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Relying on previous results, the computation of quantum fluctuations of gluons in a Yang-Mills 
multi-instanton background field is explained. For the present most comprehensive formula due to 
Jack the integration constant is determined. The formulae are evaluated in more detail for the 
special case of the 't Hooft solutions. 

1. Introduction 

Let the Dirac  opera to r  in an external  Yang-Mi l l s  gauge field be 

where  

(1) 

where 

/-' = PrCa- F~°~ = k{ - 2  In/x - 4 ~ " ( - 1 ) - ~ - I n  2 + ~ }  

1 12  1 
+ 2--~2 f d4xll(X)+2-2-~2 ~ d4x fo dtI2(t,x),  (2b) 

* The first paper of [1] is hereafter referred to as I. 
** The results of I were derived for a Sp(r) gauge group. By imbedding SU(n) into Sp(n) it is quite 

straightforward to show that (2) holds. 
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D , + D 4- = te.D~,, = ie~,D., (e.) = (1, - io ' i )  

(crj are the Pauli  matrices) and  D .  = 1.3~, + A .  is the covar iant  derivative.  For  

defini teness  we use an SU(n)  gauge group (the extens ion to o ther  gauge groups is 

straightforward).  By/3~0 we deno te  the same opera tor  wi thout  gauge field. 

Recent ly ,  fo rmulae  for the d e t e r m i n a n t  of the Dirac  opera tor  in a mul t i - in s t an ton  

backg round  field A .  of topological  charge k were der ived [1]*. In flat space the 

result  for the regularized d e t e r m i n a n t  with zero modes  omi t ted  reads** 

det '  - -  = r = e , (2a) 
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and  

with 
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--1 --1 -1  --1 
I I = T r { f 3 j  f O j  fO~f fO~f } 

- 5  Tr {fb~bfb~b} + 4k (1 + x 2)-2, 

12 = eu~o,~ Tr {K-IO,KK-IO,KK-IO~K-IO~KKIGK},  

(3a) 

(3b) 

K(t, x) =½(t-  1)(A2 + x2)b+bj +tf -1. (3c) 

The k x k matrix f is related to the instanton parameter matrices of the Atiyah-  
Drinfeld-Hitchin-Manin (ADHM) construction by means of 

f--1 1A+ A = --~ ~ ,  AA' = aA' + b AXAA' . (3d) 

Here x = (XAA') is the quaternionic representation of the position vector. The 
(n + 2k) × k matrices aa,, ba(A ' = 1, 2; A = 1, 2) are the instanton parameter 
matrices and ~ ~ stands for contraction of spinorial indices, e.g., A+A = A+A'AA ,. 
Indices are raised and lowered by ~:A = eAa~ B and the adjoint is in the sense of 
spinors, i.e., A~- = -z12 T and A~- = ,~T. F'reg is defined by 

Freg=½Tr {ln ( ~ 2 + p 0 ) +  ~ e i l n ( / ~ 2 + M~ ) } ,  
i=1 

where P0 is the projector onto the zero modes of D and In lz is related to the 
Pauli-ViUars regulators by In p. = - ~  7= 1 ei In M~. For more details of the notation 
cf. I. 

In flat space the fluctuation operator for gluons (i.e., of the vector fields in a pure 
SU(n) Yang-Mills theory) is trivially related to the Dirac operator in the adjoint 
SU(n) representation and a corresponding relation between the determinants of 
these operators has been assumed in the literature [2]. This conjecture may be 
supported by an investigation of the gluon determinant on the sphere [3]. We 
therefore study in the present paper the quantum fluctuation of the Dirac operator in 
the adjoint SU(n) representation. 

The adjoint SU(n) representation can be trivially imbedded into the fundamental 
SU(n 2) representatibn. It follows that special instanton parameter matrices dA,, ~A 
of the fundamental SU(n2) representation, from which a corresponding [ can be 
constructed by (3d), describe the adjoint SU(n) representation. For the determinant 
of the Dirac operator formulae (2) and (3) remain true with f replaced by )Z and K 
replaced by a corresponding K. The matrix f has already been constructed by 
Corrigan, Goddard and Templeton [4] in their investigation of Green functions in a 
multi-instanton field of a tensor product representation. In sect. 2 we give the explicit 
formulae for f in the adjoint SU(n) representation. The thus obtained formulae for 
the determinant of the Dirac operator in the adjoint SU(n) representation are 
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illustrated in sect. 3 by an explicit evaluation for the one-instanton case and a 
discussion of the 't Hooft solutions in sect. 4. 

Equivalent formulae can be obtained along the lines of [1] by using the Green 
function [4] of the adjoint representation. This has been done by Jack [5] for tensor 
product representations. Jack's formula is written down for the adjoint SU(n) 
representation at the end of sect. 2. Compared with the results in terms of)~ Jack's 
formula has the great advantage, that the size of the involved matrices is considerably 
reduced for relevant cases and that one has not to take traces of lengthy matrix 
expressions. They are therefore more promising than the first formulae for trying a 
further evaluation. This is illustrated for the 't Hooft solutions in sect. 4. 

A new integration constant is introduced in the formula of Jack by the method of 
their computation, whereas no new integration constant is introduced by using the 
imbedding procedure and ~ This is employed in sect. 3, to determine the integration 
constant (which turns out to be zero). Both formulae suffer at the time from the lack 
of an unconstrained parametrization of the SU(n) instantons. This is the reason, why 
the instanton gas of the non-linear ~r and CP N models [6] is still much more explicit 
than that of the Yang-Mills theory. 

2. Determinant of the Dirac operator in the adjoint SU(n) representation 

Let us consider the Hilbert spaces H_ (H+) of spinors tkA of negative (~bA' of 
positive) chirality which take values in the SU(n) Lie algebra. These two spaces are 
equipped with the scalar product 

(~, q~) = f d 4 x ( ~ ,  ~bA), ~b, & e H - ,  (4a) 
J 

(~' &) = I d4x (~ ' "  CA'), 

where 

tb, ¢ e H+, (4b) 

(A, B) = -½ Tr (A.  B) 

te ~, V~, , i e ,  V ,  , 

V,,  = O ~ , + [ A , , .  ] .  

V maps negative onto positive chirality spinors and V + vice versa. With respect to the 
scalar product (4), V + is the adjoint of V. 

where 

for matrices of the SU(n) Lie algebra. 
The Dirac operator in the adjoint SU(n) representation is given by 
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We may trivially imbed the adjoint SU(n) representation into the fundamental 
SU(n 2) representation by defining the new gauge field 

.A. = A .  ® 1~ +1~ ® A . .  

The gauge field A .  is a multi-instanton solution of topological charge/~ = 2nk. 
Let a(1)A,=aA , and b(1) A= b a be the instanton parameter matrices of the 

fundamental SU(n) representation; then the instanton parameter matrices of the 
conjugate SU(n) representation are given by 

a (2)a, = eA'B'a (1)B' , b(2) A = e a~b-~  B , (6) 

where e l==e  12= 1. Because all instanton fields are obtained by the A D H M  
construction, there have to be instanton parameter matrices dA', /;a which describe 
A, .  Therefore, the determinant of the Dirac operator in the adjoint SU(n) 
representation* is obtained by replacing in (3) b by/~, f by/Z and correspondingly K 
by 

/ (  = ½(t - 1)(h 2 + x2)b~j/~+ t) ~--1 . 

In the present notation the recipe [4] for constructing f is given in the following. Up 
to a transformation )v~ K÷TK with an element K e Gl(/q C) T is given by 

where 

1Z+ f2-1Z )~-' =~ , (7) 

Zr~ = T r  + (8a) (Cr Cs) +Tr  (d+~ds), 

.Ors = 4{Tr (c~c~T) +Tr  (d+~d~f)-Tr ( fc~A+c~)} .  (8b) 

The matrices c,, d,(s = 1 . . . . .  /~) are a basis of ( n + 2 k ) x k  matrices, which are 
defined by the relation 

(A~,,(1)c), i = (A~,,(2)d)j~, A' = 1, 2 ,  (9) 

where 

+ . + • A A~,(i)=a (DA,+b 0) XAA', i = 1 , 2 .  

/;+/;is obtained by means of 

~;S f , =  - z + ; ' z , O O a ) 

with 

(ab),s = -8{Tr (c+~cs(b~b) -1) + Tr (d+~ ds(b~b)-')+ 2 t r  ((b~b)-'c ~+b (b~b)-~ +cs)}. 

(10b) 

In sect. 3 we will illustrate the obtained formulae for special examples. 

• I t  is eas i ly  s e e n  t h a t  t h e  s i n g l e t  p a r t  d o e s  n o t  c o n t r i b u t e .  
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Equivalent formulae can be derived along the lines of [1], by using the Green 
function [4] for tensor product representations. This has been done by Jack [5]. For 
the Dirac operator in the adjoint SU(n) representation his result would become 

de t '~o=  r de t '~ -  = e , ( l la)  

with 

P = 2 n F -  2 In det [¼M(b~b ® b~)] 

1 
I d4x In det L--2j,t_~ j In det [ - s f ~ b ]  +/~ • c ( l lb)  +8rr 2 _  r tfb+blFq2 1 + . 

Here c is an unknown constant and M is the conformal invariant matrix [10, 4] given 
by 

g -1 = ~q +(1)q(1) ® (~ +(2)b(2) + ~b+(1)b(1) ® q +(2)q(2) 

- q +(1)b(1) ® q+(2)b(2). (1 lc) 
t ! 

3. The one-instanton case 

We now evaluate explicitly the one-instanton case, using (2), (3) with f replaced by 
/~ and (7), (8). We only consider the SU(2) one-instanton solution, the SU(n) 
one-instanton solution can be obtained by trivial imbedding. 

The SU(2) one-instanton solution is given by 

A 2 
1 -  

A~,=~o'.~O~lnp, p = l - t  (X _ y )2  , 

and ~.~ = eT.e~ -8.~. y is the position and A > 0 the scale size of the instanton. The 
corresponding instanton parameter matrices of the ADHM construction are 

The indices of y 
aA' + b AXAA, are 

refer 

~__YlA,]' ~ I A  " ( 1 2 a )  

\ - -Y2A ' /  82A/ 
to its quaternionic representation. The matrices A,~,= 

;t81A' 1 

AA'= ( x _ y ) I A , I ,  (12b) 

(x --Y)2A'/ 



298 B. Berg, 3. Stehr / Quantum fluctuations of gluons 

and it follows f - l =  2,2+ (X-  y)2  In the following we exploit euclidean covariance 

and choose y = 0. The full formulae are obtained by the substitution x --> x - y. 
A convenient basis for the matrices (cr, dr), defined by (9) is 

c.-V 
\(~r4 \ ~r3/ 

Using formulae (8), (10) it is not difficult to compute f and b÷_b. The result is 
conveniently expressed in the form of 2 x 2 matrices of quaternions: 

f = 2 f 2 ( a _ 2 Z x X  22`2+X2],  (14a) 

?, 1(22`2+x 2`x* 
= 4 k  Ax 2`2+2x2 ] ,  (14b) 

Remember  that the gauge field corresponding to f has topological charge/~ = 4. 

We use these formulae to calculate the integrals in (2 ) . / (  is obtained f rom (3c). 
After  some calculation the traces [cf. (3a), (3b)] become 

64x 12 + 352t  2X 10 "4- 784 t  4x8 + 8962` 6X6 + 5442` 8x4 + 1602,1°x2 + 162,12 
f l  "~ (X2 .}_ X 2)8 

80x4+240A2x2+1702`  4 16 + - -  
(X 2 "~t- 2` 2) 4 (1 4"X2) 2 '  

~2 ~--- (C5xIO dr c4xS ff-C3X6 ff-C2X4 q-C1X2"acCo) " ]~-1 , 

where 

c5 = 42, 2t4 , 

c4 = 4A s ta(- ta  + t + 5) , 

c3 = A l ° t 4 ( t 4 - 2 t 3 -  15t2+ 1 6 t + 4 0 ) ,  

c2 = 3,12t4(3t4 - 6t 3 - 21t 2 + 24t + 40) ,  

cl = 2 ` 1 4 t 4 ( 3 t 4 - 6 t a - 1 3 t 2 + 1 6 t  + 2 0 ) ,  

Co = 2 ` 1 6 t a ( t 4 - 2 t 3 - 3 t 2 + 4 t + 4 ) ,  

= ~(x 2 + 2, 2 ) ' ( x  2 + z~ )  5 , 

z 2 = ½ h 2 ( l + t ) ( 2 - t ) .  
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Doing even more calculations, the integrals are found to be 

d'x/~=-~+-~ln ~, (15a) 

1 ~  ~o1 d4x dtI2 = 2 In 2 - ~ .  (15b) 

It is amazing to note that in this formulation the 5-dimensional integral already 
contributes to the one-instanton fluctuations. This should be compared with the fact 
that for SU(2) a consequence of Jack's result is a formula which does not involve a 
five-dimensional integral at all. Collecting all contributions we arrive at 

/~ = -38-1n/z - 1 6 ( ' ( - 1 ) - ]  In 2+41n a - ~ .  (16) 

This result is consistent with previous literature [7]. It is an easy matter  to evaluate 
(11) for the one-instanton case. Comparison with (16) determines the constant c to 
be 

c = 0 .  (17) 

4. The  't H o o f t  so lut ion  

The evaluation of/~ using (7)-(10) is straightforward but very cumbersome, as is 
already seen for the 't Hoof t  solution 

k x~ 2 1- 
i=1 (x _ y l ) 2  

in the two-instanton case (k = 2). 

Then 

aA, ~. 

'al&A' '~281A'\ / 0 0 
'~ 1 t~2A ' /~ 282A'\ ( 0 0 
-YlA' ba  = 0 
--Y~A' ' 8 TM 0 

0 --Y~A'/ N ~ ~IA 
0 - -Y2A' /  ~2A/ 

(18) 

From (9) follows 

£ = 
t Yl Y3 Y2 Y4 

Y5 Ul 
Y6 U2 
Ul Y7 
u2 Ys 

, d =  

I-T2 - y 4 t  

")/1 ")/3 
--'~6 --U2 
Y5 Ul 

--U2 --Y8 
//1 "Y7 

(19a) 
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with 

1 
ua - (yl _ y2)2{(Y ~ - y 2 ) A I ' ( A I ' Y 3  - -  A2"Y1) + ( y l  _ y 2 ) A 2 , ( A  1 3 / 4 _  A2,Y2)} ' (19b) 

and arbitrary yi. Setting yi = 8~s we get a basis of matrices cs and d~ in which the 8 × 8 
matrices 1~ [-1 and/~+_fcan be expressed as 4 × 4 matrices of quaternions. The results 
are stated in appendix B. They are much more complicated than the corresponding f, 
].-1 in the fundamental representation. 

For the evaluation of /~  in the multi-instanton case formula (11) is more con- 
venient. Casting b A into normal form, i.e., b +b = -2 ,  we have (cf. formula (56.16) of 
[5] or (73) of I) 

r : - k { ~ i n  t~ +4~"( -1)+ln  2}+½1n det M s  1 + 9 6 ~  I d4x In de t f - l [ ]2  In det [-1 

(20a) 

[where det M s  I is given by (26)] and 

P : 4 F + 2  In det M-1+8--~  I d ' x l n d e t f - l E ] 2 1 n d e t [ - 1 .  (20b) 

For the k-instanton 't Hooft solution we generalize (18) and find 

fi~ ~ = ~ixj + (x , 2 - y  ) &j, i , ] =  1 . . . . .  k ,  (21) 

-1  12 
Mildm = AiAj~tm + l~lArrtt~i] "t" (yi -- y ) ,~ii6t,,,, i,], m = 1 . . . . .  k (22) 

Noting that 

i~/. 1 clef Ai Ai 

is a unit matrix plus a matrix of rank 1 with 

d e t f  ~ = p ,  

we have 

k 
d e t f - l = p  ~ (x -y i )2= t~ .  (23) 

i=1 

Corrigan et al. [ 1 ] give an expression for det (M - 1) in a different parametrization [ 11 ] 
for the k-instanton 't Hooft solution. Since we need det (Ms 1 ) and det (M~ 1 ) 
separately, we give a derivation which is quite different. The result consists of 
graphical rules to write down det (MX 1 ) as a function of the instanton parameters. 
We see no way to derive these graphical rules directly from the rules for the 
evaluation of det (M -a) given by Corrigan et al. (adjusted to our parametrization). 
M -1 can be factorised into one part M s  1 which acts only on the symmetric part of the 
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tensor product  space and another  part MA ~ which acts on the antisymmetric part of 
the tensor product space: 

M - :  -1 -1 Sit, jm = M i l j m  + M i l ,  mj - M i ~ , l t ~ i m ,  i>~l, j>>-m, (24a) 

-1  -1  -1  
MAiz,p.  = Mil ,  i m -  Mit . , . i ,  i > l, ] > m ,  (24b) 

and 

det M -1 = det M s  1 • det MA ~ . (24c) 

Inserting (22) yields 

Ms-i~,im = ( 1 - 6it) ( 1 - 8ira )[AiAfltm + AtA,~Sq + AiA mSlj "~ A IAl~im q- (yi __ y t)2~ij~lm ] 

+Sa(1 -- 6im)[2A~Aj6.. + 2AiAmSij] , 

k > ~ i > ~ l > ~ l ,  k ~ j ~ m > ~ l ,  (25a) 

- I  
M a i l ,  ira = AiAiSlm + AlAmt~ii - A iAmSl i  - AIAit~im + ( y  i __ Y I)2 ~il~lm ' 

k > ~ i > l > ~ l ,  k > ~ j > m > ~ l .  (25b) 

By the elementary row transformation for i > l, 

At Ai 
row il -~ row il - --2Ai row n'" - --2At row l l ,  

M s  ~ is brought to triangular form and we read off 

k 
d e t M s  I =2k I-[ A~ 2 1-I (y ,_yS)2 .  (26) 

i = 1  r>s 

The computation of det MA 1 is not so easy. For a complete result see appendix A. 
Here  we only give a formula, which is exact for k ~< 3. For k > 3 it describes the 
leading behaviour when the instantons are far apart from each other compared to 
their scale size A/: 

d e t M A  ~ = R ( k )  l-I (yr_yS)2 ,  (27a) 
r>s 

with 

,.j=l (~-7-~-7~2 2 i.j',,=l (yi _yj)2(yj  _yl)2 

(>,, +>,i)(~,z + A m ) + . . . .  (27b) 
1 ,.~k I 2 2 2 2 

+-8 i.i,t,m=l )" ( y i -  yi)2(yl _ym)2 

The prime on the multiple summations means that terms where two indices are equal 
should be omitted. Note that n-fold sums only contribute for k/> n. 
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Collecting our results we arrive at 

F = - k [ 2 1 n / z + 4 ~ " ( - 1 ) + E l n 2 ] +  2 ~. lnA~+ 1 ~  l n ( y ' - y ' )  2 
i=1  r~,.s 

1 
I d4x In tSE] 2 In + 9 - - ~ 2  (28a) 

f =4F + 8 ~  I d4x ln ~ 2 1 n  ff + 2k ln 2 

k 

+4 ~ lnA~+4 ~ l n ( y ' - y S ) 2 + 2 1 n R ( k )  
i=1  r > s  

= -4k[~ ln  ix +4~ ' ( -1)  +~ In 2]+ ~__~11n Ai + ~ In ( y ' -  y ')  2 
r~.s  

These formulae complete the early work of Brown and Creamer [8]. 

We thank M. Liischer for useful discussions, P. Weisz for reading the manuscript 
and the referee for several useful remarks. 

Appendix A 

E V A L U A T I O N  OF det MA' 

From 

MX' (k)~t.i,,, = AiAfltm + A,A,,So. - X~A~6ti - AtAi6~ + (ye _ Y t)6ii6lm, 

k>~i>l, k>~j>rn>~l, 

we see: 
(i) Det MA' (k) is a polynomial in (y' - yS)2 and h 2 which is symmetric under the 

interchange of any two indices. Each term of the polynomial contains n factors 
(y, _ Y s)2 and ~ - n factors h ~ with ~ = ~k (k - 1) the dimension o f  the tensor product 
space on which MA' (k) acts. 

(ii) If all (yr__ yS)2 vanish, the rank of MA 1 is k - 1, as one sees by choosing as an 
orthogonal basis to ('s) for the tensor product space on which MA' acts: 

(r,s) - -  ,~ ( r )~ (s) ) ( r ) )  (s) 
(Oim - - " i  , -m - - " m " i  , r > S ,  

with 
k k 

i=i i=i 
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Thus for det MA ~ (k) to be non-vanishing, it is necessary that at least / ~ - ( k -  1) 
different (y '  -yS)2 are not equal to zero. It follows that each term in the polynomial 
must contain at l e a s t / ~ - ( k -  1) factors (y~_ y~)2, i.e., at most k -  1 factors A/2. 

Now for )tk = 0, det MA ~ (k) factorizes according to 

M~. 1 (k - 1) 0 

0 f-l(yk, k--1) 
• ~ • y J 

k - 1  k - 1  

A 

. k - 1  

. k - 1  

which means,  see (23), 

de t M~, 1 (k) = det M ~  1 (k - 1). t5 (y k, k - 1) + ~ ~ • g ,  

with unknown g. Because of the symmetry  proper ty  (i) we can repeat  this procedure 
for any hi, i = 1 . . . . .  k - 1 .  Compar ing the different expressions for det M ~  a (k) 
found in this way, we see that det M ~  1 (k) is determined up to a term of the form 

k 
I-L=1 h/2. But this term must vanish because it contains too many  factors of A~ 2 

accoring to (ii). 
Setting 

d e t M A  a (k) = R ( k )  l-I (yi _yi)2, 
i>j 

we find that R(k) is determined by the following requirements:  
(i) R (k) is a dimensionless polynomial  in A/2 and ( y ' - y S ) - 2  which is symmetric 

under the interchange of any two indices. The highest power  of A 2 is k - 1. 

(ii) R(k)[xk=o=R(k-1).p(yk, k - 1 ) = R ( k - 1 )  1 + / ~  1 (yk_y/ )ZJ  • 

(iii) R(1 ) - -  1. 

The solution is conveniently stated in graph theoretical language ]9]. 
R (k) can be expressed as the sum of all possible unoriented graphs with k vertices 

(labelled r = 1 . . . . .  k) and an arbitrary number  of links, such that no closed paths are 
formed. There is no restriction on the number  of links attached to one vertex, but the 
total number  of links in a graph is less than k due to the absence of closed loops. The 

graphs are evaluated according to the following rules: 
each vertex r gives a factor A 7 2 ; 

each link (connecting vertex r with vertex s) gives a factor A 2A 2 ( y ,  yS)-:; 
each set S of connected vertices gives a factor ~-i~s A2. 

Immedia te  consequences of these rules are: 
each isolated vertex gives just a factor 1; 
each vertex r with n ~> 1 links attached to it gives a factor A~ t"-~" 
the contribution of a connected part  of a graph is dimensionless. 



304 B. Berg, 3. Stehr / Quantum fluctuations of gluons 

One  easily sees that  requi rements  (i) and (iii) are met.  Realising that  for  hk = 0 only 
those graphs give a non-vanishing contr ibut ion,  which have not more  than one  link 
a t tached to ver tex  k, one also sees that  r equ i rement  (ii) is fulfilled. 

The  formula  (27b) given in the text was gained by adding all graphs with not  more  
than two links. The  numerical  factors in f ront  of the sums compensa te  double  
counting. 

Appendix B 

THE MATRIX ELEMENTS OF )~ [-1, AND b~" IN THE TWO-INSTANTON CASE 

We choose our  basis of matrices cr, dr [cf. (19)] in such a way that  the matr ix 
e lements  of )~ [-1 and ~_~ have some useful relat ions among each other:  

(i) ~ [-1,  ~bO are self-adjoint  (for all choices of c~ d,); 
(ii) they can be expressed as 4 x 4  matrices of quaternions  and we use the 

convent ion  

X + ' x  =X "X+=X~X~12=X 2, 

(iii) let m be one  of the matrices ~ [ -  1, ~_~/;: then the quaternionic  matr ix e lements  

re(h1, A2, yl ,  y2)ij, i , j = l , . . . , 4 ,  

fulfill 

re(A1, h2, yl ,  y2)2r,2~ = re(h2, A1, y2, yl)2,_1.2,_1, 

r e ( a 1 ,  a2 ,  y l ,  y2)2,,2,_1 = re(A2, A1, y2, y l )2r_ l ,2s  ' 

for r= l ,2;  s =  l ,2 .  
The re fo r e  it is sufficient that  here  we only list the quaternionic  matr ix e lements  

m11, m12, m13, m14, m33, m34. Using the following abbreviat ions:  

= (x - y l f ( x  - y b 2  + ~  ~(x  - y 2 f  + a  ~(x  - y b  2 , 

o" = ( y l  ya)2+2A~ +2A~,  

~- = ( y l -  y2)2+h 12 + h 2  ' 

we obtain the following. 
Matrix elements of[: 

o-2,6211 ~ = 2A 22 ( :  + h ~2X ~ )(yl  _ Y 2)2[(y 1 _ Y 2)2 _ 2(x - y 1)2 _ 2 (x - y 2)2] 

+ 2 , ~ ( y  i _ y2)2(,~ 2 + (x - y2)2) [~  + (x - y b 2 ( x  - y2)2] 

+4(rr - 2A 22)fi[~ - (x - y 1)2(x - y 2)2] 

+ 4 X  ~ ¢ ( x  - y 1)2(x - y 2 ) 4 ,  
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o'2fizf,2 = - 2 A  ~A 2(/5 + A ~A z2)(y ~ - y 2)2[(y ~ _ Y 2)2 _ 2(x - y ~)2 _ 2(x - y 2)2] 

- 2 A  1h 2~r~(y 1 -- y2)2 + 8A 1,~ 2 P i P  --  (X -- y 1)2(X -- y 2 ) 2 ]  

- 4 A  1A 2o'(x - y 1)2(X -- y 2)2(X - y 2)+(X -- y 1), 

Orp2[l 3 = --2~A l(y I -- y2)2(A 2 2 + (X -- y2)2)2(X -- y I)+ 

-4A~(x-yZ)4(x-yl)+ +4A31A2(x2 _y2)2(y1_y2)+, 
o'fizT~4 = 2A~A ~ (y~ - y 2)2(A 2 + 2 (X -- yl)Z)(X -- y 2)+ 

- 4 A  1a z z (x - yl)4(x - y2)+ + 4A 1A4 (x - y l )2 (y l  _ Y2)+, 

~L~ = 2 ( , ~  +(x - y~)~)(~ + a l~(X _ y2)~), 

2 2 _ y 2 ) + .  ~2f34 = - 2 a  la  2 (x - y ' ) ( x  

Matrix elements offf 1 (note  tha t  • 1  is i n d e e d  a q u a d r a t i c  p o l y n o m i a l  in x) :  

1 2 2 2 _y2 )2  4~-(yl-y2)2Ti1~ = ( ~ r - A ~ ) ( ~ - 2 A ~ ) ( x - y  ) + 2 A 1 A z ( x  

+ 2 A ~ ( o . _ A x 2 ) ( y l  2 2 2 4 y ) + 4 A 1 A 2 ,  

4~-(y '  - y 2)2jz~-~ = - a  l a  ~(o- - 2,~ 12 ) (x  - y ' ?  - ;~ ,,~ 2(0- - 2;~ ~ ) (x  - y 2)2 

+ A 1 A 2 ( y l _  2',4 A ~ 3 - - 3  1 ) ,  y ) --t4a 1A2 - A 1 A z o ' ( x -  y2)+(x - y 

4r(y 1-y2)E71~=Al(tr-A~)(yl-y2)2(x-yl)+-2A3-z" - y 2 ) + ,  

4"r(y 1 -- y 2)2711 = - A  1A 22 (y l  _ Y 2)2(x _ Y 1)+ _ 2A 1A 22 (~" - A 12)(yl _ y2)+ ,  

4¢/ '33 = 2~-(x - y ~ ) 2 + a ~ ( ~ - - a  22), 

4 q'f34 = /~ 21~ 2 

Matrix elements of ~b: 

2~-(y I - y2)2b~ '~ ,  = -o-2  + A ]  ( 3 o ' - 2 A  2 - 2 A ~ ) ,  

2r(y ' -  y2)2~/~12 = A1A2(3o ' -  2A~ -2A22) ,  

btb~/~33 = - 1 , 
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