturbation theory
which constitutes the so called “leading log approximation”. This will be done in the remainder of this
subsection and leads of course to the same results obtained using the rather formal renormalization
group techniques.

Let us return to eq. (6.3), the essential feature of it is the presence of the factor of In Q°. This term
violates scaling and indicates the failure of the naive parton model in QCD. (For the naive parton
model to work, a decrease in —¢ ~ p7 faster than 1/p7 in eq. (6.4) would be necessary in order to avoid
large logarithms in (6.4).) Since a. In(Q*/u?) % 1 in (6.3), eq. (6.2) is certainly insufficient as it stands. In
order to proceed let us try to absorb this anomalous term into a modified parton distribution. To this
end we rewrite eq. (6.2) in the following form

1
1o _2(d (_1&(1)22...]
sz—eqf yq(y)[6 1 y)+2”_qu v ln“2+

1

=i [ Lla0)+ 890,07 5(1-2) 69)

X

= eglq(x)+ Aq(x, Q)]

where

Aq(x, Q%) sg;m% [240)Pu(2)+---. 6.7)

We see that lowest order perturbation theory suggests to replace the naive (Q’-independent) parton
densities inside the nucleon by effective densities as seen by the photon (with momentum ¢°=-Q?)
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which depend now on Q*:
q(x)~ q(x, Q°) = g(x) + Aq(x, Q). 6.8)

Thus, the Q* dependence is due to the fact that a photon with larger Q? explores a wider range of p7
inside the nucleon, i.e., resolves the “fine structure” of a nucleon at smaller distances (see fig. 5.1(d)).
The variation of q(x, Q) for an increase d In Q2 which is due to probing a new infinitesimal interval of
Q* ~ p%, follows from eq. (6.7) to be

YD) [0 0)r. (2) ©9)

Note that this equation is insensitive to the non-leading “finite” terms f(z) in eq. (6.3) and is exact up to
terms of order aZ. Since so far we have been dealing only with “bare” (skeleton) diagrams in eq. (6.2),
we still have a constant strong coupling a. = a(x?) renormalized at an arbitrary but fixed Euclidean
momentum p’ = —u? (see eq. (3.11)). Adding the appropriate vertex and propagator insertions (4.1) to
the diagrams of eq. (6.2) just amounts to changing a.- a,(Q?) in egs. (6.3)-(6.9) with the running
coupling constant given as usual by eq. (4.9). Our basic equation (6.9), which describes the Q? evolution
of a non-singlet (valence) quark distribution, then finally becomes

0 dq((jxo Q) _ ozs 02) f dy 40, ) P““(y) (6.10)

An important property of this integro-differential equation is that it reduces to a simple differential
equation for the moments of parton densities: Taking the (n — 1)th x-moment of eq. (6.10) yields

"la(x, Q%)= a(Q) dxx" fl (}’QZ)qu()

=252 f dxx"! f dy dz 8(x = 2y)q0, Q) Pas(z) 1

-4 [ayy90, 0 [ da) () Pu)

ans(n) 2
1[1(02//1 2)<)"I(y, 0 ))n

where in the last line we used eqs. (4.8) and (5.64), and

1

f dz 2" Poy(2) = - L yEe 6.12)
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which will be proven in the next subsection. (We have to take the (n — 1)moments since P; is defined
relative to (1/x)F, and not to F..) Since eq. (6.11) coincides with eq. (5.128), the evolution equation
(6.10) is nothing else but Parisi’s equation (5.129) or (5.130) for non-singlet structure functions derived
from the general renormalization group analysis [81]; thus our present approach to calculate the Q°
dependence of parton distributions is entirely equivalent to the rather abstract method using the
renormalization group in as far as it sums all leading logarithmic contributions of parton cross sections
to all orders in a;.

The physical interpretation of eq. (6.10) is now straightforward. Probing a nucleon at a momentum
scale In Q*+dIn Q? the variation of a (valence) quark density is given by the probability of finding a
quark at the original momentum scale In Q7 carrying fractional momentum y, g(y, Q°), times the lowest
order variation (a./27)Pyq(x/y) of the probability of finding a quark inside the original quark [164] with
momentum smaller by a fraction x/y. According to the basic vertices in fig. 6.1, we therefore specify in
general a “splitting function” P;(z) as the probability of parton j emitting a parton i with longitudinal
momentum fraction z(<1) of the parent parton j when In Q°>In Q°+dIn Q°>. At z=1, which
corresponds to no real gluon emission, the quantities P,, and P,, will of course include 6(1~- z)
contributions arising from the virtual gluon radiative corrections to the (elastic) quark and gluon lines. It
is therefore clear that in general the real positive definite probability densities will be

Py(z, @) = 8(1- 2)8; + 5> Py(z) In(Q*/n?) (6.13)

and not P,;(z). The situation in QCD is analogous to that in QED, where in the Weizsicker-Williams
equivalent photon approximation [160, 161] we talk in terms of the photon density inside an electron
with energy E = p being

ANz E) _ a [1+(1- 2], (E Y
dz _%[ z : Jln(_) (6.14)

e

corresponding to

zp

P.(z)= 1td-z) T< (6.15)

(1-z)p

and similarly for the probability P.. of finding ¢’s in e. The density of gluons in a quark is analogous to
eq. (6.15), the only difference being the group theoretical factor for the color coupling in eq. (2.6), i.e.
C,(R) = 4/3.

We now drop the restriction to one flavor and to non-singlet distributions. Thus, in addition to the
quark initiated processes in eq. (6.2), also gluon initiated processes such as shown in fig. 5.4(b) will now
contribute. These latter reactions, being proportional to the gluon density G(y, Q°), will then also
depend on the gluon— quark and gluon — gluon splitting functions as it is obvious from the last diagram
in fig. 5.4(b) and from the QCD vertices in fig. 6.1. Keeping in mind the above discussion and eq.
(6.10), we can now directly write down just by inspection the integro-differential equations which
describe the Q? dependence of parton distributions in the general case [4, 163]
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0 dq(xQQz) aégz) dy [4()’, [03) qu( )+ G(y, Q%) qu(%)]

X

0400 _ (0 f dy [2 4 Q) Pu) + G0. O Pu(5) |

6.16)

These are the general evolution- or master-equations of Altarelli and Parisi [4, 163] where the sum runs
over quarks and antiquarks of all flavors. The number of quarks as seen by the electromagnetic or weak
current changes by two mechanisms: a quark originally at momentum scale Q® and with higher
momentum y may loose momentum by radiating a gluon and/or a gluon inside the nucleon may
produce a qq pair. Similarly the number of gluons changes because a quark may radiate a gluon and/or
a gluon may split into a qg pair or into two gluons. This latter possibility is typical for non-abelian gauge
theories (QCD) where a three-gluon vertex exists to order g. The splitting functions are given by

Po(x)= ;‘(; + x) +25(1 - x) 6.17)
Po(x)=2{x*+ (1~ x)] (6.18)
Pulx) = $1H U227 (6.19)
Put) = 625+ 2 2= )+ (7~ Ta)p - )] (6.20)

with the distribution (1 — x)' being defined by

f ar L = f ar =11 (621)

and (1-x). = (1-x) for x <1. For practical quantitative calculations it is useful to get rid of terms
(1-x)3"' in eq. (6.16) by employing the following formula

1d_y _fo) _ dy f(y) - f(x)
Sy e f Ty 6.22)

X

where f(y) is any function regular at the end points. The decay functions in egs. (6.17)-(6.20) satisfy the
following relations: by charge conjugation we have

Py = Py, Py = Py; (6.23)

furthermore charge conservation requires (see eq. (5.79))
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1
f dx Pog(x) =0 (6.24)
0

which implies via eq. (6.12) that yEe(n = 1) = 0 and therefore the sum rules (5.15) hold at all values of
Q’, i.e. the charges are Q° independent. Finally, momentum conservation at the vertices in fig. 6.1
requires (for z <1)

qu(x) = qu(l - x)
Pog(x) = Pyg(1-x) (6.25)
ng(x) = ng(l - x)

whereas total momentum conservation implies

J'dxx[qu(x)+ Py(x)] =0
’ (6.26)

1

f dx x[2NePoy(x) + Py(x)] = 0.

The connection with our familiar results for the moments of densities, obtained by the more
sophisticated field theoretic renormalization group calculations, is made by noting that the splitting
functions are related to the anomalous dimensions of Wilson operators in egs. (5.61) and (5.68) in the
following way (the proof can be found in the next subsection)

1
n-1f Paa(x) Pyy(x) -._7 (Y‘EF ‘)’1\:/1: 6.27
ofdxx (2Nf Poy(x) ng(x)) a \ywy 73"). 627

Taking now the (n— 1)th x-moments of eq. (6.16), exactly in the same way as we proceeded in eq.
(6.11), it is a simple exercise [11] to arrive at the renormalization group predictions (5.97) and (5.98).
This proves the equivalence of the intuitive Altarelli-Parisi approach and the formal renormalization
group analysis. Apart from being physically more transparent, the main virtue of the Altarelli-Parisi
approach is that the fundamental decay functions P,; are independent of the probe (i.e., lepton beams or
hadron beams) and depend only on the rarget considered, i.e. on the strong quark-gluon and
gluon—gluon interaction vertices [163]. (This is of course in contrast to our previous renormalization
group analysis which heavily relied on the light-cone expansion appropriate only for deep inelastic
lepton-nucleon scattering processes.) Therefore we expect that the Q° dependences of parton dis-
tributions described by eq. (6.16) to have universal validity and that they should be the same for any
leptonic or hadronic reaction considered; moreover, this suggests that the IR factorization found in egs.
(5.58) and (5.97)-(5.99) holds to all leading orders in a, for any process, i.e. the wave function at Q3
factorizes from the In Q? terms in a process independent way. In the meantime these conjectures have
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been proven to be correct using various different field theoretic techniques which will be discussed in
section 7.

6.1. Calculating the splitting functions P, and anomalous dimensions

Although the P;’s can be calculated in a probe independent way just from the basic QCD vertices in
fig. 6.1 using “old fashioned” perturbation theory [163], we will consider the deep inelastic elec-
troproduction process in order to keep the calculation of these functions as transparent as possible.
Since the P-functions are defined as the coefficients of the leading In Q® terms of cross sections, eq.
(6.3), we simply have to calculate the fundamental parton cross sections for y*q— gq and y*g— qq, and
to extract their In Q contributions. By convention we have defined P; relative to F, in eq. (6.2) and
therefore we first need the projection of the parton cross sections onto F,. This can be easily obtained
from the general definition of the hadronic tensor in eq. (5.2) where, since we consider electromagnetic
currents, only the W, and W, structure functions are present. In the Bjorken limit (5.8), eq. (5.2) yields
the following contractions:

g“VWy.v = _2_1; (F2 _ 6XF1) (628)
2 2 1
oW, = z;% o (F = 2xF) = Z%EE F (6.29)

from which we obtain

1. 12x°

~F= O"z PP W, — g W,, (6.30)
_8x3 Fram.

FL—aip W, . (6.31)

Note that for extracting just the leading In Q® contribution to F, we do not have to calculate
p*p"W,, ~ Fp since the contraction with p* will compensate the appropriate propagators in the
amplitude and therefore the phase space integration does not give rise to In Q* mass singularities; thus
Fy is down by a power of a,(Q?)~ 1/ln Q? relative to F,. The relation between the usual cross sections
and W,, is then given by

f IM>dR,, = 47e*e, W** (6.32)

with the photon polarizations £ given by £fe, = g., or p,p, depending on the required contraction
(6.28) or (6.29). The normalization of the spin averaged scattering amplitude M is that of Bjorken and
Drell [165] except that our spinor normalization is iu =2m. The factor 47 in (6.32) results from
considering the naive parton model vertex y*q-> q, see eq. (6.1), in which case the right hand side of eq.
(6.32) is well known: F3=2xF{=e38(1-x). (The structure functions and all kinematic quantities in
this subsection refer of course always to the fundamental photon—parton system, e.g. to the quantities
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inside the square brackets in eq. (6.2).) Furthermore, the two-particle phase space integral we shall
subsequently need is given by (we are working with massless quarks and gluons throughout)

0
1 1
J'dRz—g;m fz dt (6.33)

vs__Q

with Q°=-¢” and s, ¢ and u being the usual Mandelstam variables. As an IR cut-off we shall simply
use

0 dt> i dr (6.34)
Jas |

but any other choice would do as well since the coefficients of the leading In Q® terms are convention
independent.

Let us start with the process y*q— qq as shown in fig. 6.2 which allows us to calculate P,,. The spin
and color averaged amplitude squared for this process reads [166]

l Mv‘g—'qd

2
2 = %e§4g2[— Uty 2;? ] (6.35)

where the color factor 5 for a given flavor (N; = 1) can be read off egs. (4.3) and (4.4):

1& ¢ 1
g2 2 (L) =5
c=1

i=1
Using the following kinematic relations

stt+u=-Q°

s+ 02 = Oz/x, x= 02/21) ‘q (636)

the phase space integral in (6.33) together with (6.34) gives for eq. (6.32), keeping the dominant In Q°
terms only,

—2ela[x*+ (1- x| In(Q*/m?) = Amg, W*". (6.37)

v*q)

g{p}

Fig. 6.2. Diagrams giving rise to Fi~ Py and Fi.
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Using eq. (6.30) and the definition (6.3) for the P’s we obtain in the leading In Q° approximation

2

Fi=—g"W,, =32 [+ (1- 2, quSZqu(x)an (638)

| —

which gives eq. (6.18). Note that in the last line we have by convention included a factor of 2 in order to
account for the fact that two quarks (qq) couple to the gluon vertex in fig. 6.2 whereas the decay
functions P, are always defined to describe the transition form j to one species i. Furthermore, taking
the (n — 1)th moment of P,, we obtain the appropriate anomalous dimension in eq. (5.68)

n+n+2

2N; f dx x" 7' Pg(x) = n(n+1)n +2)

Ne= =" y5u(n). (6.39)

That P, yields y{v becomes obvious by comparing the relevant diagrams in eq. (5.67) with fig. 6.2.
On the other hand, if we take £%e, = p,p, in eq. (6.32) we can calculate, according to eq. (6.31), the
“finite”” term F{. In this case we have

which gives, using (6.31)~(6.33) and (6.36), F§. in eq. (5.145).
Next, let us consider the reaction y*q— gq shown in fig. 6.3 which allows us to calculate P, and P,,.
Taking ¢}e, = g.. in eq. (6.32) the spin and color averaged amplitude squared becomes

2ev-puo = 2€398°S (6.40)

_‘_‘ 2 2Q?
EpEy=guv 3 eq4g [ + u + su ] (6’41)

which, inserted into eq. (6.32), gives (note that only the second and third term in square brackets give
rise to In Q” terms [164])

4,5
32€a® T

2
L+ x* 1n0 = dmg,, W™ 6.42)

Using again eq. (6.30) we finally have for the leading log terms

lpa_ 20414 g_ 2 s @
sz—eq2ﬂ_31_xlnm €ar qq(x)lnm2 (6.43)
Y*(q)
X +
qlp)

Fig. 6.3. Diagrams giving rise to F3 ~ Pyq, Pgq and FY.
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ie.

P =3 (<) (6.4

This result is of course only correct for x <1 since the diagrams in fig. 6.3 do not account for the elastic
case with no gluon emission (x = 1). These radiative corrections to P, at x = 1 can be easily calculated
by first regularizing the singularity at x = 1 in (6.44) by reinterpreting [163] the factor (1-x) ™' as a
distribution (1 — x)>'defined in eq. (6.21), and then adding to (6.44) a 8(1 — x) function,

_4 1+x*
Pgq(x) = 3(1 X)s A==+ cd(l-x), (6.45)
with the coefficient determined by the charge conservation constraint (6.24): ¢ = 2. This is eq. (6.17).
The diagonal anomalous dimension yrr in eq. (5.61) is then obtained from

[ext P =3[ 3ty 2 2] = vl (6:46)

where we have used

d n—1
J'dx - )+ fdx —Z[(l—z) 1]
(6.47)

where the last equality can be easily proved by induction. The decay function P,, can now be easily
obtained from (6.44) using the momentum conservation constraint (6.25) (see also fig. 6.3):

qu(x) qu(l - ) 41_1—'(_1)c—x)2 (648)

which is eq. (6.19) and which allows us to calculate y g in eq. (5.68):

1

jdxx"_ng 4n*+n+2

)= 30T~ " V), (6.49)

Comparing the appropriate diagrams in eq. (5.67) with those in fig. 6.3 it becomes immediately obvious
that Py, yir and Py, o yir.
Again if we take £}e, = p,p, in eq. (6.32) we can calculate, using eq. (6.31), the “finite” term F? in
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eq. (5.145). In this case we have

2ies=pn= 3€528°(—1) (6.50)

which gives, using egs. (6.31)-(6.33) and (6.36), F{ in (5.145).
A similar calculation [163] gives P, in eq. (6.20).

6.2. Bethe-Salpeter ladders

An alternative way to understand the physics behind the leading log summation via the integro-
differential equations (6.16) of Altarelli and Parisi is based on an iterative summation of Bethe-
Salpeter ladders. Based on the original calculations for pseudoscalar [167] and on the pioneering work
of Gribov and Lipatov [168] for abelian vector—gluon theories, this method has been extended to QCD
by several authors [169-172]. Apart from being physically most intuitive, this approach can be easily
extended to processes other than deep inelastic reactions where no operator product expansion exists,
such as to fragmentation functions in semi-inclusive processes (up- pw+X, e'e”>mw+X, etc.), to
Drell-Yan dilepton production (pp— p*"p” + X), to high-pr processes (pp— w+ X), and many other
more. Since we have discussed in great detail two methods of summing leading logs, we shall limit
ourselves here to sketch the main line of the ideas and to the calculation of flavor non-singlet structure
functions.

So far our calculations have been always performed in a covariant (Lorentz-Feynman or Landau)
gauge where the sum over gluon polarizations ¢,.,

2 Eu*EL= —guv 6.51)

includes also unphysical longitudinal states. In this case, squaring the diagrams of fig. 6.3 as shown in fig.
6.4, not only the ladder-like u-channel graph in fig. 6.4(a) gives rise to leading logarithms but also the
s-u interference term [164] in fig. 6.4(b). As was first noticed by Lipatov [173], a clever choice of gauge
helps to minimize the number of diagrams contributing to the leading log approximation. This is
achieved by summing only over the two transverse polarization states of the gluon with ¢'- k =0, and
instead of (6.51) we have

L otk kk,
28 * v=_guv+% (n—k')zn (6.52)

where the arbitrary four-vector n*(n” # 0) indicates which components of the gluon field A* is set to

QZ

e
S —

(a) (b)

4+ kg’

Fig. 6.4. The squared amplitudes of fig. 6.3 which give rise to leading logs in a covariant gauge. In the physical axial gauge only the “ladder” (a)
contributes In Q? terms.
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COpgpLLresi]

[LLLLLLLL L)

Fig. 6.5. A sample of diagrams which do not contribute to the leading log approximation.

zero (n - A = 0). This physical transverse gauge is the so called “axial gauge”. Now only the ladder-like
parton cross section in fig. 6.4(a) gives rise to leading In Q° terms, but not the crossed interference term
in fig. 6.4(b); more generally, crossed (nonplanar) diagrams exhibited in fig. 6.5 do not contribute to the
leading log approximation. The smallness of the nonplanar diagrams in the axial gauge is related to the
fact that the gluon propagator D, (k) =i4,./k* with 4,, ==, £.*¢, can now propagate only the two
physical transverse polarization states. Indeed, as the gluon goes on shell (k*>— 0) we have

—g*A,,(k)>2,  k*4,,(k)-0. (6.53)

(For comparison, in the Feynman gauge we have according to eq. (6.51) —g*”4,, =4 and k*4,, =
k,#0.) Technically, the smallness of the nonplanar diagrams in the axial gauge is related to the
following property of the propagator [169]: p*4,., (k) = O(kr).

It is now straightforward to determine [171] the leading log contributions stemming from ladder
diagrams depicted in fig. 6.4(a). If Q7 is large enough, each subsequent quark below the first radiated
hard gluon can itself radiate a hard collinear gluon (thus giving rise to one power of In Q%) as long as ||
is large enough to ensure perturbative calculations; in this way the Bethe-Salpeter ladder in fig. 6.6
builds up with n rungs and we can sum all mass singularities by iteration. The lower non-perturbative
part of the ladder where |f,,|<Qj with a(Q%)/m%1 can be factorized [171] from the leading
perturbative contributions and describes the uncalculable nucleon wave function probed at Q3 which
has to be fitted to experiment. In the leading log configuration the connection between the jth and
(j — 1th rung in fig. 6.6 is easily obtained to be [171]

2¢° ,
M, = Poo(y) Trp' M) (6.54)
i)
g q
f Zp {
t, rp M j-1
M; : S
fJ \lll'lllwllllll p':yp
-
P p

Fig. 6.6. Bethe-Salpeter ladder giving rise to leading mass singularities in non-singlet structure functions whenever the gluon is collinear to the
incoming quark.
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In the region where k is almost parallel to p, k = (1— y)p, we can write the phase space factor

d3k . dy dt,
2ko2mw)’  167°

where we used eq. (6.5) for £ = p”. Hence the contribution to the j particle cross section is given by

dy d e,
oi(p, ¢, p*=m?)= f yy ; 5 Pogy) 0,400, 4, P = 1). (6.55)

So far we have been dealing only with bare ladder diagrams (“skeletons”) and therefore the strong
coupling a; is constant — not yet running. If we dress these bare ladders by including all virtual radiative
corrections essentially amounts to [169, 171] a, - a.(t,), with a(¢) being the usual running coupling, as
shown in fig. 6.7. Moreover, it follows from simple kinematical considerations that the invariant masses
t; in fig. 6.6 are ordered

*<lgl=lpoi|=--=|t|=Q* (6.56)

Therefore, in the leading log approximation, the iteration of (6.55) for the whole ladder in fig. 6.6 gives,
using eq. (4.8) for a ()= @mbIn )",

Q? y r
1 dt; d, . __d_tl_f__)i I fg_ (Z ( X
% = @by ,[ tIn bl b Int, f tlng ) y Pooly) z M ) 1 ) 6.57)
m 0 0

where again m” denotes a suitably chosen IR cut-off. Thus each (collinear) gluon emission in fig. 6.6 will
give rise to a logarithmic contribution for which the t-integrals in eq. (6.57) give (1/j!) (InIn Q*/m?Y
since d¢/t In ¢ = d(In In ¢). The nested integrals involving P,, can be decoupled by taking moments which
give

fl dxx"tg; = (81r12b)’; (in1n 02) U dyy"! qq(y)I l,[ aNs(n)lnlng—zT (6.58)

where we have used egs. (6.12) and (5.64) to obtain the non-singlet anomalous dimension ans(n). Since

P o
g %VW% = §(p‘2) >'vmm
p p

Fig. 6.7. Virtual corrections that make the coupling constant run.
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a structure function is defined as a sum over all possible j-rungs in fig. 6.6, we finally get

1 1
fdxx"‘ng‘S(x, 02)~Efdxx"_10',-
7
0 0

= exp[—ans(n) In In(Q?*/m?)] = (In Q*/m?)~ ™ (6.59)

which is our desired result. Similarly, generalized ladders such as shown in fig. 6.8 allow us to calculate
[169, 171] also the correct Q° dependence of the moments of flavor singlet structure functions.

Note that for a fixed point theory where a,= a* = const. in eq. (6.55), we get d#/t = dIn ¢ in place of
df/tInt=d(InIn¢) in eq. (6.57). Thus we have one In less in (6.58) which implies, instead of eq. (6.59),

1
f dx x"? F¥S(x, Q%) ~ exp[—ans(n) In Q%] = (Q?)~ st (6.60)
0

which is the power-like behavior obtained previously for abelian vector gluon theories in eq. (5.59) with
the anomalous dimension now given by

1
a* n—1 1 F
ans(n)= =35 [ dyy™" Pusy) = 5 7eln)
0

in agreement with egs. (5.78), (5.61) and (6.46); of course we have now C,(R) =1 instead of 4/3.

We just have demonstrated in a rather transparent way how the dominant In Q° terms can be
summed to all orders in a, by iterating all possible hard collinear gluon emissions in a given
Bethe-Salpeter ladder. As we have already seen these leading mass singularities factorize, to all orders
in a,, from the non-perturbative hadronic wave function (parton distribution) at, say, Q*= Q3.
Moreover, they are universal in the sense that they are independent of the particular hard process
under consideration which is intuitively clear since one can iterate In Q® terms stemming from the
emission of hard gluons off any parton line relevant to a given process. The same result is true for hard
processes containing well identified partons in the final state: In this case the same In Q° terms govern
the Q° dependence of parton decay or fragmentation functions to which we will turn in section 10.

gt}

:

Fig. 6.8. Bethe-Salpeter ladder contributing to the Q° dependence of singlet structure functions.
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7. Factorization and the universal validity of the Q*-dependence of parton distributions

So far we have discussed three methods of calculating the leading logarithmic Q*-dependence of
parton distributions in deep inelastic lepton—nucleon scattering processes. Moreover we have found that
all non-perturbative pieces (matrix elements of local operators to be interpreted as hadronic wave
functions or parton distributions at a fixed Q®= Q7) factorized to all orders in a,(Q?) and in all
logarithms of Q°. We now turn to the question whether these results are of universal validity in the
sense that the (infrared) factorization properties as well as the Q*-dependencies obtained so far are the
same for any other hard scattering process. Although it will be obvious from our discussion in the
previous section that this is indeed the case, we will briefly illustrate the basic ideas which led to this
conclusion in as simple terms as possible following the original suggestions and conjectures of Politzer
[174].

Electroproduction serves as a simple example of the method. Let us begin with the parton
description of the ep cross section do (see fig. 5.4 and eq. (6.2) for do ~ F>)

do(x, Q%)= f dy q()’)dapmon(i, 02) (7.1)

where in general (apart from obvious factors such as quark charges)

40 arion G 02) ~ 5(1 - %) - aa (i) In _%25 - asf(g) T (72)

with a(x/y) being straightforwardly related to the anomalous dimensions (or splitting functions). In (7.2)
we have assumed that the calculations have been performed for incoming (massless) quarks slightly
off-shell (p? <0). We could, of course, also work with p>= 0 but keep the quark mass m?# 0: In this
case the finite terms f(x/y) will be different but the dominant contribution a(x/y) In(Q*m?) remains the
same. Equations (7.1) and (7.2) do not make sense as they stand since terms like In(Q?*/-p?), for
—-p*< @, spoil any naive use of perturbation theory which reflects the general desease of “infrared”
divergences present for light or massless quarks and gluons.

The key observation [174] in handling the In(Q?/—p?) as p*>— 0 is that doparon factorizes into a Q2
dependent well behaved piece times a Q® independent infrared divergent piece. The latter should then
be absorbed into the parton distribution g(y), where it really belongs.

Because of the convolution (7.1), this factorization is somewhat complicated by the x dependence of
do paron in (7.2). The essential trick to circumvent this problem is to take x-moments, in terms of which
the convolution (7.1) factorizes (see eq. (6.11)):

1 1 1
I dxx"?do(x, Q%)= f dyy*?yq(y) f dz 2" doparton(z, Q) (7.3)
0 1] 0

with
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2

1
I dz z"? dopanen(z, Q°)~ 1- asa, In —%}2+ e
5 7.4)

2 2
= (l—asa,, ln_%"z+--~)[1—asa,, 1n‘—35+---]
[0}

where a, = [0 dzz"?a(z), and we have factorized the dangerous piece (p*>-0) at the expense of
introducing a new arbitrary but finite momentum scale Q3. All the infrared difficulties reside in the first
factor (if we choose Q3 ~ O(Q?)) which is independent of Q. So the infrared sensitivity can be factored
and reabsorbed into g(y) in eq. (7.3):

f dxx" 2 do(x, Q%) ~ f dyy" "y q(y, O%)[l - a.a, In %} . ] (7.5)

which now admits a well-behaved power series expansion in a, and allows us to compute the Q°
dependence reliably. The renormalized, measurable wave function (to be extracted from experiment) is
given by

1 1
2
f dyy"?yq(y, Q)= f dyy"%y q(y)(l - aa, In %+ X ) (7.6)
1] 0

The fact that the logarithmic terms make no sense as p°— 0 is irrelevant because it is only g(y, Q3), and
not q(y), that is experimentally observable. Having used this algorithm of extracting and factorizing
infrared divergent pieces via moments, we can invert our well-behaved moment prediction to give
simple results for the x and Q° dependence of cross sections (structure functions)

0

do(x, Q%) ~ fl dyq(y, 03) [5(1 —%) - aa G) n .. ] (7.7)

Taking moments is of course not only a theoretical tool used to justify eq. (7.7) but is also a very
practical calculational tool since in general a(z) is not well behaved for z - 1 (see eq. (6.45)) and hence
its meaning is made precise only by integrals (such as in eq. (6.46)).

Although the factorization of the Q* dependence from the p* dependence in eq. (7.4) is almost trivial
to order a,, it is a far more complex issue in higher orders: It was the essential content of the
renormalization group improved operator product expansion, discussed in section 5, to prove that the
factorization in (7.5) persists to all orders in a,(Q?) and to all logarithms of Q> Of course, (7.5) will
turn into a matrix equation if gluonic singlet initial states are considered as well (singlet mixing!).

We can now apply our method to any parton process which is not necessarily dominated by the
leading light-cone singularity of an operator product expansion, as was the case for electroproduction.
Let us first study the order a, corrections [174-176] to the Drell-Yan mechanism [177] for producing
heavy lepton pairs in hadronic collisions, h;h, - *w™ + X. Here one imagines a parton (antiparton) with



E. Reya, Perturbative Quantum Chromodynamics 285

h,{P) +
X3 W .
+ .
X Yi(q) u—
h(R)
(a) (b)
+ + +
(c)

Fig. 7.1. Sample diagrams contributing to the Drell-Yan process in (a) the naive parton model and (b), (c) to the a; corrections in QCD.

fraction x; of the incoming hadron h, annihilating an antiparton (parton) of fractional momentum x, in
the target h,, thereby creating a heavy virtual photon which then decays into the lepton pair (fig. 7.1(a)).
The cross section for creating in this way dileptons of invariant mass-squared Q= +¢>,

02 = (X1P1 + x2P2)2 = 2x1x2P1 . P2 = X1X28, (78)

is, in the naive parton model, formally given by [177, 178]

dO’DY = f dxl dX2 ql(xl) q_z(xz) dO'panOn (79)

where, in the free field case, doparon = do®* ™ (Q?). (The detailed form of the Drell-Yan cross section
together with all the relevant kinematics will be given in section 8.) In order to calculate the order a,
corrections to the naive Drell-Yan cross section we proceed in the same way as before for elec-
troproduction and consider, for simplicity, the q§ annihilation process first. As in eq. (7.2) we calculate
doparon for qg—y*g (fig. 7.1(b)) and keep the dominant log-contributions only which arise from gluon
emissions parallel (collinear) to the quark lines in fig. 7.1(b) carrying momenta p, = x,P; and p, = x,P»:

do® ~ 8(1 - 7/x,x,) — aa(r/x:x,) In Q? (7.10)

where the §-function takes care of the constraint (7.8) for the naive qd— vy* vertex with 7= Q%/s (<1).
The infrared singularities will be regulated by taking the quarks off shell pi # 0, p3# 0. We then take
moments of eq. (7.9) in order to determine the factorizable infrared sensitive pieces which are to be
absorbed into the unrenormalized naive wave functions g(x), etc. Instead of the x-moments in eq. (7.3),
the appropriate 7= Q°/s moments of (7.9) read [174-176]

1 1 1 1
j dr T"_2 dO’DY(T) = J’ dr ’T'"_-2 I dx1 ql(xl) f dX2 qz(X2) dU’qq(le)
0 0 T

7/x1

1 1 1 (7.11)
= f dx1 xi‘_le ql(xl) J’ dx2 x;—2x2 q-z(x2) I d1'12 T'1'2—2 dO’qq(Tu)
0 (1] 0
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where 712 = 7/x,x, and

. 02 2
f dr 7557 do% (1) ~ 1 - asa, (ln ——+In -—2)
] —D1 D2
(7.12)
Qi Q3 Q*F.

= (1" a.a, In —_—’7]) (1 — ay In 7) [1 —a.a, In —2] ,

4 0

obvious factors stemming from the lowest order process q4— p*n” in fig. 7.1(a) are suppressed. As in
eq. (7.4) we again have been able to factorize the infrared dangerous pieces (p?— 0) by introducing a
new mass scale Q3. Absorbing these pieces into g;(x;) as was done in eq. (7.6),

2

1 1
[ axxt a0 = [ a2 q00) (1- aau %—) (7.13)
0 0

we again obtain a perfectly well behaved prediction for the physical cross section in eq. (7.11)
1 1 1
n—2 DY n-2 2 -2 = 2 02 2
fd*ra- do®¥(7)~ f dx;, x77%x; qi(x1, QF) f dx; x57%x5 Ga(x, OO)[I —a.a, In 65] . (7.14)
0
0 0 0

Thus, to leading order, the whole effect of gluon radiations in fig. 7.1(b) is to make the naive parton
distributions in eq. (7.9) Q°*-dependent,

2

1 1
f dx x772x i (x, Q°) = f dx x777x i (6 05)[1 —aa,n %], (7.15)
0 0

leaving us formally with the same expression for the Drell-Yan cross section as given by the naive
parton model (eq. (7.9) and fig. 7.1a) but with ¢;(x;)— g:(x;, Q7).

Apart from having established the infrared factorization property, the most significant observation
originally made by Politzer [174] is that the coefficient a, of the In Q° terms is exactly the same function
which appears in the order a, corrections to deep inelastic scattering on a quark, for example in eq.
(7.5)! The same is true for corrections which result from the gluon initiated process [174-176] in fig.
7.1(c); in this case the logarithmic coefficient is proportional to P, ~ yv~ which turns out to be identical
to the one stemming from the deep inelastic process in fig. 6.2. Therefore the scaling violating
Q°-dependence of parton distributions in eqgs. (7.5) and (7.14) is the same regardless of probing the
space-like (g> <0 with Q*=-¢°) or the time-like (g > 0 with Q*=+47) region - a statement which is
equivalent to our previous remark that the splitting functions P; can be calculated in a probe
independent way [163]. Or in other words:

The deviations from the naive Drell-Yan picture are intimately related to the violations of Bjorken
scaling in deep inelastic scattering!
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Fig. 7.2. Sample diagrams in the planar (axial) gauge giving rise to the leading logarithmic Q*dependences of parton distributions in the Drell-Yan
process of massive dilepton production.

These results can be shown to hold to all logarithmic orders in perturbation theory [169-172, 179-
184] where, in contrast to the above order a; case, the proof of infrared factorization becomes a highly
non-trivial matter. Here one essentially sums leading mass singularities (parallel gluon emission) of
planar Bethe—Salpeter ladder diagrams shown in fig. 7.2, a technique similar to the one discussed in
section 6.2 for deep inelastic processes (see, for example, figs. 6.6 and 6.8).

The same game can be played for any other hard scattering process such as “high-pr” reactions
where a pion, say, is produced with large transverse momentum relative to the beam axis of the
colliding hadrons: pp—>mw+ X etc. In the naive parton model approach the cross section for this
reaction, as shown in fig. 7.3(a), is expected to be given by [185]

40" = [ dx. a2 4u(x) 4s(x) DY) doist (7.16)

where the fragmentation function D(z) describes the probability that the parton ¢ decays into a hadron
h (=m, K,...) carrying fractional momentum z. (For more details we refer the interested reader to
section 11.) Again, to all leading logarithmic orders in a;, the contributions from all possible collinear
gluon emissions as shown in fig. 7.3(b) do not alter the basic form of eq. (7.16), their only effect being to
make the parton distributions Q-dependent [186], i.e. q(x)—=>q(x, Q%) and D(z)- D(z, Q°), and
doparon becomes just the lowest order Born cross section for elastic g.g, — ¢.qa scattering in fig. 7.3a,
calculated using the running coupling constant a,(Q?). The Q? dependence is of course the same as the
one obtained for deep inelastic processes, a result which holds [169, 172, 179-181] to all orders in
a(Q?), but the choice of Q7 is not unique: One usually chooses as a typical invariant mass scale

(b)

Fig. 7.3. High-pr process in (a) the naive parton model and with (b) gluonic QCD corrections added.
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Q*= 1, V31i or 2§td/(§* + £*+ i°), etc., where the differences are related to subleading contributions
only, with §, 7 and i being the usual Mandelstam variables of the partonic subprocess.

The same method can be applied to proof the factorization properties together with the universal
validity of the leading logarithmic Q dependence of any parton process, such as [169, 171, 172, 179-181}

e'e>m+X
pp—>p+m+ X, etc.

where again quark fragmentation functions are involved. Of course the “finite” terms, as discussed for
deep inelastic processes in section 5.10 and shown for example in eq. (6.3), are process dependent and
will provide us with additional important tests of QCD, i.e., with (in most cases small) deviations from
the above factorization properties.

The moral of all this is that, apart from small non-factorization effects, the same parton distributions
and fragmentation functions have to describe all hard scattering processes simultaneously. More
explicitly, all expressions for observable cross sections derived in the naive parton model have to be
modified by Q*-dependent parton functions times, of course, the appropriate parton subprocesses. Thus
QCD provides us with the only known rationale of the parton model and we will devote the remainder
of this review to study several different processes in order to somewhat elucidate this ambitious
program.

8. Hadronic production of massive lepton pairs: The Drell-Yan process

Let us first consider the hadronic production of massive lepton pairs via the Drell-Yan mechanism
[177] depicted in fig. 7.1(a). That is, we consider the reaction

hh,» p'p +X 8.1)

where the beam particles are usually h, = p, p, w, K and the target consists commonly of nucleons,
h,=p or N. The invariant mass squared of the dileptons will be denoted by Q>*=M>>0. The
differential cross section for this process reads [177, 61, 187], taking into account the full leading QCD
corrections as abundantly discussed in the previous section,

doe=% 3 [qux;, Q) Go(x2, Q)+ (12)] 0%* ™ (Q?) dx, dx, dO°. 8.2)

g=u,d,s,

The factor 1/3 is due to color [61] and the fundamental parton annihilation cross section is well known
from QED (165, 166]

2
U.QQ-’;L*;L' — 4;7‘0‘12 eé' (83)

Using eq. (7.8) we then simply obtain
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—
-

_ég ; dx [ dx 8(rns — 09 T e [gix, 0 3alxa, Q)+ (102)
° (8.4)
4[5 e, 0905, 0)-107]

with 7= Q%/s (=1) and where the dominant contribution to the integral comes obviously from the
region x; = V7. Since the Drell-Yan cross section is directly proportional to the sea distribution 4, it is
clear that it will provide us with a most sensitive test of sea distributions extracted from deep inelastic
reactions. Perhaps it should be noted that in the naive parton model with Q® independent quark
distributions, the cross section in (8.4) would exhibit the naive dimensional scaling law Q* do/dQ* =
F(r); this is of course not true in QCD since eq. (8.4) implies F = F(r, Q®) with a highly non-trivial
dependence on Q°.

Instead of considering the electromagnetic production of w*p~ pairs in eq. (8.4), it is also straight-
forward to derive Drell-Yan-like cross sections for the production of weak intermediate vector bosons
(W=, Z°). For example, the total cross section for W* production in pp collisions becomes

1

= ——\/ZGF cos” 0, f — 'rw[ul(xl, M%) dz( , M3 ) +dy(x1, M%) uz(;—w, M%v)]
1
+[s,c,...] contrlbutlons 8.5)

where 7w = M%/s. Total and differential production cross sections for heavy vector bosons have been
already discussed abundantly and we refer the interested reader to the relevant literature
[5, 89, 112, 188-193].

For many practical purposes one needs a more differential cross section than the one given in eq.
(8.4). Neglecting the intrinsic transverse momenta of partons, then the lepton pair has, in the overall
c.m. system, only longitudinal momentum, say Qs, defined along the beam direction of h; in (8.1).
Defining the Feynman variable xr=2Q,/V's, then the cross section for creating dileptons of invariant
mass Q® and a definite longitudinal momentum Qs is given by [61]

& 14ma’
dQZ(chxF ~3 373“ Tf jc Z ealg:(x1, Q) Gx(xz, Q°) + (10:2)] (8.6)

with x;, = 3[*xp + (x;+ 4Q%/5)'?), i.e., Xx¢ = X, — x,. In addition most of the experiments are performed
at small c.m. rapidity y, where

y nQet Qs tanh_l(—o—%)

1,
2" G- 0 Qo

and therefore

xn=Vre, x.=Vre”. 8.7)
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Thus we obtain from eq. (8.6) for y >0

2 _ 2 4 2 2 _ = _ )
Eg% y=0=2\/7ﬁ =0=—9’8L47§eq[q1(\/r,0 ) G(V7, Q)+ (12)). (8.8)

As an illustrative example we compare in fig. 8.1 the predictions [118] of eq. (8.8) with recent data
[194-196] using the “standard” SU(3) symmetric sea distribution in eq. (5.135) as input, i.e. x £(x, Q3) =
0.15(1 - x)". Although the naive parton model predictions (Q*-independent parton distributions) agree
with the data in magnitude, the fully Q® dependent predictions of eq. (8.8) lie, by a factor 2-3,
consistently below the pN data. One possible way to account for this discrepancy would be to double
the above input sea distribution as suggested by the Caltech group [197, 198], but then it is difficult to
reconcile the measurements below charm threshold for o*/o”* —a quantity which is very sensitive to
(x£),= [o x¢ dx: Since below charm threshold we have

o' Hx(utd))+4x 89)
o’ 2.823xx(u,+d.,)). + 4x£), )

we get, at E,=10GeV, o”/o” =043 for the “standard” sea with (x£),=0.02 and /o =0.5 for
(x£), = 0.04 whereas experimentally [199, 43, 45] we have ¢”/o” < 0.43 for E, <20 GeV.
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>
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> 10°% E . .
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= "'.?’oo,
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“~ ‘0_35 L pp—ptu-+ X |
© E @ 5 =280ev 3
"’z E ® s = 52Gev

4 N5 = 62Gev
10-% L PN=p*u~ « X

;‘ s = 274 Gev
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Fig. 8.1. The solid curves show the predictions [118] (M?= Q?) of eq. (8.8) using the fully Q* dependent parton distributions of ref. [114]; the input
sea distribution corresponds to x£(x, Qf) = 0.15(1 — x)". This latter Q° independent distribution has been used to calculate the naive parton model
prediction. The pp data are from ref. [194], and the pN data are taken from refs. [195] and [196].
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Alternatively, “finite” a, corrections to eq. (8.4) or (8.8) could also account for the above dis-
crepancy. Although it is now generally agreed upon that the gq—+y*q (fig. 7.1(c)) correction
[149, 156, 159] and the contribution from the O(a?2) subprocess [156] qq— qqy* are small, the con-
tributions from qq—vy*g in fig. 7.1(b) appear to be sizeable [159]! Although this latter qG— v*g
subprocess could partly account for the discrepancy in fig. 8.1 between theory and experiment, one
might question the validity of perturbation theory in the present energy regime since it implies that a;
corrections are not small compared to 1. A discussion of other alternatives based on collective effects
for nuclear targets can be found in refs. [118] and [112].

An immediate question arises whether massive lepton-pairs aie indeed dominantly produced via the
Drell-Yan mechanism of quark-antiquark annihilation. Several features of experimental data indicate
that this is indeed the correct production mechanism. Let us denote the cross section for the reaction
h{N- p*u™+ X by o™ for a specific beam particle h;, then we expect the following qualitative features
from eq. (8.4):

(i) For the w/p beam ratio we expect formally

o” v"(u,+d,)+sea 1

o®  Ew td)tsea (I-xF> | forx=Vr=~1 (8.10)

to be compared with the experimental value [200-203] of about 200 at V= = 0.5! If the dileptons were
produced by normal hadronic interactions, one may expect this ratio to be proportional to the
corresponding total hadronic cross sections of /ot <1. In (8.10) we have used the same SU(3)
symmetric decomposition for pionic quark distributions, using isospin and charge conjugation sym-
metry, as was done for the nucleonic ones in (5.28):

u-rr =d1r ____a‘n"=d-rr Ev‘n+§-rr
(8.11)

(ii) Remembering that «* = (ud) and =~ = (iid), then the 7*/7~ beam ratio is expected to be

o™ vid)+sea

-

o v?(éu)+sea_% for V7=1(where ¢ =¢=0)

3 8.12)
=1 for V7 <1 (where “valence” = ()

in good agreement with experiment [201-203].
(iii) Similarly the p/p beam ratio should be

o (u+d)u+d)+sea_ “valence” >1 (8.13)

o’ &u,+d,)+sea “sea”

and experimentally [203] this ratio is about 6 for V7= 0.4.

Needless to say that, if p* ™ pairs are produced via m-beams for example, the Drell-Yan formula (8.4)

or (8.8) provides us with a direct means to determine the structure function of the pion experimentally
[204]).
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8.1. Transverse momenta of massive lepton pairs

Apart from the intrinsic transverse momenta of partons and other “soft” resummation mechanisms
(see below) which are responsible for the small transverse momenta pr (<1 GeV) of dileptons relative
to the colliding beam axis, the hard pr spectrum (=1 GeV) of lepton pairs has to result [174, 175, 205-
207] dominantly from the diagrams shown in figs. 7.1(b) and (c), i.e., from the q§— (n"p")g and
gq— (u"p7)q subprocesses. The differential cross sections for these fundamental processes, as shown in
fig. 8.2, are given by [206, 208]

2 _qq 2 A
o 8a’ asl< +u 20 ) (8.14)
i

dQ*df 270° & [ w

2 _gq 2 e A 27
g aal( 58290 (8.15)
dQ’dr 9Q°5§ a § §a

where §, 7 and i are the usual kinematical invariants for the corresponding subprocess, and it is a simple
kinematic exercise to show that p%= fi/§. The strongest infrared singularity has the qq annihilation
process in (8.14) which diverges as 1/p7 for pr— 0 (paraliel emission); the divergence of the gq process
in (8.15) is somewhat softer which goes like 1/pr as pr— 0. This makes clear that eqs. (8.14) and (8.15)
are only applicable for the hard pr spectrum, typically pr=1GeV, but not for smaller values of pr
where non-perturbative (‘“smearing”) effects become important. Therefore, pr moments [205, 206, 118]

defined by

(P~ f Pr—— ] 02 . dt (8.16)

are always finite for n = 1. A simple calculation gives for example [118]

1

aaﬂ'fdxl de

<PT>doz 1803 \/7'12(1 7'12)

T/x1

X{xlxz 2 qCI1(x1,Q )(12(352, Qz)[4(1 T12)+32 712 ]+ X1X> Z eﬁGl(xl, 02)

flavors flavors

X [ga(x2, Q%) + Golxe, 02)1[1 +o(l-7) - 7'12(1 1'12)] t(le 2)} (8.17)

with 7, = 7/x.x, and where do/dQ’ is the total p; integrated cross section in eq. (8.4). Similar

YoM
g —<¢71—<L _ ——ymr g - T —

A M + Uf >—( + U-+
g —>—rmnr ————‘MM< u q —>——~W< -

Fig. 8.2. Lowest order contributions to (large) transverse dimuon momenta.
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expressions can be obtained for [206] (p7) and also for [118] (p?) at c.m. rapidity y = 0 where most of
the present measurements are done. (The numerical calculations of expressions such as (8.17) are
greatly facilitated by using the simple parametrizations as given in ref. [114] for the exact x and Q°
dependence of parton distributions as predicted by QCD.) Equation (8.17) implies that

(pr) = a Q) Vs f(r, 2 Q%) (8.18)
up to an unknown constant due to non-perturbative intrinsic kv effects of partons. Experimentally [209]
(po) = (0.6+0.022V's) GeV 8.19)

which agrees with the slope calculated from eq. (8.17). Note that at present it is not possible to make
very precise comparisons of theoretically predicted slopes with measurements of pp scattering, say,
because of the importance of the badly known (so far mainly guessed) gluon distribution G(x, Q3). For
a critical and comprehensive discussion of various moments and their comparison with experiment I
refer the interested reader to ref. [118] and to the review articles of Gliick [210], Hwa [211], Halzen
[212] and Berger [213].

Although only pr-moments are well behaved (finite) and therefore the prescription for calculating
them is unambiguous, the integration down to small pr is delicate; a, becomes substantially different
and so may the scale breaking effects in the parton distributions. We therefore will now turn to the
explicit pr spectrum of dileptons and concentrate on the large pr tail (>1 GeV) where egs. (8.14) and
(8.15) are strictly applicable and have to be able to reproduce the measured pr spectrum if QCD is at
work. A straightforward kinematical analysis {207, 214, 215] yields the following expression for the pr
spectrum of massive dileptons

1

do
— = — X1X2 qqi1\r1, 2WA2, 2 +(1 2 A
T [ ax P fua [Seia a0+ (10 )] o
+x1x22 2 Gi(x1, Q%) [qax2, Q%) + Golx2, Q)] dd Z:f (4, 1) (8.20)

+X1X2 Z e2 Gy(xa, Q%) [qi(x1, Q%)+ Gu(xy, Qz)] sz ‘ ﬁ)}

where we have denoted the gq cross section in eq. (8.15) by d>¢*%(4, 1), and the kinematics are

 Vsme - Q?
min _ T€ Qy, mT—\/

X1 = +pT
Ss—Vsmre
_xuVsme?-Q*
BT s Vime ST 2D
t=Q*-x;Vsme™, i=0Q*-x,Vsme.

In fig. 8.3 we compare the predictions of this hard scattering formula with pN data at y = 0 for dilepton
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Fig. 8.3. Comparing dilepton pr data [209] with the predictions (solid curves) of eq. (8.20) using the dilepton mass scale Q= M?, and where the
individual contributions of fig. 8.2 are separately shown. The parton distributions of ref. [114] have been used for the actual calculations. The dashed
curve is the prediction of the naive parton model, i.e., with Q? independent parton distributions.

masses of M =Q =75GeV. As can be seen, the absolute magnitude of the total QCD prediction
(solid curve) disagrees with the data. However, we have made the most pessimistic choice for the mass
scale, namely the dilepton mass Q7 itself, i.e. a,= a,(Q?), q = g(x, Q°) etc. Taking instead the mass
scale to be p7, ie. ap?) etc. greatly improves [215] the situation. In order to get a “perfect”
agreement with the large-pr data (=1 GeV) it seems, however, that a larger sea and harder (flatter)
gluon distribution, as for example in eq. (5.137), is required [197, 198, 216] than the standard counting
rule like distributions [114] used in all our calculations: x£(x, Q)= 0.15(1-x)” and xG(x, Q%)=
2.4(1 - x)’ for Q=2 GeV>. For comparison we also show in fig. 8.3 the prediction of the naive parton
model using these latter Q° independent parton distributions. Unfortunately present deep inelastic
lepton—nucleon scattering experiments are not accurate enough to decisively pin down the exact shape
and magnitude of G(x, Q) which is crucial for the dominant contribution of the gq— y*q subprocess.

In the region p% < Q7 the cross section in fig. 8.3 diverges and the “‘hard scattering” perturbation
theory in egs. (8.14).and (8.15) breaks down. One way to handle these non-perturbative effects for
pr=1GeV is to invent some sort of “smearing” procedure [217], i.e., to guess some kr dependence for
parton distributions and to fit such expressions, appropriately added to the hard scattering prediction
(8.20), to the experimentally measured py spectrum. The resulting kr is then usually referred to as
“intrinsic” transverse momentum of partons; in this way one obtains rather sizeable values of about
(kt)=10.5-0.8 GeV. Alternatively, one might try to approach the small p; region more theoretically.
Since p%< Q7 new large logarithms In(Q?/p7) appear, besides the ones encountered so far (In Q*/u>),
and the naive perturbation theory breaks down. One can try to resum these logs which result from soft
gluon emissions, in addition to the hard (single) gluon processes in fig. 8.2, using again Bethe-Salpeter
ladder techniques (as briefly discussed in section 6.2). This has been originally done by the Leningrad-
group [169, 218] which yields the much-publicized “DDT formula”

d 4a’ 1 J _
ETog d; dp%-= 9ZC:S ;gl‘_ 3in p_zr[T%)DT(Oz, P'Zr) qi(x1, P"zr) ga2(x2, P%)"' (12)] 8.22)
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with the DDT form factor given by [169, 219, 220]

2 2

Toor(@?, ph) = exp| - 242012 & | (5.23)
T Pt

Two important conclusions [215, 218, 221] emerge from these resummed soft gluon emission form factor

analyses. They provide the type of concavity of do/dp% which is seen in the data, i.e., as pr—0 the

distribution begins to flatten (fig. 8.3); a second improvement is in the absolute magnitude which is

increased with respect to the simple O(a,) result (8.20).

9. Hadronic production of heavy quark flavors

The hadronic production of heavy quark flavors Q= c, b, ... can be viewed as a direct generalization
of the standard Drell-Yan mechanism: Instead of producing w*w~ pairs via a virtual photon y* (fig.
7.1(a)), heavy quark pairs QQ are now supposed to be produced via a virtual gluon g: Let us begin with
J/ = (ct) production

for various beam particles h, = p, p, w, K and with the target being a nucleon, h, = N. Since we are
considering a ¢ bound state, one naively might expect the fusion of heavy charmed quarks [222] to be
responsible for producing the J/¥ system as shown in fig. 9.1(a). Here, however, the very small charmed
sea [96,97] enters the cross section quadratically (~ci(x1, Q%) &x(x., Q°), by generalizing eq. (8.4)) so
that this mechanism yields only a negligible contribution to the total measured cross section. Most of all
the absence of extra muons [223] produced in association with J/§ suggests that such a charmed sea
fusion cannot be dominant [224]; in other words the associated DD production (fig. 9.1(b)) is observed
to be small [223], i.e.,

o(J/y DD)
— /<001 .
o) 0 6.2
whereas this ratio is expected to be 1 in the charm fusion model of fig. 9.1 (unless one invents some
fancy ad hoc confinement mechanism for the remaining ¢ and € quarks in fig. 9.1(b)).

Within QCD the only realistic description of hadronically produced heavy quark systems appears to
be given by the subprocesses [225] q4 — cC and [226, 227] gg— cC. In the first case, suggested by Fritzsch

Xz J/LD

(a)

Fig. 9.1. Charmed quark fusion diagrams responsible for (a) J/ production and (b) associated DD production which gives rise for extra muons.
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h, g

Fig. 9.2. Production of J/i states through fusion of ordinary light u, d, s quarks into a single colored gluon which decays into a ¢t pair. The emission
of “soft” gluons from the final charmed quarks is implicitly implied in order to form colorless C = *1 states.

[225}, ordinary light SU(3) quarks q = u, d, s fuse in order to produce a highly virtual gluon which then
decays into a cC pair as shown in fig. 9.2. The production of a particular state, e.g. J/, depends on the
dynamical details of the strong interaction mechanism by which the color-octet ¢t configuration
rearranges itself, by “soft’” gluon emission, into a definite outgoing color-neutral cc state. Adopting the
semi-local duality approach of ref. [225] to somehow account for this unknown formation of the
observed bound states, the cross section for producing any c€ state below open charm threshold through
qq fusion reads

am”?

d h_hz d G—cC
- 3, [ B e 096 09+ (15200 ©3)
4m

c

with x;, being the same as in eq. (8.6) and
e _ 24ma3(Q7)

qa->ct —
o = e (1+3y)Vi-vy (9.4)

where y =4m2/Q? and m’=mp=1.85GeV. In order to obtain the presently measured total cross
section we just have to integrate eq. (9.3) over 0 =< xr<1— Q°/s with the lower limit being dictated by
experimental cuts. Note that now the sea (G) enters the cross section only linearly. The second
contribution comes from the [226, 227] gg - cT subprocess shown in fig. 9.3. The last two diagrams of fig.
9.3 resemble the original Einhorn—Ellis [228] graphs which have been studied [228, 229] in connection
with the production of C = +1 states (n. or p-wave x states) which can also decay into a J/{ by emitting
a soft photon. That part of the total hadronic J/ production might indeed proceed via x-states is
suggested by the observed rate [230] of associated photons with the J/: a({ry)/or(¥) = 0.5 +0.2; but this
ratio can in principle also be accommodated by the process in fig. 9.2 since it is of the order a/a; (“soft”).
The total contribution of the gg— cC subprocess in fig. 9.3 is now given by [227]

Gi(x1, Q%) Gax2, Q) 0%*~(Q?) 9.5)

am?
dog _ J’ dQ® xx,
dxF OZ X1 + X2

C

+ +
96" g 4 ¢
h, -@N

Fig. 9.3. Production of J/{s states through gluon fusion. Again, “‘soft” gluon emission is implicitly implied to form physical colorless states.

[al]
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with

(=R HYey

and again y = 4m2/Q>. The total cross section for producing a ct state is then the sum of egs. (9.3) and
9.5):

dgMh2 = da.g:_]hz + da';;hz. (97)

It should be emphasized that the two contributing subprocesses qq— cC and gg— cC make very
different and definite predictions for J/i production ratios by different beams. Specifically, the qg fusion
predicts for p/p = o™V X |gPN X very large values [225), typically p/p = 30-50, whereas experi-
mentally [231] p/p = 6.7+3.0 at p,., = 39.5 GeV/c. Since gluons are flavor blind, the gg fusion process
trivially gives p/p = 1. Thus the experimental observation that the p/p ratio is not very large but close to
one provides us with direct evidence that nucleons consist of additional flavorless constituents (gluons!);
furthermore it tells us that the observed J/{ cross section has to be a combination of the qq and the gg
fusion process as stated in eq. (9.7).

Without going into too many details we just would like to mention that a comparison of the
measured xg distributions of J/’s produced by m-beams [231] with the predictions of eq. (9.7) allows us
already to pin down [227] the pionic valence-quark distribution at large values of x: The resulting
xv™~(1—x)as x> 1 (see eq. (8.11)) agrees with the recently found xv™ extracted from Drell-Yan p*p~
continuum production [204], which is also in agreement with the naive dimensional counting rules
[59-61] in eq. (5.102). Similar successful predictions for xr distributions are obtained [227] for
measurements at higher energies for m as well as p beams. A sample of very significant beam ratio
predictions for J/ production are shown in fig. 9.4. The calculations have been made for two very
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Fig. 9.4. Predictions [227] for beam ratios of total J/ production cross sections using incident p, p, 7 and K* beams. The solid curves correspond to
the dynamical QCD distributions [112] (see section 5.7) and the dashed curves refer to counting rule like parton densities {233], which appear to be
more adequate, are very similar to those used in most of our calculations (egs. (5.135) and (5.136)). The data (xg > 0) are taken from refs. [231] and
[232).
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different sets of parton distributions in order to show the sensitivity of these predictions, but the dashed
curves, corresponding to the counting rule like distributions, should be taken more seriously since they
are in better agreement with all hard scattering data known so far. From fig. 9.4 it is clear that the qg
fusion model alone (eq. (9.3)) is not capable of accounting for the data. The additional contribution
from the gluon—gluon (gg) fusion in eq. (9.5) is not only required by the low-energy CERN-SPS data
[231] but also by the high-energy Fermilab measurements [232] of p/p and p/#" ratios. The latter clearly
demonstrate the essential role of the gg fusion mechanism and are striking evidence for the existence of
gluons in hadrons! That gluons are responsible for the strong increase of beam ratios, say p/p, with
energy s is clear because increasing s means decreasing x, = V7=V (0%s (see the discussion following
eq. (8.4)) and therefore gluons will dominate (eq. (9.5)) since they are concentrated mainly in the small
x-region.

Within our semilocal duality approach we expect total “open charm” (DD, etc.) production to be
described [226, 234-240, 212] by the same formulae as above with integration limits in egs. (9.3) and (9.5)
changed to m.—»m’ and 2m’—>Vs. In fig. 9.5 we show a few predictions [235] for “open charm”
production, and although the experimental situation [241,242] is rather confused [243], the QCD
predictions lie at best an order of magnitude (!) below present experimental limits. One possibility to
account for this discrepancy would be either to increase the “standard” gluon distribution in eq. (5.136)
drastically (perhaps taking also into account collective nuclear effects [235] for measurements involving
nuclear targets), or to give up the purely perturbative fusion models of figs. 9.2 and 9.3 and to invent
instead some non-perturbative vector-meson-dominance like model for DD production as suggested by
Fritzsch and Streng [244].

Taking the semi-local duality ideas to an extreme [235], it is also possible to predict even the absolute
normalizations [235] for the heavy quark production cross sections (9.3) and (9.5), in good agreement
with experiment; this applies also to quarkonia production in yp collisions [235] as well as for deep
inelastic electroproduction of quarkonia [96]. Furthermore, the gg fusion mechanism also offers us the

27 T T T T T T T T
10
“open charm"Jproduction

=33 i { ! 1 L Lo | PR
60 80 100
Vs (beV)

Fig. 9.5. Predictions [235] for “open charm” production in proton—proton collisions (and in yp collisions) using the parton distributions of ref. [114]).
The data are taken from refs. [241] and [242].
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Fig. 9.6. Predictions [114] for Y production using pion and proton beams. The pN predictions have been normalized to the 400 GeV/c data point
[245) shown. More recent measurements can be found in ref. [246).

exciting possibility to explain and understand [236] the rising total pp cross section (at least for
V's =80 GeV).

The above analyses for charm production can be straightforwardly extended [114] to the production
of heavier quark flavors, such as Y = (bb), by performing the obvious substitutions of masses in eqgs.
(9.3) and (9.5). In fig. 9.6 we show typical predictions [114] for producing Y’s with p and m beams: At
large values of V'r=M/Vs, where gg fusion plays a negligible role, the production of Y in N
collisions can be more than 2 orders of magnitude larger than in pN reactions since ‘“‘valence-valence”
scattering dominates in eq. (9.3) for wN (see also eq. (8.10)). These predictions [114] are in good
agreement with recent measurements [246]. Along similar lines, many other interesting predictions have
been calculated [114, 234-240, 244] for heavy quark production.

It is also very interesting, although much more involved, to calculate the (hard) transverse momen-
tum spectra of heavy quarkonia QQ (J/, Y) produced in pp and pp collisions [247]. This is a direct

PO, PP

Fig. 9.7. Lowest-order conn_'ibutions to the transverse momenta of heavy quarkonia QQ. There are 5 diagrams for each qg and gq initiated process,
whereas there are 16 gggQQ Feynman diagrams and 5 corresponding ghost graphs.

:
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generalization of the mechanism responsible for giving transverse momenta to Drell-Yan dimuons in
q3— p'p": Here we needed the qq— p*pn g and gq— p*p~q subprocesses of fig. 8.2 to produce large
pr’s of the observed dimuons. Similarly, in order to obtain transverse momenta of QQ pairs produced in
the q4 - QQ and gg— QQ fusion processes of figs. 9.2 and 9.3, we have to attach a hard gluon radiation
to the appropriate quark and gluon lines: Thus the transverse momentum of a given quarkonium state
comes from the purely hadronic 2- 3 processes q4 - QQg, gq— QQq and gg— QQg shown in fig. 9.7.
For details of the calculation as well as for a comparison of these predictions with present data we refer
the interested reader to ref. [247]. Typically at ISR energies Vs = 60 GeV, the predicted pr dependence
of do/dp% for J/s production is steeper than the corresponding p* ™ spectrum [247] in agreement with
present measurements.

10. Semi-inclusive processes: Fragmentation functions

We now consider processes where at least one of the final hadrons h is observed such as
eN-oe+h+X, WNop+h+X, e'e">h+X, etc. as shown in fig. 10.1. As for the totally inclusive
processes where one introduces probabilities g(x) of finding quarks with fractional momentum x of the
original parent hadron, one now defines [248-250] (perturbatively not calculable) fragmentation
functions D"(z) which describe the probability that a quark q decays into a hadron h carrying fractional
momentum z of the parent quark q (see fig. 10.1). Suppressing, for the time being, all Q® dependences
in parton and fragmentation functions, the predictions for semi-inclusive cross sections can be directly
read off fig. 10.1 and we expect [248-250]

1dos="* 1 2ih b
= = eX(D"+ DY (10.1)
o dz e2§ a=a q

; a

eN-»el 62 (x Dh(z
1 o™ hX_% 2q(x) D4(z)

dofdx dxdz S e2q(x) (10.2)
1__do™ ™ d(x) Di(z) +3i(x) D¥z) _ n

do/dx dxdz = d@x)+ak) D.(2) (10.3)
1 Pgornx _ d(x) D%(z) + 3u(x) D%(z) ~ DY) (10.4)

dofdx dxdz d(x) + Su(x)

Fig. 10.1. Semi-inclusive processes where at least one hadron h(=m, K, p, .. .) is observed in the final state with fractional momentum z = Ep/Epeam.
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where for the neutrino induced reactions we have put 6.=0 and neglected charm; furthermore,
neglecting the small antiquark (sea) distributions we expect eqgs. (10.3) and (10.4) to be independent of
x. Of course, the fragmentation functions themselves have to satisfy constraints, similar to those for
parton distributions, such as sum rules coming from energy-momentum conservation

1
3 I dzzD(z)=1 (10.5)
g 0
and one stemming from isospin conservation (compare eq. (5.15))

1
) J' dz I D!(z)= L, (10.6)
0

As an intuitive example let us first discuss a model of how to construct fragmentation functions for
pions and kaons, but neglecting baryons [251]. Isospin and charge-conjugation invariance reduces the
number of independent D7 fragmentation (or quark decay) functions to three [249]; these can be
further reduced to two by assuming [250] that DT is approximately equal to D7, both of which are
unfavored (“sea”) with respect to DT (the favored “valence” decay function) since the parent quark u
can directly form a 7* by combining with a d (produced from a bremsstrahlung gluon which converts
into a dd), whereas to make a w* from either d or s requires the creation (via gluon bremsstrahlung) of
at least two new flavor pairs uii and dd. Thus we have (remember that w* = (ud) and 7~ = (id))

DT =DY =D7 =DY,

DI =Dy =D3i =Dy =Dy =Dy =D7 =D7,

10.7
and (107)

DT =¥DT + D7)

for each flavored quark. Following the same reasoning [249, 250] the number of independent frag-
mentation functions for producing K mesons can be reduced to three (recall that K* = (us), K™ = (uis),
K° = (ds) and K° = (ds))
DY =D{ =Df = DF,
D¥ =DF=D¥F =D¥
DY =Df =Dy = DY’ (108)
=D¥ =D{’=D¥ =DY¥
=D =D{"=D¥ =DY
~DY¥ = D¥=D¥ = DF.



302 E. Reya, Perturbative Quantum Chromodynamics

Furthermore, we expect [250] the following physical constraints to hold:
(i) As z—1 it is, for an outgoing quark in fig. 10.1, just as easy for an $-quark to pick up a u-quark
and become a K" as it is for a d-quark to pick up a u-quark and become a 7"

. Dy Drt 109)
u

_F.«‘“‘_< *
g u K ¥ DK
i

where for illustration we have also used eqs. (10.7) and (10.8);
(ii) As z— 0 the K* meson no longer ‘“‘remembers” that it originated from a u or § quark (since most
of the available energy has been used to produce an arbitrary amount of soft s§ and uil “sea’ quarks)

DX DX’
Zu v 1 .
DX " DK (10.10)

S
DS
LK

u " .

u .

u
- ~N ., +

_J‘f/K
S

where for illustration we have again used eq. (10.8);

(iii) Since s-quarks are heavier than u- and d-quarks, it will be harder to make new s§ pairs than ud
and dd pairs with large z; thus we expect in general for the unfavored “sea” decay functions D < D]
for large z (SU(3) symmetry breaking). We only can guess the amount of SU(3) breaking and choose for
definiteness [250]

\/
=

DX 1
D:_ z—1 2

(10.11)

Cocaoana & awv wvi
\/
=

DN

although our results are rather insensitive to this choice.

Further constraints come from experiment [252]. Semi-inclusive neutrino reactions (egs. (10.3) and
(10.4)) tell us that the favored “valence” distributions such as D7, behave as D7 ~ (¢ —z) for z—1
with ¢ =1 (but close to 1). Similarly, data [252] on the v(¥) induced production ratio w*/m (w /")
dictate the z-dependence of the ratio of favored (‘“‘valence”) to unfavored (“sea’) fragmentation
functions [253] to be DT /DT ~ (c — z)™" with ¢ = 1 (but close to 1); for simplicity we assume this latter
ratio to hold also for kaons. This implies for the unfavored sea decay functions in (10.11) to behave as
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(c — z)? with ¢ = 1. All these constraints are satisfied by the following simple ansatz

DT =aVz(c-2)+&(1-2)? DT =¢&.(1-2)
DX =pVz(c-2)+3t.(1—-2), z2D¥ = (1-2) (10.12)
DX =aVz(c-2z)+3¢.(1-z2)

where, analogously to parton distributions, we have decomposed the favored fragmentation functions
into “valence” (~Vz) and “sea” components. This ansatz is intuitively plausible as can be seen from
the following argument. As z - () more and more qd pairs are produced via gluon bremsstrahlung off
the original outgoing quark. Thus most of the observed mesons will come from a combination of a q
and g from this gluon produced sea. Alternatively, for z - 1 much fewer qq pairs can be produced and
therefore the original outgoing quark will dominantly participate in forming the observed meson, as
illustrated for the valence functions in eq. (10.9). The remaining three parameters in (10.12), a, b and
£.., are fixed by the two independent constraints resulting from the momentum-conservation sum rules
(10.5) and by the isospin sum rule (10.6) which gives one independent equation (taking q=u, for
example):

a=2%=cty & =§<1_§c‘;§5> (10.13)
5¢c-% "5 S5c-3/ .

Note that the solution for our ansatz (10.12) implies always automatically b/a = 1/2, i.e. DX'/DT - 0.5
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Fig. 10.2. Comparison [251] of the predictions of the fragmentation functions in (10.12), with ¢ = 11/9 in (10.13), with charged hadron multiplicity

distributions measured in deep-inelastic neutrino scattering. The top curve corresponds to the valence functions DT + DX”, the curve in the middle
to D"+ D§", and the bottom curve to the pure unfavored sea functions DI + DX
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as z - 1 as naively expected [250] from flavor SU(3) breaking and as required by the experimental result
that the high-pr production ratio a(pp - K*X)/o(pp— 7*X) is about 0.5 at large xr=2pr/V's (see, for
example refs. [250] and [251]). In fig. 10.2 we compare the predictions of our fragmentation functions
with some neutrino data choosing ¢ = 11/9 in eq. (10.13). However, in view of the rather poor data for
large z, it should be emphasized that most experiments can be equally well described [254] using ¢ = 1.
An outstanding and still unsolved problem is to calculate quark fragmentation functions into baryons,
D% with h = p, p, etc. Although it is possible to construct [254, 255] such decay functions which are in
good agreement with all lepton induced semi-inclusive processes (ep, vp, e'e”, etc.), they do not work
for purely hadronic reactions such as their predictions [255] for the pr-dependence of high-pr
production ratios o(pp— pX)/a(pp—~ 7" X) and a(pp - pX)/o(pp—> 7 X).

Along similar lines we can also attempt to construct gluon decay functions. In any field-theoretic
model where qq pairs are produced via gluons emitted by the initial quarks, the gluon fragmentation
function D&(z) must obviously be steeper than the favored “valence” component (~(1— z)") of D} in
eq. (10.9), and flatter than the unfavored “sea” (~(1— z)’) distributions. This is so, simply because a
gluon has to produce at least four final quark lines which can combine to a physical hadron:

T . K
g

Thus, guided by eq. (10.12), we take [251]
DT=c(1-2)"°, zD¥=1c1-2)"° (10.14)

where we assumed the same SU(3) breaking as in eq. (10.11). Total momentum conservation
1
f dz z(3D7 +4D%)= 1 (10.15)
0

then yields ¢, = 3. Qualitatively similar gluon decay functions can be constructed using the “parent-
child” relation [256, 257] or the “dynamical”’ renormalization group ideas [258] as discussed in section
5.7 for calculating gluon and sea distributions.

So far we have suppressed any explicit Q° dependence of the fragmentation functions. Strictly
speaking, all D%(z) and D%(z) have to be interpreted as D3(z) = Di(z, Q?), i.e. as distributions fitted to
experiment at a given momentum scale Q3, and where all infrared sensitive pieces are absorbed
(factorized) into D3(z, Q%) in the sense discussed in section 7 for parton distributions. Again one can
prove [169, 171, 179, 180] that this infrared factorization holds to all logarithmic orders in @, and that
the Q? is governed by the same anomalous dimensions (or Altarelli-Parisi decay functions P;) found for
parton distributions. As an example, let us consider the semi-inclusive deep inelastic process in fig. 10.1.
Instead of summing hard collinear gluon emissions off the initial quark (fig. 6.6), we now have to
consider hard gluon emissions off the outgoing quark in fig. 10.1 (see also fig. 5.26). Squaring these
diagrams we arrive at the so called generalized “rainbows” (fig. 10.3) which yield [171] the leading
logarithmic Q? dependence of D%(z, Q7). This then allows us to write down similar evolution equations
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v*(a%)
\ ., M /
[g(sﬂ glsy)--

Fig. 10.3. Rainbow diagrams (s; > s;.1) giving rise to the Q? dependence of Di(z, Q7).

for fragmentation functions [259] as Altarelli and Parisi obtained for parton distributions in (6.16):

0 PeD) 2l f Y [Pu(Z) D25 09+ () D23, 9]

(10.16)

024z 00 _ () j 9 [py(2) S 030, @)+ u(Z) D0 9]

with P; given by eqs. (6.17)-(6.20). Note that the splitting functions P,, and P,, are interchanged in
going from eq. (6.16) to eq. (10.16). That this has to be the case is clear because now, for example, a
specific quark q has first to decay into a gluon (P,,) which in turn decays into the observed hadron h; in
eq. (6.16), in contrast, we encounter this specific quark q via the initial gluon which then decays into q
(Pye)- For large values of z(=0.5) we can use instead of (10.16) the simpler Gross formula (5.133) for the
Q7 dependence of the dominant ‘“valence” function D%(z, Q7).

It is of utmost importance to observe the predicted Q® dependence of fragmentation functions
experimentally, not only in neutrino induced reactions [260], but also in deep inelastic e(u)p processes
and most of all in e*e” annihilation processes. Going beyond the leading log order predictions we
expect, in addition, a breakdown of the simple factorization in eqs. (10.1}-(10.4) due to “finite” «a
corrections [261], i.e., da(x, z, Q%) ~ q(x, Q) Di(z, Q*)+ a,(Q?) f(x, z) where the “finite” corrections
f(x, z) do not factorize in x and z, and again result from diagrams shown for example after eq. (5.170)
or in figs. 6.2 and 6.3. These “finite” order a; corrections are of course process dependent, in contrast to
the universal validity of the leading logarithmic Q° dependencies of g(x, Q%) and D(z, Q%), and give
very significant predictions for various kinematical regions [261] which will be hopefully testable in the
near future.

11. High-p reactions

We now turn to the purely hadronic single-particle inclusive high-pr processes where a hadron
h=m,K,...is produced with large transverse momentum relative to the beam axis of the colliding
incoming hadrons, as for example in proton-proton scattering pp—h+ X shown in fig. 7.3(a). Due to
(collinear) gluonic corrections (fig. 7.3(b)) the naive parton model predictions [185] for high-pr processes
in eq. (7.16) will be modified, as has been discussed in section 7, to the extent that we have to use Q°
dependent parton distributions and fragmentation functions which, to leading logarithmic order, are
expected to be the same as in deep inelastic lepton-nucleon scattering processes. Thus, the invariant
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inclusive cross section for the reaction A+ B— C+ X for producing a hadron C at large p; in the c.m.
system of A and B is given by (neglecting intrinsic transverse momenta)

ab-cd
d" 1 ~DEGe, 09 (11.1)

f dx, f dxy Pa(xa, Q%) Py(xp, Q°)——

c. d £ min mm

where the sum over partons (a, b, ¢, d) includes gluons as well as quarks, and the longitudinal fractions
X.= pa/pA, Xy = po/pe and z = zc = pc/p. (see fig. 7. 3(a)) determine the ab— cd subreaction kinematics
through § = X, %8, t = Xut/z, i = xou/z with s = (pa+ pe), £ = (pa—pc), u = (ps — pc)’. The conditions
§+f+h4=0and z= X1/x. + X2fx, < 1 fix the lower limits of integration at

min — X1 min _ XaX2
2 1 — X2 ’ b Xa— X1
with x, = —u/s and x, = —t/s. Furthermore, in writing the invariant cross section in eq. (11.1), we have

made use of the relation

didz =42 L
EC mZ

The parton distributions are denoted by P3(x., Q) representing the probability for the constituent a of
the hadron A to have fractional longitudinal momentum x,, i.e. Pi(x,, Q%)= u(x., Q°), P&(x., Q°)=
G(x., Q°), etc. The dependence of these distributions as well as of the fragmentation functions DS on
Q7 refers to their appropriate scaling violations discussed so far. Since the parton distributions and
fragmentation functions are rather well known from deep inelastic inclusive and semi-inclusive lepton—
nucleon scattering processes, respectively, the purely hadronic high-pr cross sections in eq. (11.1) can be
uniquely predicted, to leading order in perturbation theory, without any free parameter once the
fundamental parton scattering cross sections do**>~ are given.

In the most naive scale-invariant version of the hard-collision model [185] with Q? independent
parton distributions in eq. (11.1), where a single hard collision between the quarks of the incident
hadrons (fig. 7.3(a)) is responsible for the observed high-pT secondaries, one expects the invariant
inclusive single-particle cross section to decrease as pr* at fixed c.m. scattering angle 6 and fixed
XT= 2pr/\/s This is so, because for vector exchanges in fig. 7.3(a) we always have dg99"%/df ~ § 2~
pr'. However, at currently attainable energies the experimental data seem to scale roughly as p7® for

<6 GeV/c. Taking into account Q? dependent quark distributions and fragmentation functions
together with the correct QCD coupling a(Q°), it has already been shown a long time ago [262] that the
lowest order QCD quark—quark scattering (fig. 7.3) cannot account for the high-pr data, giving
contributions which are about two orders of magnitude below the experiments and yielding pr
distributions which are still too flat.

If perturbative QCD is considered to be the theoretical basis for large-pr hadron production, which
should be the case for pr not too small, then it is certainly not sufficient to consider only elastic
quark-quark scattering (qq— qq) as the dominant subprocess, which constitutes at most a lower bound
for the total production cross section. In addition to quarks, hadrons contain also colored vector gluons
which can scatter off quarks and other gluons in an approximately scale-invariant manner. Since the
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Fig. 11.1. Examples of lowest-order subprocesses dg*>*

contributing to the high-pr process in eq. (11.1).

gluon distribution in the nucleon is sizeable in the region relevant for present high-pr experiments
(typically x =0.2), gluon induced subprocesses will give non-negligible contributions to the total cross
section in eq. (11.1). Typically, QCD predicts the following fundamental subprocesses ab— cd in eq.
(11.1) to be relevant for high-pr reactions [251, 263, 264]: In addition to the purely fermionic processes
qq - qq and q3 - q§, we have gluonic processes such as gq— gq, g qg, qd - gg and gg— gg, examples
of which are shown in fig. 11.1. The explicit expressions for do**~°*/d¢ can be found in refs.
[251, 263 and 264]. The importance of the gg— qg subprocess (see, for example, fig. 9.3) for hadronic
heavy QQ production (JA, Y, etc.) has already been discussed [227] and demonstrated in section 9.

In order to demonstrate the relevance of gluonic subprocesses we show in fig. 11.2 the predictions for
the inclusive single-w production reaction pp—>w+ X together with all contributing individual sub-
processes in eq. (11.1). Although each subprocess scales as pt*, the predicted total invariant cross
section in fig. 11.2 falls off faster with pr for pr=< 8 GeV/c. This is due to the fact that the Q* dependent
parton distributions and fragmentation functions do not scale and similarly a,(Q?). Furthermore, the
absolute magnitude of the total cross section for pr<8GeV/c is greatly improved by taking into
account the gluonic subprocesses as compared to the simple minded approach [262] of keeping only the
qq— qq process. The reason for this is obvious by keeping in mind that the contribution of these
subprocesses are weighted by the appropriate quark and gluon distributions of the initial states in eq.
(11.1) which are known to have a radically different x ~ 2pr/V's dependence when x becomes small or
large. For pr=2-3 GeV/c the dominant subprocess is gluon-quark with gluon-gluon and quark—quark
scattering also providing substantial contributions. The three subprocesses q - qg, gg—qq and q4 - gg
are negligible for all values of pr shown here. As princreases the gluon—gluon term decreases more rapidly
than either the gluon—quark or quark—quark terms, since the gluon distribution in the nucleon strongly
decreases for increasing xr = 2pr/V's. At higher pr the relative importance of the gluon-quark term also
decreases, eventually leaving only the quark—quark scattering contribution which is dominated by the
broad (hard) valence-valence quark distributions. This latter term alone scales as p1* up to logarithmic
terms coming from the Q” dependence of the scaling violations and from a(Q?). It is thus clear that the
large gluon-gluon and gluon—quark terms are responsible not only for obtaining the correct normalization
but also, in part, for obtaining the observed rapid falloff in the intermediate-py region.

From fig. 11.2 and comparing several other high-pr observables with QCD predictions [251] an
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Fig. 11.2. QCD predictions [251] for the production of high-pr 7’s at CERN-ISR energies. The individual contributions of the various subprocesses
ab~—cd in eq. (11.1) are explicitly shown. The data are taken from ref. [265].

excellent prescription of the data is obtained for pr=4.5 GeV/c, whereas for smaller p; values the
predictions lie below the data. There are several reasons which might be responsible for this remaining
discrepancy:

(i) For the calculations shown we have chosen Q* = —+. This is a rather pessimistic choice in as far as
it yields on the average the largest values for Q7 possible and therefore induces large scaling violations
in the parton distributions in (11.1) which diminish, together with aZ(Q?), the final cross sections
significantly. This is in contrast to the more “optimistic” choice [98,266] Q2= 23fi/(§*+ £*+ i) which
results in a lower average Q° and therefore increases the predicted cross sections (see also the
discussion in section 7).

(ii) So far we have not considered the intrinsic transverse momenta of partons. These (ill understood)
non-perturbative effects due to the kr of partons within hadrons, and of hadrons within the outgoing
jet, called “kr smearing” effects appear to be particularly important for large pr calculations [267-
269, 98, 266]. Here one usually makes an ad hoc ansatz for the k+ dependence of parton distributions
and fragmentation functions with (kt) being a free parameter to be fitted to experiment. The average
transverse momenta (kr) obtained in this rather naive way lie typically between 800 and 1000 MeV/c!
The effect of this (huge) kr smearing is illustrated in fig. 11.3 where the behavior of p% times Ec do/d’pc
for pp— m+ X is shown for various fixed values of xr = 2pr/V's. The intrinsic kr effects are obviously
most significant in the small pr region (<4 GeV/c) where they account for most of the steep decrease of
E do/d’p with pr as compared to the unsmeared (k+ = 0) prediction shown by the dotted curve in fig.
11.3; note that this latter curve corresponds roughly to the “total” solid line of fig. 11.2. At large values
of pr the comparatively small intrinsic k1’s become unimportant and the predictions approach the same



E. Reya, Perturbative Quantum Chromodynamics 309

0T 7 T—T— T 3

E prdo-/d3p versus p, -

R pp—=7+X 8.7 90° ]

M eeeae. A=0.4 (before smear) 7

—— A=0.4 (after smear)

IO“; ==== A=06 (after smear) =
a
03 |-
© -
> L

©
) L
_“3 -
3

102
-

10 E‘ 3

B y

| [ i SRS TN RSV SN N S S

o 10 20

P, GeV/c

Fig. 11.3. The influence of intrinsic kt effects on the pr dependence of high-pr cross sections [266, 197, 216]. The dotted curves refer to the QCD
predictions before smearing (k1 = 0), whereas the solid and dashed curves include the intrinsic k1 effects. The dependence of the predictions on
different choices for A is also shown. The data are taken from refs. [265, 270 and 271]; the recent ISR data [271] at large valugs of pr do indeed show
a deviation from a straight line (p7®) behavior as expected from QCD (as also shown and discussed in fig. 11.2).

pr dependence as shown in fig. 11.2 which goes roughly as p7°, i.e. the naive scaling behavior p7* of the
qq - qq subprocess is corrected by logarithmic scaling violations in quark distributions and in aZ(Q?).
Intrinsic kr effects are also important for explaining more subtle effects such as ‘away-side’ correlations
and hadron multiplicities, and p... distributions [98, 266] in two-hadron inclusive high-pr reactions (we
shall come back to this point at the end of this section).

(iii) In addition to the lowest order diagrams in fig. 11.1, subdominant hard 2— 3 parton processes of
O(a?l) such as qq—qqg, gq—geq, gg— ggg, etc., could be a significant source for increasing the
transverse momenta of the observed hadrons. These three-jet hard scattering Born cross sections (hard
gluon radiation) have been recently calculated [272-274] and seem to play a non-negligible role for
correlation-predictions, acoplanarity and p.., distributions [272,273]. However, since the virtual
gluon- and quark-loop contributions to the O(a?) diagrams in fig. 11.1 have not been calculated yet, we
do not know the entire amount of a, corrections to leading order-a? quantities such as the total
single-particle inclusive cross section in eq. (11.1). Once these calculations are completed it will be very
instructive to see to what extent these O(a?2) corrections can fill the gap between the O(a?) predictions
for pr=4GeV/c and the data in fig. 11.2, and also to redo the intrinsic-k+ smearing with O(a?2)
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Fig. 11.4. A typical CIM subprocess [275] gM - qM which contributes Fig. 11.5. Hlustration of the underlying structure of the high-pr two-
a p7° component to the total single inclusive high-pr cross section. particle inclusive process AB— hh, + X.

corrections added which should result in smaller values for (kr) than the ones naively obtained as
discussed in (ii).

(iv) Another possible source for explaining the discrepancy between the QCD predictions and the
data for pr<4.5GeV/c in fig. 11.2 could come from nonelementary subprocesses such as elastic
quark-meson scattering as in the constituent-interchange model (CIM) [275, 276]. Here one envisages
that partons don’t scatter point-like but rather interact with virtual qG bound states (“mesons”) inside
the nucleon by exchanging flavor (quark) quantum numbers as shown for example in fig. 11.4.
Therefore, such contributions are supposed to represent in some way non-perturbative bound state
effects which might become important in the soft (small) pr region [275, 276].

As for the single-particle inclusive high-pr reaction AB—h;+ X, the effects of scaling violations
[277,266,98] and intrinsic kr smearing are equally important for two-particle inclusive processes
AB- h;h, + X where now a second hadron h, is also measured in the away-side trigger (fig. 11.5). The
cross section for producing two hadrons h, and h, derives [185,277,278] from a straightforward
generalization of eq. (11.1). The most popular observables studied are, besides correlation properties
between h; and h,, p... and multiplicity n(x.) distributions [277, 278,98, 197,216] of the away-side
hadron h,, with the kinematics illustrated in fig. 11.6. Significant QCD effects, combined with
intrinsic-k+ smearing, are for example a considerable increase of p,.. in the large x. region, and a drop
of (the transverse momentum sharing distribution) n(x.) with increasing trigger momentum pr,. We
refer the interested reader to the literature [277,278,98, 197,216] where these effects have been
extensively discussed. It should be emphasized that the subdominant 2— 3 parton processes of O(a?),
producing three hard jet events, play again a significant role in explaining large-pr characteristics, such
as azimuthal correlations, acoplanarity and p... distributions {272, 273].
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b i ‘I’\l\ﬁ
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7 ptare /, ~ (XE "’pXZ/pH)

Fig. 11.6. Kinematics of large-pr events.
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Similar studies can be performed for hadronic high-pr jet production [185,98, 197,216,272,
273, 279, 280], where all produced hadrons at the trigger-side, say, are supposed to be collimated into
a narrow cone along the outgoing quark. The single-jet cross section, for example, can then easily be
obtained from the single-particle cross section in eq. (11.1) by simply replacing the parton fragmentation
functions by 8-functions, i.e., DS(z, Q*)- 8(1 - z).

12. The total hadronic e*e™ cross section: R.+.-

Before discussing the basic properties of quark and gluon jets in e*e” annihilation, let us first briefly
recapitulate the QCD corrections to the total hadronic cross section o(e*e” - y* - hadrons). At large
enough values of ¢° (where again we are dealing with short distance phenomena [5], z*~ 1/¢°, as was
the case for example in egs. (5.2) and (5.32)) the total cross section should be given, to leading order in
perturbation theory, by the square of the e*e” - qq diagram (fig. 1.1) or equivalently, using the optical
theorem, by

g

e*e > had ~1 12.1
o(e*e” - hadrons) me-—:_ (12.1)

where we have suppressed the trivial lepton lines. This yields eq. (1.9). The O(a,) corrections come then
simply from the gluon radiative corrections to the q and § lines in (12.1) as illustrated in fig. 12.1(b).
These diagrams are the same as in QED up to the non-abelian quark—gluon coupling (2.6) giving rise to
the color factor C»(R) =3 given by eq. (4.3). Therefore the a, correction to eq. (1.9) becomes [281]

R+--32eq[1+cz(R)34L] 33 [1+"(q )] (12.2)

i.e., asymptotically the scaling limit is approached from above. Typically, the a, correction in (12.2)
amounts to about 10%. Recently even the next-to-leading QCD a Z-corrections have been computed
[282] which, although depending on the renormalization prescription chosen, are roughly an order of
magnitude smaller than the a, term in (12.2), and are therefore much smaller than present experimental
uncertainties. A more quantitative discussion of these various correction terms can be found for
example in ref. [283].

In fig. 12.2 we show a compilation [284, 285] of recent measurements of R.+.- together with the naive
expectations according to eq. (12.2), where R.-.- is predicted to be a step function with a rise above
each new quark threshold. In general, however, eq. (12.2) is strictly valid only for space-like g° <0: The
appearance of the running coupling a,(¢°) is due to the use of the renormalization group [281] which
strictly applies only there. In order to obtain the experimentally measured quantity in eq. (12.2) one has
to extrapolate from ¢g> <0 to g> > 0. This is certainly a non-trivial task for values of > not too far away

(a) (b)

Fig. 12.1 Gluonic QCD corrections (b) to the zeroth order e*e” annihilation cross section (a).
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Fig. 12.2. A compilation [284, 285] of measurements of Re*e- as a function of the total c.m. energy W = \/?. The solid lines show the predictions (1.9)
from the naive quark model, and the dashed lines include the o correction due to gluon emission according to eq. (12.2).

from new quark thresholds. These complications can be somehow taken care of by using dispersion
relations [286] for the analytic continuation in ¢°. This method allows us to analytically extend the data
(g>>0) to the negative ¢* axis (where the perturbation expansion is not sensitive to non-perturbative
bound state effects), and is usually referred to as “‘smearing method”’. Without going into any details, let
us just mention the basic idea of this procedure. According to Cauchy’s theorem one can write [286] a
“finite energy sum rule” for R.+.-(s)

f Roo(s)ds = - f R (s)ds (12.3)

where the integration contours C; in the complex s = g° plane are as follows:

s

C
data
Cy
ﬁ\‘hm%:;c. N5, Res
C

2

Since the integral over C; can be performed by using R.+.- from experiment whereas the integrand
along the path C, is fixed by QCD, eq. (12.3) becomes

S0

f R (s)ds = J’RSSP(S) ds

am?

(12.4)
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where s, is the total c.m. energy squared up to which data are available, and R3S is given by eq. (12.2)
appropriately generalized to include heavy quark mass effects [287], due to the massive quark
propagators in fig. 12.1,

Re2) =3 3, 1+5)+ 5 eaos-4md) 00 S +Haf(wall}

(light) (heavy) (12.5)

where vo = V1-4m3/s and with Schwinger’s function given by

f0)= -2 (3-1)

In eq. (12.5) we have written only the purely hadronic contribution to R.+.- since the leptonic
contribution is usually subtracted experimentally. In general of course eq. (12.5) receives a further term
due to heavy leptons in fig. 12.1a which reads +3Z, v,(3 — v7). Quantitative analyses along these lines
yielded the result [286], long before the experimental discovery of the b-quark, that R2S® with only
four flavors (u, d, s, ¢) and one heavy lepton does not suffice to describe the data; only an additional
quark flavor with |e,| = 1/3 or an additional heavy lepton gave satisfactory fits [286] to the data.

13. Jets in e*e” annihilation

As we have learned so far, the predominant QCD corrections to any hard scattering process are
those due to collinear gluon radiation and pair-creation. To leading order, these give rise to dominant
two jet configurations in e*e” annihilation due to the e*e”™ - qq subprocess in fig. 1.1 which, together
with the hadronization of quarks into physical objects, is illustrated in fig. 13.1 in the e*e™ c.m. system.
This two jet structure has indeed been discovered 1975 at SLAC (SPEAR) [288] and subsequently
confirmed by many different groups at DESY at much higher c.m. energies [284, 289, 290]. This two-jet
interpretation is especially convincing since the distribution of the jet axis in the angle 8 (see fig. 13.1)
relative to the e*e” axis is found [288,290,291] to be consistent with a form ~(1+ cos® 8) which is
expected for the production of a pair of spin 1/2 point-like quarks:

d U&*e'—»qq

2
ot 2 2
) 53 ; eZ(1+ cos® @) | (13.1)

7 /
Jetll A,
N7

Fig. 13.1. Dominant 2-jet configuration in €*e” - qg— hadrons.
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Fig. 13.2. (a) Observed mean sphericity (§) versus the c.m. energy Vs = E.,. (b) Sphericity distributions for increasing c.m. energies. The data [288]
are compared with a Monte Carlo 2-jet model using an intrinsic transverse momentum (k1) =0.3 GeV (solid curves) and with a Monte Carlo
phase-space model (dashed curves).

with the c.m. energy squared s = ¢* held fixed. A representative sample of the historical evidence [288]
for the (q, §)-jet structure is shown in fig. 13.2.
Experimentalists measured the sphericity [292] of an event,

$=1min{ S 1P /3 157 132)

where the sum runs over all observed particles (tracks) and the py’s are transverse to the “jet” axis
which is chosen to minimize S. Indeed, the observed sphericity decreases with energy which means that
the hadron jets in fig. 13.1 become more and more collimated the higher Vs=E.,. In brief, the
hadronic events are more ‘“‘jetty” the larger the energy. This is completely the opposite of what one
would expect from a pure (isotropic) phase space behavior of hadronic events as indicated by the
dashed curves in fig. 13.2. The same “jettiness” of events has been also confirmed at higher energies
[290, 293] as shown in fig. 13.3.

In general, however, it is not possible to compute da/dS$ reliably in perturbation theory, because the
sphericity S acquires infrared singularities due to its being proportional to the sum over momenta
squared in eq. (13.2). The infrared problem has been solved in QED [294] where it is known that the
infrared singularities in individual diagrams (such as those shown in fig. 13.4) are cancelled if one
considers cross sections with suitable energy and angle cut-offs which may be related to practical
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experimental resolutions. In other words, only if we add the appropriate amplitudes and then taking the
square of these expressions we will obtain infrared-finite observables. Therefore, only variables where
the momenta are summed linearly (instead of quadratically as in eq. (13.2)) are insensitive to soft or
collinear gluon emission. Various authors [295-297] have proposed variables for measuring the
“jettiness” of e*e” events which are arguably infrared insensitive. They include a linearly summed
version of eq. (13.2) called the “spherocity” [295]

5= (2) min(Sp#1/Z e (133)

or the maximum directed momentum called “‘thrust” [296]

T=2 max{g' o / S| p‘”|} | (13.4)

where the 2’ in the numerator runs over all observed particles in only one hemisphere, and p{” are the
hadron’s momenta parallel to the “jet”” axis which is normal to the plane defining the hemispheres and
chosen to maximize T. It is a simple matter to convince oneself that, in going from an isotropic to a

et q
e e
e v q
(a) (b)

Fig. 13.4. Lowest order radiative corrections to e*e™ - qq.
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jet-like structure, S, S and T run through the following ranges of values:

isotrogic perfect jet

1 = 8§ =0
1 = § = 0
I =T = 1.

Experimentally there seems to be very little difference between the axis defined by S and T.

While in leptoproduction, Drell-Yan processes or semi-inclusive hadron production in e*e” anni-
hilation (involving fragmentation functions) the (soft) infrared complicacies can be absorbed in the
definition of parton densities, as has been discussed in detail in section 7 (see, for example, egs.
(7.4)(7.6)), in the present jet case all predictable quantities (not involving fragmentation functions)
must be free of infrared problems. Before proceeding with QCD, let us first briefly discuss the
equivalent situation in QED in order to elucidate the origin of the two different types of singularities
encountered in the amplitudes of fig. 13.4(b) when the emitted gluon (photon) is either infrared soft or
collinear with one of the quarks [298]. Let us consider the scattering of an electron off a charged source
(Mott scattering), and which emits a photon with momentum k (fig. 13.5). The amplitude corresponding
to a photon of momentum k emitted by the outgoing electron is given up to irrelevant factors by

__26'py
(k + P2)2 - mi
e (13.5)

~ £-p> 2 .2
kKpl(—cos 0 s m2lps) = [orme<p:

M

where we have taken into account the mass-shell conditions k*=0 and p3= m2, and where @ is the
angle between the outgoing electron and the photon. In eq. (13.5) we have only exhibited the electron
propagator and the emission vertex ¢ - p, which are the only relevant factors for understanding the
(collinear) mass singularity when m?— 0. From eq. (13.5) we can see that the collinear singularity for
0 = 0, which becomes dangerous for massless gluons in QCD, is in fact regulated by the finite electron
mass. The factor 1/k is of course responsible for the usual soft infrared divergencies, due to the
emission of soft photons. In order to reproduce the situation of QCD as closely as possible, let us
neglect the electron mass in (13.5) in which case the denominator will behave like 8 for small values of
0. Furthermore, since the polarization vector € of a real photon is perpendicular to k, we have

£ p>=|p|sin 8 =|p,|0

k,E

Fig. 13.5. Lowest-order diagrams for photon radiation by an electron in the presence of an external field.
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and thus the amplitude in (13.5) behaves both in the infrared (k = 0) and collinear (6 = 0) region as
M = 1/k6. (13.6)
The cross section for photon bremsstrahlung is then obtairied to be proportional to

k2 dk do

k202 k 0

3
T 1MP = [ d(cos 0) (137)
2ko
which exhibits the infrared and collinear singularities of the form In(|p,|/x.) In(|p.//m.), with u., being
some fictitious virtual photon mass.

We can get rid of this infrared singularity by calculating cross sections for final states with finite
energy resolution AE, i.e. a photon of energy k <AE is emitted in fig. 13.5; then, when the elastic
amplitudes with virtual photon corrections (fig. 13.4(a)) are added (~ —In(| p|/x,) In(|p|/m.)), infrared
divergences cancel and in the final result the limit ., —> 0 can be safely taken. One obtains a correction
factor which is proportional to the above logarithms except that the mass u., is replaced by the energy
resolution AE. This is summarized in the famous Kinoshita-Lee-Nauenberg theorem [294]. In the same
way one can regulate the collinear singularities by introducing an angular resolution § and by
computing transition rates to nearly degenerate states which include the electron plus an arbitrary
number of collinear (not necessarily soft) photons. (This latter configuration can be regarded as an
electron jet characterized by its quantum numbers such as the electric charge and energy.) Only now the
limit m.— 0 can be safely taken and the total cross section is free of collinear mass singularities.

Exactly the same principles can be applied to QCD which has been first done by Sterman and
Weinberg [299] in order to obtain a well defined two-jet cross section in e*e” annihilation, i.e., a cross
section which is finite in the zero-mass limit. Let us consider the quantity o(V's, 6, &, 8) which is defined
as the cross section for all annihilation events where a fraction (1 - ¢) of the total available energy Vsis
emitted within a pair of oppositely directed cones of opening angle 26 with both ¢, 6 <1 (fig. 13.6).
Performing the calculations with a vanishing quark mass and with some fictitious gluon mass p,<e¢
we obtain, to order a.(s), the following three contributions to the total jet cross section: The vertex
correction stemming from the diagrams in fig. 13.4(a) (i.e., virtual gluon correction)

do do 4as__1_2s 3_1_2
(dn)vmex (), [”%( I tanaty 4)] (13.8)

where the zeroth-order (o, = 0, £ = 1, § - 0; free quark case) Born cross section (do/d2), for e*e™ > qg

Fig. 13.6. The two opposite cones of half-angle § at a c.m. angle 8 used in the derivation of the Sterman-Weinberg [299] two-jet cross section.
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is given by eq. (13.1). The contribution due to soft gluon emission in the diagrams of fig. 13.4(b) where
the gluon energy E, < £V's (corresponding to the soft infrared singularity k - 0) is given by

gq_- do 4as l 2 4€2S _ Ez_
(dn)soft (dn) 377' [2 ln ’I.Lé 6 ]. (13.9)

Finally, the third contribution comes from hard collinear gluon emissions in the diagrams of fig. 13.4(b),
where E, >eVs but p2- k-0 in the notation of fig. 13.5, i.e. 8, <& (corresponding to the collinear
mass singularities):

do doy de [ 3, 8% 1 5, > 2g1r
(3)...=(35).3 [ 33~ In'(4e) - IS o S In(de?) + . ] (13.10)
Note that each of these three contributions separately are singular for u,— 0. However, the “miracle”
happens if we add them: In the sum do = doertex + dosor + donara the u, dependence cancels and we
obtain a cross section which is finite in the zeroth-mass limit:

do ( do

o )[ 4"5(31n5+41n51nze+” 5)] (13.11)

dn2/, 3 2
which is the famous Sterman—-Weinberg result [299]. Recall that the introduction of a small but finite

value of ¢ renders the final result infrared finite, whereas & assures the absence of the (hard) collinear
mass singularities. Comparing this result with the total e"e™ cross section in eq. (12.2),

o= 4—"’3— 35 [1 + CZ(R)%] (13.12)

one can now calculate the fraction f(e, §) of all two-jet events which are such that the energy (1— £)Vs
is emitted in a pair of opposite cones of half-angle § around the outgoing quarks:

(6, 6)= L= CAR) @/m) I8+ 41n 5 1n 26 + 7*/3— 3+ 1]
fle, 8)= 1+ Cy(R)(3a,/4m)

(13.13)
7

= 1- GR)% [ln6(4ln2£+3)+————z+r]+0(a2)

with Cy(R)=4/3 and the remainder r(g, §) are additional subleading correction terms [300] to the
Sterman-Weinberg formula (13.11) which are finite in the limit &, 6 >0. Note that the regime of
applicability of eq. (13.11) and hence of eq. (13.13), neglecting r, requires ¢ and & sufficiently small,
presumably so that the logarithmic terms are larger than the constant terms. On the other hand, in
order to apply perturbation theory, @, must be sufficiently small so that the corrections to the cross
section in (13.11) or to f in eq. (13.13) are small. Even at highest PEP or PETRA energies of
Vs = 30-40 GeV, these conditions are not easy to fulfil [300, 301].

We can now use eq. (13.13) to study specific characteristics of quark-jets more quantitatively, such as
the energy dependence of the jet opening angle §,= 8(\/s) Solving eq. (13.13) for 8, by using a(s) in
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eq. (4.9), gives

aq(\/;) = (\/;/A )——d.;(f,e) (1314)
with
1 332N\ -y sy
alf, o) =5 () U-f 1), ra==22(F-3+09)). (13.15)
Numerically, for example, using N; =3,
d,(f,0.1)=098(1—f +r,). (13.16)

Or, if we require 70% of all events (f = 0.7) such that at least 80% of Vs (¢ = 0.2) is emitted in the two
opposite cones, their half-angle is predicted to be 8, (30 GeV)= 1°. Further quantitative results can be
found, for example, in refs. [300] and [302).

Instead of considering an outgoing quark which radiates a gluon (fig. 13.4), one can imagine an
outgoing gluon-jet which radiates gluons as well as qq pairs as illustrated in fig. 13.7. This mechanism
will give rise to an opening angle of a gluon-jet which in general will be different from that of a
quark-jet, &,. A similar calculation as above yields [301, 303] to leading order in a.(s)

f(e, 8) = [CZ(G) (4 In§1In 26 + % Ins)- 2Niln 5] tr, (13.17)
where the remainder
49
ri(e, 8)= - % [CZ(G)(’; 36) AN 40, 5)]

is finite in the limit £ 6 > 0. Note that now the dominant contribution is proportional to the color
charge C,(G)=3 of a gluon, due to the gluon—gluon interaction in diagrams like in fig. 13.7(a), in
contrast to the quark-jet in eq. (13.13) where the leading term is proportional to the smaller color
charge C(R) = 4/3 of quarks which derives from the quark—gluon interactions in fig. 13.4. Solving eq.
(13.17) for 8, =8(V's), using a,(s) in eq. (4.9), yields the energy dependence of the opening angle of a
gluon jet

5, (Vs)= (Vs/A) 40 (13.18)

m,,m“"n:}rmm<

(b)

Fig. 13.7. Gluon-jet production from a source (e.g., a quark) which contribute to the opening angle §; of a gluon-jet.
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with
_ L 33 - 2Nf _
4t &)= gha e —(33- 2Nf)/9)(1 f+ro). (13.19)
Numerically, for example, using N;= 3,
d(f,0.1)=0.44(1—f +rp). (13.20)

This is smaller than d in (13.16) which suggest that the collimation of gluon jets will shrink much more
slowly than for quark jets. Since C(G)> C,(R), this is of course a general result, i.e. we always have
dy(f, €) < dy(f, €). If we compare just the dominant In 2¢ terms in (13.15) and (13.19), then egs. (13.14)
and (13.18) predict

8(V5) = 84(V 5) TRV = 5 (V5)*° (13.21)

i.e. a gluon jet should be much broader than a quark jet! In other words gluon jets are more effective in
radiating particles with large pr due to their color charge C,(G)= 3 being much larger than the color
charge C,(R)=4/3 of quarks [304]. Hence, gluon jets are less jet-like, i.e. are more difficult to be
observed experimentally. All these purely perturbative effects discussed thus far, are of course
contaminated by non-perturbative contributions due to the intrinsic transverse momentum k- of the
hadrons inside the jet (fig. 13.1): For a parton of momentum P the non-perturbative opening angle is
expected to be 8, = (kr)/P where (kr)=0.3-0.5GeV is anticipated to be independent of the large
momentum of the original quark or gluon. For example, for P = 15 GeV we expect 8, = 1-2°. At finite
energies, this gives a lower limit on the range of applicability of the above perturbative QCD
predictions.

Besides the two-jet (qq) structure discussed thus far, we also expect (less frequently) a three-jet (qqGg)
structure in e*e” annihilation if one of the quarks in fig. 13.4(b) emits a hard gluon with a large angle
relative to the outgoing quark direction [305-308]. Since the production of each jet costs an extra factor
of a(s) we expect, for example, in e*e” annihilation

a(2-jet): o (3-jet) :o(d-jet) = 1:a.: a?,

so that o(qqg)/o(qq) = 10%. For such 3-jet (q4g) events we generally expect [309] that ( pr) will grow to
some extent as V s increases, where py is measured for example with respect to the thrust or sphericity
axis. More specifically the average transverse momentum of the emitted gluon, say, is predicted to
increase like {pr)~ as(s)\/s ~Vs/In s. This is in contrast to the non-perturbative (k)= 0.3 GeV which
is inherent to each jet and is expected to be independent of the energy and therefore should be
asymptotically negligible with respect to the relative pr of the jets. In other words, the large-pr cross
section do%®/dp7 in e’e” annihilation should grow for increasing energies, i.e. the pr distribution
should become substantially flatter [305] the larger Vs. For example, at Vs=15GeV the pr dis-
tribution do%*/dp+ should become substantially flatter for pr=1GeV than the one for simple two-jet
events do*%/dp7, the latter being due to non-perturbative intrinsic-k effects. Indeed, big and increasing
large-pr cross sections have been recently observed at PETRA [310-312]. Figure 13.8 shows the TASSO
data [310] together with the original 1976 prediction [305] which is based on the three-jet cross section
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Fig. 13.8. The pr distributions found by the TASSO collaboration [310] at different c.m. energies. The 1976 prediction [305] is based on the
e*e” - qqdg cross section in eq. (13.22). The figure is taken from ref. [283].

(fig. 13.4(b))

1 o™ 20, x3+x3
oc¥dx,dxy 37 (1-x)(1-x3)

(13.22)

with xqq = 2E;«/V's, and which is normalized to the zeroth-order two-jet cross section o8® (fig. 13.4(a)).
Also shown in fig. 13.8 is the scaling prediction for large energies according to the naive dimensional
scaling law

1 do _1 .
oBdpl s f(x1) X [O(a) corrections) (13.23)
where xr= 2pT/\/;; at pr=1GeV naive scaling, which of course is expected to hold only asymptotic-
ally, is broken by 50 to 100%, but this may be partly due to the logarithmic corrections in eq. (13.23).
Alternatively, we can express these increasing p,-distributions by thrust or spherocity distributions
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Fig. 13.9. Thrust and spherocity distributions [306] for 3-jet (q@g) and non-perturbative 2-jet (qq) events in e*e” annihilation.

[306, 307] as shown, for example in fig. 13.9. According to the definitions (13.3) and (13.4) the 3-jet (qqg)
events due to the hard wide-angle gluon radiation off an (anti)quark are expected at small (large) values
of T(S), i.e. at large values of pr. The curves labelled by (qg)xp represent an estimate [306] of the thrust
and spherocity distributions arising from non-perturbative hadronization effects for a 2-jet event,
assuming an intrinsic transverse momentum of (k)= 0.3 GeV. Again, these predictions seem to be in
agreement with experimental observations [311, 312]. One usually makes a cut in thrust or sperocity in
order to (hopefully) suppress the huge non-perturbative background (q3)ne in fig. 13.9, a procedure
which should be increasingly effective at higher energies. Nevertheless, still another caveat is the
possibility that contributions to low (high) thrust (spherocity) for heavy quark production [313] may
drown the hard gluon bremsstrahlung qgg signal: As we increase the total energy Vs we hit the
thresholds for heavy quark-antiquark (QQ) pair production which in turn decay weakly (e*¢” - QQ— 6
jets with Q=c, b, ...) giving rise to large pr’s of jets.

We can go even further and try to display more explicitly the three-jet character of the three quanta
final states [306]. To this end one selects an event sample in e* e~ — hadrons with 1 — 7> (A T)xp, where
typically (AT )np = 0.9, for which one measures the energy flow in the plane of the three quanta q, g and
g. In practice one then defines [306] a “pointing vector”

- d’o
PWVs, T, 6)=p(8) o (13.24)
where p(6) is the total momentum in the element dé around 8, with @ being the angle in the event plane
relative to the most energetic jet, i.e. to the axis corresponding to maximum thrust. This axis is aligned
in the @ = 0 direction with the angular direction being defined so that the second most energetic jet has
0 < 180°. The variation in length and in angle of the remaining two momentum vectors, corresponding
to the two less energetic jets, will then depend on the dynamics, i.e., in our case on the matrix element
for e*e” > y* > qdg. (This is like measuring the power emitted by an antenna as a function of angle.)
This variation of the “pointing vector” is shown in fig. 13.10. The dominant 2-jet “background” in fig.
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13.10(b) is due to the (non-perturbative) thrust distribution in fig. 13.10(a) peaked at 7= 1 and which
has been calculated by using an intrinsic transverse momentum smearing of (kr)=0.3 GeV. The same
“smearing” has been used to obtain the pointing vectors for the “smeared” 3-jet events for decreasing
T (figs. 13.10(f)}~(h)) from the idealized ones (k= 0) in figs. 13.10(c)-(e). Various recent experiments
[310-312, 284, 289] seem indeed to be consistent with these striking predictions of QCD jets.

So far we have been solely concerned with the 3-jet q4g events which result from a hard wide-angle
gluon radiation off the outgoing quarks and antiquarks. A similar 3-jet structure is expected [314-316]
also “‘on-resonance” when a produced heavy quark (QQ) bound state decays via gluon emission [287).
The hadronic decay of very heavy J°“=1"" QQ states (“quarkonium’) must proceed via an inter-
mediate state consisting of at least 3 color-octet gluons [317] giving rise to a 3-gluon jet structure
provided the energy (mass) is large enough so that purely perturbative a, effects take over:

e*e” > y*>QQ- 3 gluons— 3 gluon jets

with Q=c,b, ... This reaction is illustrated in fig. 13.11 which is a straightforward generalization (by
adding just color factors and possible gluon fragmentation functions) of the well-known Ore-Powell
formula [318] for the 3y decay of orthopositronium in QED. The decay of the Y(9.4) (=bb bound state)
might already be dominated by 3g-jet events [314-316], although the average energy of one gluon jet is
still rather small: (E,) = 3My =3 GeV. The expected three-gluon jet events in the decay Y- 3g look
very similar [306] to those shown in fig. 13.10 for q4g-jets. Especially at large thrust, for example, we
expect similar ‘“Mercedes star” events as shown in fig. 13.10(h). Although present data
[289, 290, 293, 319] are in very good agreement with the 3-gluon decay model, they are not fully
conclusive. Presumably the hadronic decay of even heavier QQ bound states (for example tt quark-
onium, if it exists) should provide us with additional unambiguous tests of QCD [320]. Note that in the
e’e” annihilation continuum one expects the zeroth-order qq final states (fig. 13.4(a)) to dominate over
the O(a,) three-jet process in fig. 13.4(b), and hence

A-T),(S), - ~do®/dg?® = O(a,), (13.25)
whereas the three-gluon decays of quarkonia (J/¥, ¢/, Y, . ..) should give
(1-T),(8S),---=0() (13.26)

since the QQ - 3g process in fig. 13.11 is itself the leading contribution “‘on-resonance”. Therefore 3-jet
events ‘“‘on-resonance” should always be less “jetty” (i.e. broader) than those off-resonance, in
agreement with experiment (see fig. 13.3).

A closely related and very interesting decay channel is QQ - vy + hadrons (i.e., “‘direct photons” in
QQ decays, rather than photons produced via ©° or n decays). This process [314-316] is simply obtained
by substituting a gluon in QQ - 3g (fig. 13.11) by a photon as shown in fig. 13.12. Therefore the

Q vy Q =———r—— Y
e g bvowery §
Fig. 13.11. The decay of a heavy QQ vector meson into three gluons, Fig. 13.12. Production of “direct photons™ in QQ-vy+ 2g.

giving rise to a 3g-jet structure of the hadronic final state.
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radiative decay QQ — ygg will take place with a branching ratio [314-316]

poo=TQQ>ge) 36 (13.27)
r@QQ-3) a5

which is just the ratio of the two diagrams squared of figs. 13.12 and 13.11, and where 36/5 is a simple
color SU(3) factor. The predicted inclusive radiative rate is surprisingly large: For example, for the
charmonium family we expect BY*=6%. A measurement of this rate might offer us the best chance
[321] for finding “gluonium” or “gluon balls” (i.e. colorless gg bound states [23]). The known decays
-y, vy, ¥f give a total width of <1%, whereas SPEAR has recently reported [321] a single-y
continuum contribution (with mass recoiling against the y of <1.7-1.8 GeV) consistent with a total
radiative branching ratio of about 5%. This may indeed be indicative for the existence of gluonium -a
topic certainly exciting enough to be persued much further.

Finally we would like to stress the importance of two-photon processes [322, 323] as a possible source
of hadronic jets, i.e. e'e »>e’e"yy>e'e qGq—>e’e +jets. The outstanding virtue and theoretical
beauty of this process is based on the fact that it allows us to test QCD in the “cleanest” way possible
since here even the basic subprocess yy— qg can be calculated from first principles. This allows us to
make even absolute predictions for complicated systems such as multi-jet processes or distributions of
quarks and gluons in photons and electrons [140, 141, 323], as was the case for “direct photon”
production in deep inelastic reactions discussed in section 5.9. These two-photon processes will become
experimentally accessible at energies in the Vs = 100 GeV range where future e*e” super-colliders like
LEP should provide us with the most reliable tests of QCD.
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