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Relying on previous results, the computation of quantum fluctuations of gluons in a Yang-Mills
multi-instanton background field is explained. For the present most comprehensive formula due to
Jack the integration constant is determined. The formulae are evaluated in more detail for the
special case of the *t Hooft solutions.

1. Introduction

Let the Dirac operator in an external Yang-Mills gauge field be

0 D*), )

b :(D 0
where
D=ie D, D =ieD,, (e.)=(,—ig;)

(o; are the Pauli matrices) and D, =1,3, + A, is the covariant derivative. For
definiteness we use an SU(n) gauge group (the extension to other gauge groups is
straightforward). By P, we denote the same operator without gauge field.

Recently, formulae for the determinant of the Dirac operator in a multi-instanton
background field A, of topological charge k were derived [1]*. In flat space the
result for the regularized determinant with zero modes omitted reads**

g def H
det' —E—o = \/ det’ F= e, (2a)

0
where

F=Tg—Treg =k{=3Inpu -4 (-1)-3In 2+ 5}

1
24772

J' dxly(x) + J’ d*x J: dth(nx),  (2b)

+—_
2472

* The first paper of [1] is hereafter referred to as L.
** The results of I were derived for a Sp(r) gauge group. By imbedding SU(n) into Sp(n) it is quite
straightforward to show that (2) hoids.
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and
L=Tr{fouf "' fouf ' fouf ' fouf )
~5 Tr{fb " bfb b} +4k(1+x3)72, (3a)
L= €pppe Tr {K'9.KK 3, KK '9,KK '0,KK '3,K}, (3b)
with
K, x)=3(t -\ +x")p b +1f . (3c)

The k x k matrix f is related to the instanton parameter matrices of the Atiyah~
Drinfeld-Hitchin-Manin (ADHM) construction by means of

f_l = —%ﬂ ) Ap=aa+b"%pn . (3d)

Here x =(xaa) is the quaternionic representation of the position vector. The
(n+2k)xk matrices aa,b*(A'=1,2;A=1,2) are the instanton parameter
matrices and L1 stands for contraction of spinorial indices, e.g., é;A =4 A4
Indices are raised and lowered by &4 = eapt® and the adjoint is in the sense of
spinors, i.e., A7 = —47 and 45 = A1. [, is defined by

F,egz%Tr[ln (B*+Po)+ T e 1n(132+M3)}’
i=1

where P, is the projector onto the zero modes of P and In u is related to the
Pauli-Villars regulators by In u =Y ;_, e; In M. For more details of the notation
cf. I.

In flat space the fluctuation operator for gluons (i.e., of the vector fields in a pure
SU(n) Yang-Mills theory) is trivially related to the Dirac operator in the adjoint
SU(n) representation and a corresponding relation between the determinants of
these operators has been assumed in the literature [2]. This conjecture may be
supported by an investigation of the gluon determinant on the sphere [3]. We
therefore study in the present paper the quantum fluctuation of the Dirac operator in
the adjoint SU(n) representation.

The adjoint SU(n) representation can be trivially imbedded into the fundamental
SU(n?) representation. It follows that special instanton parameter matrices da, b*
of the fundamental SU(n?) representation, from which a corresponding f can be
constructed by (3d), describe the adjoint SU(n) representation. For the determinant
of the Dirac operator formulae (2) and (3) remain true with f replaced by f and K
replaced by a corresponding K. The matrix f has already been constructed by
Corrigan, Goddard and Templeton {4] in their investigation of Green functions in a
multi-instanton field of a tensor product representation. In sect. 2 we give the explicit
formulae for f in the adjoint SU(n) representation. The thus obtained formulae for
the determinant of the Dirac operator in the adjoint SU(n) representation are
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illustrated in sect. 3 by an explicit evaluation for the one-instanton case and a
discussion of the 't Hooft solutions in sect. 4.

Equivalent formulae can be obtained along the lines of [1] by using the Green
function [4] of the adjoint representation. This has been done by Jack [5] for tensor
product representations. Jack’s formula is written down for the adjoint SU(n)
representation at the end of sect. 2. Compared with the results in terms of 7 Jack’s
formula has the great advantage, that the size of the involved matrices is considerably
reduced for relevant cases and that one has not to take traces of lengthy matrix
expressions. They are therefore more promising than the first formulae for trying a
further evaluation. This is illustrated for the 't Hooft solutions in sect. 4.

A new integration constant is introduced in the formula of Jack by the method of
their computation, whereas no new integration constant is introduced by using the
imbedding procedure and . This is employed in sect. 3, to determine the integration
constant (which turns out to be zero). Both formulae suffer at the time from the lack
of an unconstrained parametrization of the SU(#n) instantons. This is the reason, why
the instanton gas of the non-linear o and CP" models [6] is still much more explicit
than that of the Yang-Mills theory.

2. Determinant of the Dirac operator in the adjoint SU(#n) representation

Let us consider the Hilbert spaces H_ (H.) of spinors 4 of negative (4 of
positive) chirality which take values in the SU(n) Lie algebra. These two spaces are
equipped with the scalar product

0 6) = j d'xWh %), W éeH., (4a)

W d)= [ d'x Wi, %), 4., (4b)
where
(A,B)=—-3Tr(A-B)

for matrices of the SU(#n) Lie algebra.
The Dirac operator in the adjoint SU(n) representation is given by

(2 7)
where
V=ie,V,, V'=ie,V,,
V=0, +[A, - ].

V maps negative onto positive chirality spinors and V" vice versa. With respect to the
scalar product (4), V" is the adjoint of V.
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We may trivially imbed the adjoint SU(#n) representation into the fundamental
SU(n?) representation by defining the new gauge field

A=A, ®1,+1,®A,.

The gauge field Au is a multi-instanton solution of topological charge K =2nk.

Let a(1)a=a. and b(1)* =b"* be the instanton parameter matrices of the
fundamental SU(#n) representation; then the instanton parameter matrices of the
conjugate SU(n) representation are given by

aQa=ecapalp, b2 =D, (6)

where £1,=¢'2=1. Because all instanton fields are obtained by the ADHM
construction, there have to be instanton parameter matrices d ., 6 which describe
A'u. Therefore, the determinant of the Dirac operator in the adjoint SU(n)
representation™ is obtained by replacing in (3) & by b, f by f and correspondingly K
by

R =Yr-DW+xD5 5+

In the present notation the recipe [4] for constructing fis given in the following. Up
to a transformation f » K fK with an element K € Gl(k, C) f is given by

f=iz"a'z, (7

where
Z=Tr(c;c,)+Tr(d;d,), (8a)
Q= 4T (c;cf) +Tr (d7df)—Tr (fe; pfA"c.)} (8b)

The matrices ¢, d;(s =1, ..., k~) are a basis of (n+2k)xk matrices, which are
defined by the relation

(Aa (1)) =(Aa)d);, A'=1,2, 9)
where
AL =a " (a+b"()*xaa, i=1,2,

l13: b is obtained by means of

b'b=-2"0;'Z, (10a)
with
(), = —8{Tr (c7 e ("B ) +Tr (d7 de(b™BY )+ 2 Tr (b7H) 'c b ) b7 )} .
(10b)

In sect. 3 we will illustrate the obtained formulae for special examples.

* It is easily seen that the singlet part does not contribute.



B. Berg, J. Stehr | Quantum fluctuations of gluons 297

Equivalent formulae can be derived along the lines of [1], by using the Green
function [4] for tensor product representations. This has been done by Jack [S1. For
the Dirac operator in the adjoint SU(n) representation his result would become

—7
det’)—_‘,)zd:f \/det’g—%cef, (11a)
0

with

F=2al-2Indet GM(B b® b"b)]

1 .
b [ dxindet [ PR Indet [-3p P+ K e (11b)
8w 1

Here c is an unknown constant and M is the conformal invariant matrix [10, 4] given
by

M~ =3¢ ()a(1) ® b (D)b(2)+3b" (VB ® ¢ " (2)g(2)
~a* (b)) ® a (b (2) . (11¢)

3. The one-instanton case

We now evaluate explicitly the one-instanton case, using (2), (3) with f replaced by
ﬁ and (7), (8). We only consider the SU(2) one-instanton solution, the SU(n)
one-instanton solution can be obtained by trivial imbedding.

The SU(2) one-instanton solution is given by

/\2

A, =%5..9,Inp, =1+—,
" 20, P p (x__y)Z

and &,, = e,e, —8,,. y is the position and A >0 the scale size of the instanton. The
corresponding instanton parameter matrices of the ADHM construction are

Ad1a 0
/\BZA’ A 0
as = , b” = . 12a
4 ~Via 81-4 ( )
—Y2a’ 84

The indices of y refer to its quaternionic representation. The matrices A4 =
A
as+b" x4 are

Abyar
5 .

Aa=| A0 (12b)
(x—yha

(x —y)2a
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and it follows ™' =A%+ (x —y). In the following we exploit euclidean covariance
and choose y = 0. The full formulae are obtained by the substitution x » x —y.
A convenient basis for the matrices (¢, d,), defined by (9) is

5r1 —6r2
6r2 arl
.= , d, = . 13
¢ 673 —5r4 ( )
574 5,3

Using formulae (8), (10) it is not difficult to compute f and lé: 6. The result is
conveniently expressed in the form of 2 X 2 matrices of quaternions:

A2+2x% —ax”
f= zf( —Ax  20%+ 2) (142)
L 1/2A%+ %2 Ax®
fl:Z( Ax /\2+2x2)’ (14b)
o) 1/1 0
£o=-3(o 2)‘ (140)

Remember that the gauge field corresponding to f has topological charge k=4,
We use these formulae to calculate the integrals in (2). K is obtained from (3c¢).
After some calculation the traces [cf. (3a), (3b)] become

64x'2+3520%x "0+ 7842 °x"® +896Ax°+ 5441 °x* + 1601 x>+ 161 12
(x2+A2)8

Ii=

_80x*+2400%x°+ 170" 16
(x*+2%)* (1+x%)*’

¥ 10 8 6 4 2 ‘1
L=(csx " +cax +cax " +cax +coix“+co) N7,

where
cs=4A%*,
ca= AN =41 +5),
ca= A 20— 1512+ 161 +40),

=AM 3 - 62 —2112 + 241+ 40),
1= AP@E -6 —1317 4161 +20),
co= AN -22-3%+4r+4),

N =3x+AD)*(x2+2%°,
=AY 1+02-1).
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Doing even more calculations, the integrals are found to be

1 .
m[d“xﬁ=—%‘+§ln}\, (15a)
1 4 ! T 11
mjdxjo dtl,=2In2—-%. (15b)

It is amazing to note that in this formulation the 5-dimensional integral already
contributes to the one-instanton fluctuations. This should be compared with the fact
that for SU(2) a consequence of Jack’s result is a formula which does not involve a
five-dimensional integral at all. Collecting all contributions we arrive at

F=-3mnu-16(-1)-2In2+%nr-%. (16)

This result is consistent with previous literature [7]. It is an easy matter to evaluate
(11) for the one-instanton case. Comparison with (16) determines the constant ¢ to

be
c=0, (17)

4. The ’t Hooft solution

The evaluation of I’ using (7)-(10) is straightforward but very cumbersome, as is

already seen for the 't Hooft solution
2

k A
A, =136,9,Inp, =1+ Y —
w =20, PP ,->=:1 =)
in the two-instanton case (k = 2).
Then
A1d1a A281a 0 0
A1824 L2624 0
1 1A
—Via’ 0 A 8 0
as = , "= 18
~yia 0 84 0 (18)
0 —yia 0o &
0 —yia 0 &
From (9) follows
Y1 Y3 —Y2 —Ya
Y2 Ya Y1 Y3
Ys U ~Y6 —U
c= , d=| " (19a)
Yo Uz Ys U
u Y7 —Uzx —Ys

Uz Y8 251 Y7
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with
1
Ug= m{(yl =y arA1ys = 2y) + (3 = yDazA1ys—A2yv2)},  (19b)

and arbitrary v;. Setting y; = §,; we get a basis of matrices ¢, and d, in which the 8 X 8
matrices f~, f ~"and IZ’_II; can be expressed as 4 X4 matrices of quaternions. The results
are stated in appendix B. They are much more complicated than the corresponding f,
£! in the fundamental representation.

For the evaluation of I" in the multi-instanton case formula (11) is more con-
venient. Casting 5 into normal form, i.e., [3:1.’ = —2, we have (cf. formula (56.16) of
[5]or (73) of T)

IF=—k{inu+4(-)+1In2}+31ndet M5 +

j‘ d*x Indet f ' In det f*

967>
(20a)
[where det Ms' is given by (26)] and
[F'=4r+2indetM™ +§717—2 I d*x Indet f ' Indet f . (20b)
For the k-instanton 't Hooft solution we generalize (18) and find
fil =Adj+(x -y,  ij=1,...,k, (1)
Ml =AM+ AA s + (v = ¥ 2881  iiim=1,...,k (22)
Noting that
Ay def A Aj
f = Vix—y)? Vi —Iy")jzwﬁ
is a unit matrix plus a matrix of rank 1 with
detf '=p,
we have
dotfF=p T (x=y'V'=5. 23)

Corrigan et al.[1] give an expression for det (M ") in a different parametrization [11]
for the k-instanton ’t Hooft solution. Since we need det (Ms') and det (M')
separately, we give a derivation which is quite different. The result consists of
graphical rules to write down det (M 4" ) as a function of the instanton parameters.
We see no way to derive these graphical rules directly from the rules for the
evaluation of det (M ') given by Corrigan et al. (adjusted to our parametrization).
M ™! can be factorised into one part Ms" which acts only on the symmetric part of the
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tensor product space and another part M ' which acts on the antisymmetric part of
the tensor product space:

Mijm =Mijm + M —Mi 1 8m, izlLj=m, (24a)
M pisjm =Mijm =M, i>Lj>m, (24b)

and
det M '=det Ms' - det M5 . (24¢)

Inserting (22) yields
Mgiim = (1= 8)(1 = 8)AAB1n + AASij + Aid By + AA Sim + (¥ = y')2881m ]
+(1 = 84)8im[AA By + AA S5 ]+ 8:8m[24 78;1]
+8(1 = 81 )[2AABimm +2AA 841,
k=i=l=1, k=zj=zm=1, (25a)
M ijm = A St + AA Sy = Ak ot — AASi + (v = ¥')6:80m »
k=i>l=1, k=j>m=1. (25b)

By the elementary row transformation for j >,

, Y . ¥
row il »row il ———row ii ———row Il ,
2A; 2A;

Mg is brought to triangular form and we read off

k
det Ms' =2 T AZ [1 (v —y*)°. (26)
i=1 r>s

The computation of det M is not so easy. For a complete result see appendix A.
Here we only give a formula, which is exact for k <3. For k >3 it describes the
leading behaviour when the instantons are far apart from each other compared to
their scale size A;:

det MA' =R(K) IT (v ~y*)?, (27a)
r=s

with
1k AT+A] 1 ko AZHATHADA]
2.1 (0 =y 24T T =y -y
1k QIHADAT+AL)
8 iiim=1 (y' =y’ (y' = y™)’?
The prime on the multiple summations means that terms where two indices are equal
should be omitted. Note that n-fold sums only contribute for k = n.

Rk)=1+

(27b)
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Collecting our results we arrive at

F=—kBnp+4f(- 1+3ln2]+ ZlnA+ YiIny —y°)

'>S

- zj d*x In g In g, (28a)
961

= 4I"+%Id xInpIng+2kin2

+4 Z InA;+4 Y In(y" —y*)*+21n R(k)

i= r>s

=~4k[5In u +4¢ (- 1+6ln2]+—~21 )\+ Zln(y —y*)?

1
+7Jd4x Ing*Ing+2InRk). (28b)
These formulae complete the early work of Brown and Creamer [8].

We thank M. Liischer for useful discussions, P. Weisz for reading the manuscript
and the referee for several useful remarks.

Appendix A

EVALUATION OF detM ;1
From
ML (Kitjm = AdBim + AR i = Akt = Ad Bim + (3 = 9881 »
k=i>1, k=zj>m=1,

we see:
(i) Det M' (k) is a polynomial in (y" — y*)* and A? which is symmetric under the
interchange of any two indices. Each term of the polynomial contains n factors
(y"—y*)* and k — n factors A7 with k = 3k (k — 1) the dimension of the tensor product
space on which M ' (k) acts.
(ii) If all (y" — y*)* vanish, the rank of M1 is k — 1, as one sees by choosing as an
orthogonal basis @ " for the tensor product space on which M 2" acts:

W) =AVA A, >,
with

k k
L APAT =8 L Y, A=A

i=1
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Thus for det M (k) to be non-vanishing, it is necessary that at least £ —(k-1)
different (y" —y*)* are not equal to zero. It follows that each term in the polynomial
must contain at least £ — (k — 1) factors (y'—y%)% i.e., at most k —1 factors A 7.
Now for A, =0, det M ' (k) factorizes according to

M (k—1) 0 }k/—\l
£ Mgl (k)'/\k=0 = N
0 o5 k—1) }k—1
— ~
£ k-1 k-1

which means, see (23),
det Ma'(k)=det M:' (k—=1)- 55 k—=1)+A% - g,

with unknown g. Because of the symmetry property (i) we can repeat this procedure
for any A, i=1,...,k—1. Comparing the different expressions for det MZ (k)
found in this way, we see that det M (k) is determined up to a term of the form
g Hf=1 A}. But this term must vanish because it contains too many factors of Az
accoring to (ii).
Setting
det MA' (k)=R(k) [T (y'=y')*,

i>j
we find that R (k) is determined by the following requirements:
(i) R (k) is a dimensionless polynomial in A7 and (y" —y*)~* which is symmetric
under the interchange of any two indices. The highest power of A7 is k — 1.

k—

Kk Y
@) RGeo= R=1)-p" k=1 =RGE=D{1+ T 2],

(i) RM)=1.

The solution is conveniently stated in graph theoretical language [9].

R (k) can be expressed as the sum of all possible unoriented graphs with k vertices
(labelledr =1, ..., k) and an arbitrary number of links, such that no closed paths are
formed. There is no restriction on the number of links attached to one vertex, but the
total number of links in a graph is less than k due to the absence of closed loops. The
graphs are evaluated according to the following rules:

each vertex r gives a factor P

each link (connecting vertex r with vertex s) gives a factor A?AZ(y" —y*)™%;

each set S of connected vertices gives a factor ¥;_s A7
Immediate consequences of these rules are:

each isolated vertex gives just a factor 1;

each vertex r with n =1 links attached to it gives a factor /\,2 ("_1);

the contribution of a connected part of a graph is dimensionless.
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One easily sees that requirements (i) and (iii) are met. Realising that for A, = 0 only
those graphs give a non-vanishing contribution, which have not more than one link
attached to vertex k, one also sees that requirement (ii) is fulfilled.

The formula (27b) given in the text was gained by adding all graphs with not more
than two links. The numerical factors in front of the sums compensate double
counting.

Appendix B

THE MATRIX ELEMENTS OF f, !, AND zgj IN THE TWO-INSTANTON CASE

We choose our basis of matrices ¢, d. [cf. (19)] in such a way that the matrix

elements of f, f ' and E}) have some useful relations among each other:
@ f 7 l?:f’ are self-adjoint (for all choices of c,, d,);

(ii) they can be expressed as 4 x4 matrices of quaternions and we use the

convention
+ + 2

xTrx=xx =xx,1=x";

(iii) let m be one of the matrices f, f, éf_l,;: then the quaternionic matrix elements

m(AlyAl’.’ylsyz)ij: i9j=l’-"a4,
fulfill
M, Az Y Y )2 =mWa Ay, 2, ¥ 212021
My, Az, ¥ ¥ 2251 = mA2, A1, ¥ ¥ Darct26

forr=1,2;5s=1,2.
Therefore it is sufficient that here we only list the quaternionic matrix elements
miy1, My2, M3, Mg, M3z, My Using the following abbreviations:

F=—y Y=y AT =y +a5(x -y,
0=(y1—y2)2+2)\3+2A%,
r=(y'=y?)?+AT+A3,

we obtain the following.
Matrix elements of f:

o5 1 =205 + A G Yy -y -2 =y = 2(x — D))
+20(y =y’ A3+ (x =y + (x -y (x -y
+4(o —242)6[6 — (x —y ) (x —yH*]

+4A o (x —yH2(x —yD*,
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o5 2= =20142(6 +ATA3) (v =y -y = 20x —y') = 2(x — y*)*]
—2X12205(y" = y*)’ + 8142605 — (x —y ) (x —y*)?)
—4Ah0(x —y ) x =y x =y (x —yY),
opfia= =200y =y AT +(x =y (x -y
~4A3 (- y ) -y T+ (e -y -y D),
o6 fia=20A300 -y AT +2(x =y ) (x —y)*
—aa A3 -y -y F A -y -y,
6f =205+ (x —y))F +AT(x -y,
Ffra= 2015 —yHx —yH".

Matrix elements of f ' (note that ' is indeed a quadratic polynomial in x):

4r(y" —yDfil =(e-AD@ -2AD(x -y +2A A3 (x —y?)’
+22 3@ —-AD)(y -y +4A1A2,
4r(y' —yfi = —Aa(o =22 (x —y' Y = A 1dalo —223) (x — y?)?
+Ada(y =y = iad — Ao (x -y e —yY),
ar(y' = y*’fis = Ao —A D -y’ —yH =223 0" -yD)",
4r(y' =y’ fid = A A3 -y -y =203 (A D =D,
4153 =27(x -y +A3(r=A3),
41fsi =A7A3.
Matrix elements of b:_. b:
27(y' —y?f b=’ +2i B ~227 -213),
27(y" = y>’b b= A1A2(30 — 217 —2A3),
b bs=—1,
F b= fua="Fru=0.
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