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We discuss the running masses of the known quarks. When these are used in the Glashow determinant condition they pro- 
duce the t quark mass accessible at PETRA and PEP. 

The top quark, welcome by most unified models, 
has not been found yet.  At present a search for it is 
under way at PETRA which will cover the c.m. energy 
range up to 2rn t ~< 37 GeV. The previous search [1] 
sets a lower bound on the 3S 1 ground state of  

toponium: Mti-(1 3S1) > 31.46 GeV. Many theoreti-  
cal models predict t-quark masses. However, it might 
be a delicate matter  to decide whether a model is ruled 
out in the case of  the negative answer or it is con- 
firmed by some specific positive result. The point is 
that the t-quark mass is usually related to masses of  
other quarks which are known to some accuracy and, 
as a result, the predict ion is uncertain to some extent 
even if the underlying theory is perfect. 

It is our purpose here to summarize the current 
knowledge of  the quark masses and apply it to some 
particular predictions to see whether the t-quark mass 
comes out light enough to be observed at PETRA. 
Thus we do not advocate any new way to evaluate the 
mass but  concentrate on numerical analysis alone. 

One of  the most interesting predictions is the deter- 
minant condition due to Glashow [2] 

m ,  m s m c = 0 (1) 

m b m t 

which might have no firm foundat ion but, clearly, is a 
generalization of  the well-known SU(5) mass pattern 

[3] which requires for the proport ional i ty  of  the first 
two columns. Our claim is that eq. (1) produces the t- 
quark mass 

2m t = (29 -+ 3) GeV 

which is low enough to be seen at PETRA and PEP. 
As is well known [4],  one needs to be rather care- 

ful in defining a quark mass in QCD since there is no 
free quark. By "mass" one usually understands the 
ratio B/A where A and B are introduced through the 
inverse quark Green function: 

S -1 (p)  = A ( p 2 ) . #  _ B(p2).  

Because of  asymptot ic  freedom one can rely, for large 
euclidean p2,  on ordinary perturbat ion theory to find 
A andB. 

The definition of  the mass is neither gauge nor re- 
normalization invariant. However, for p2 large enough 
the gauge dependence vanishes, at least to leading log 
order, and one can find the normalization point depen- 
dence in a standard way [5] : 

m(/l 1)/m(#2 ) = [%(Ul)/C%(gt2)] 4/b, (2) 

where % is the running coupling constant and b is the 
coefficient in the Gel l -Mann-Low function: b = 1 1 
- 2nf/3.  Note that b depends, on gt itself since nf 
counts the number of  quark flavors with quark mass 
mq ,~/1. However, for all practical purposes one can 
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approximate 4/b by 

4/b ~-- 1/2 

and we use this approximation throughout the paper. 
Thus, things are rather simple for ~ -+ oo. Predic- 

tions of unified models refer just to this point since 
the unification scale is large. For this reason, say, the 
determinant condition (1) is renormalization- and 
gauge-invariant. On the other hand, all the measure- 
ments which can be interpreted as a manifestation of  
a quark mass refer to some finite quark virtuality. 
Therefore, the problem arises as to how continue the 
"running" mass from finite ~t to ~ -+ oo. We are going 
to discuss this proble m quark by quark. 

m u + m d. One constraint on this mass combination 

comes from the well-known PCAC-condition 

2 2 (m d + mu)(0l flu + ddl0) = -frrmr, (3) 

where f ,  = 130 MeV is the pion decay constant. The 
condition is apparently renormalization and gauge in- 
variant and is valid up to ~< 10% corrections. Unfortu- 
nately eq. (3) is not sufficient to fix m u + m d by itself. 

The second constraint is due to the analysis of  the 
QCD sum rules for e+e - annihilation [6] 

as(<fiu +dd))  2 = 4.8 X 10 -4  GeV 6. (4) 

As far as we approximate 4/b by I/2 this condition is 
again invariant. Combining (3) and (4) we get 

(m u + m d )  u ~--a4/b(~) X 15 MeV. (5) 

The uncertainty in the mass is mostly due to the uncer- 
tainty in the numerical value in eq. (4). At the worst, 
it can be a factor of  2 higher [6]. Therefore, we get 
finally 

(m u + rod) u = a4s/b(u) X (10 -15 )  MeV. (6) 

If  this is compared with the original SU(6) estimate by 
Leutwyler [7] (m u + md) = 2m~L/(3x /2mo' fo  ) 

(I0--11)  MeV then as(/a ) has to refer to a low nor- 
realization point 0 [8] : as(0 ) ~ 1. 

m u, m d. The share o f  each quark in the sum m u 
+ m d is fixed by the relation 

(m a - mu)/(m d + mu) ~ 0.3, (7) 

which follows both from the Gel l -Mann-Oakes-  
Renner [9] type analysis and QCD sum rules [10].  
Taking it literally we get 

(md) u = al/b(la) X (6 .5 -10)  MeV, 
(8) 

(mu) u = a4/b(v) X (3 .5 -5 )  MeV. 

However, relation (7) brings some additional uncertain- 
ty (the up-quark share could be slightly larger). 

m s . For the ratio of  the masses of  the strange and 
u, dNuarks one usually takes [9] 

m 2 ,m 2 (m s + md)/(rn u + rod)= K0/ 7r0 ~ 14, (9) 

which relies on the assumption that m 2 is small on the 
scale of  characteristic masses of strong interactions. 
This additional assumption can be violated by, say, 
30%. As the result 

(ms) u = a4/b(li) × (100--250) MeV. (10) 

mc. So far we discussed light quarks whose mass is 
lower than the intrinsic mass scale of QCD, mq < A. 
Now we proceed to discuss heaw quarks, mq >> A, 
where A enters the definition of  the running coupling 
constant in QCD. Therefore there is no need to start 
with/l  >> rnq since ~ ~ r n q  or even/l < mq can also be 
relevant to the short distance physics. Moreover, we 
must fix the gauge and we choose it to be the Landau 
gauge hereafter (the gauge dependence will drop out 
only for/ l  >> mq). 

QCD sum rules for charm production in e+e - colli- 
sions are very sensitive to m c normalized at the 
euclidean point p2 = _m 2. As a result, it is known to 
a good accuracy: 

mc(mc) -- (1.26 -+ 0.01) CeV. (11) 

If the normalization point is changed by order of  m 2 
one can evaluate the evolution of  the mass by means 
of first order perturbation theory (in the Landau gauge) 

F,  s(mo)m7 +"2 mT+;l 
* I n  - - -  - ( 1 2 )  me(/ . /)  = m c L' fr /12 m:2 J '  

where the new mass parameter, m c , is introduced. 
This parameter denotes the quark mass on the "would 
be mass shell", extrapolated from the "experimental" 
value quoted above by means of  perturbation theory: 
for as(mc) = 0.2, as determined from the total J/gJ 
hadronic width, m e = 1.37 GeV. 

If one wants to choose the normalization point 
much higher than the mass,/l 2 >> m 2, then one has to 
abandon the simple first order expression and sum up 
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all the terms of  order (a s In/2) n which gives the stan- 
dard asymptotic  relation (2). The intermediate region 
is most difficult. As is emphasized by Shifman and 
Vainsthein [11 ],  solving the renormalization group 
equations with account of  the mass term is nothing 
else but to try an interpolation formula which, on 
the other hand, reproduces exactly the first order cal- 
culation for/a ~< m c and, on the other hand, gives the 
correct asymptotics for/a >> m c. The interpolation pro- 
cedure is not unique but,  as is shown by the same au- 
thors, there is no real problem since the matching of 
relatively low and high # is very smooth. 

For a heavy quark Q (Q = c, b, t, ...) we use the in- 
terpolation formula 

b as(mQ) m ;  2 + u2 

mQ(/a) = m ;  I1 + ~ r r  ~t 2 

m;2  + #2.] -  4/b (13) 

X Lrl *2 
mQ 

which reproduces the first order eq. (12) as well as the 
asymptotic behaviour (see eq. (2)): 

[-as(U ) -]4/b 
mc(P)= 1 . 3 7 G e V | ~ |  ×(1-+0.03); At>>m c. 

(14) 

Here we also indicate the error arising from the inter- 
polation procedure, the smoothness of  which is illhs- 
trated in fig. 1. It is seen that at the matching point 
(x ~ 2) the interpolation coincides with the two limit- 
ing curves within 3%. 
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Fig. 1. Running mass o f  the c-quark as a function of  x,  x 
*2  2 2 * 2  = [(m c +/~ )/# ] in[(m c + #2)/mc2 ] . The dashed line is 

the first order perturbative result, eq. (12), the dot ted one re- 
fers to the asymptotic  behaviour, eq. (14), and the solid line 
represents the interpolation, eq. (13). 

m b. Here the quark mass is known from the QCD 
sum r--ules for quark virtuality of  order 1 GeV 2 [12] 

mb(m2 _ p2 ~ 1 GeV 2) -- 4.79 + 0.03 GeV, (15) 

which practically coincides with m b. Note that the 
mass is fixed to even better precision than for the 
charmed quark. Using the interpolation eq. (13) we 
get asymptotically 

V a s ( u )  .]4/b 
mb(A0=4.8  GeV[_d (~-h)_] ×(1 -+0.01); u>>m b. 

(16) 

The accuracy in this case is even better since the extra- 
polation is smoother due to the fall in the running cou- 
pling constant. The running b-quark mass is given in fig. 
2. 

m t. The effective t-quark mass is given by the same 

eq. (-]-3), but m t is to be found yet. 
Let us emphasize that it is just m t that is most rele- 

vant to experimental data. Namely, the mass of  the 
lowest t~ bound state is close to 2rnt:  

Mt~(1 3S1) = 2m t - (0 .3 -0 .5 )  GeV. 

Now we are in a position to find what various models 
give for the top quark mass. The Glashow determinant 
condition (1) reads 

m r I ( m e m b )  
mt = m c  mug 1 mr md 

+ - -  - -  m~ s~7/{1 mu(m. mb meres 1 
m d\mrmc rnc/]/, mtamd]-- • 
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Fig. 2. Running mass of  the b-quark as a funct ion of  x,  x 
= [(rn~2 + 2 ) / / 2 ]  ln[(ml~2 + 2)/m~2]. The dashed line is 
the first order perturbative result, eq. (12) with m c substituted 
by mb, the dot ted one refers to the asymptotic  behaviour, eq. 
(16), and the solid line represents the interpolation, eq. (13). 
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As was already mentioned, the relation refers to masses 
normalized a t / l  -+ co. We extrapolate it down to m t by 
means of the equations worked out above. Practically, 

for all, but t-quark, one can rely on asymptotic expres- 

sions, since m t is much larger than the other masses. 
To find rn t we use the interpolation formula. In this 
way we come to the prediction 

m t = 14.5 -+ 1.5 GeV 

where 4% uncertainty comes from interpolating m c 
and the rest is due to the rather poor knowledge of 

md. This estimate relies on the value C~s(rnc) = 0.2. 
Would c~ s be larger, the prediction from rn t would go 
down. Taken at face value, it is ruled out by existing 
data [1 ].  Anyhow it will be ultimately proven or dis- 

proven very soon. 
Another example is the O(10) prediction worked 

out in ref. [13] 

(m t - m  c + m u ) 3  (m r - m ~  +me)3 

m t m c m  u m r m u m e  

Substituting the numbers we find 

m t ~ 12 GeV, 

which is lower than the current experimental bound. 
As a final example let us mention the simplest rela- 

tion [14] 

rn t = m c m r / m u ,  (17) 

which produces 

m t = 1 8 + - I  GeV. (18) 

However, the similar relation m b = m s rnr/m u derived 
within the same simplified framework does not hold. 
The final result of ref. [14] is the determinant condi- 

tion (1) for masses squared. Numerically it reduces es- 

sentially to the same prediction (18). 

Two of us (M.V. and V.Z.) would like to thank the 
DESY Theory Group for hospitality during the time 

when the present note was worked out and to acknowl- 
edge numerous conversations with M. Shifman, 
V. Novikov and A. Vainsthein on the quark masses. 
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