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Evolution equations based on probabilistic interpretation of QCD are derived. The main improvement is the inclusion of 
exact off mass shell kinematics in parton branching, which permits a realistic Monte Carlo simulation of the jet evolution. 

In perturbative QCD the scaling violating Q2.depen_ 
dence of  structure and fragmentation functions formal- 
ly arises as a result of  summation over all orders in 
leading logarithmic approximation (LLA) [1 ]. In axial 
gauge the leading contr ibution is obtained by restrict- 
ing the sum over the tree diagrams with dressed propa- 
gators and vertices [2], while interference between dif- 
ferent diagrams can be neglected. A consequence of  
these approximations is that the evolution of  partons 
can be interpreted probabilistically [3], in fact the 
formation of  a jet of  partons initialized by a single 
parton resembles a shower due to an electron or a 
photon penetrating matter  [4]. Konishi, Ukawa and 
Veneziano [5] developed a simple set of  rules - Jet 
calculus - to derive expressions for inclusive multi- 
parton distributions and parton multiplicities based 
on LLA. Recently Bassetto et al. [6] extended some 
of these considerations to study e.g. transverse momen- 
tum effects for mult ipl ici ty distributions as well as 
preconfinement [7]. 

The formulas derived on the basis of  LLA are elegant 
and relatively simple. However, the simplicity is due 
to strong kinematic approximations and there are in- 
dications from, e.g. QED, that LLA can be quantitative- 
ly rather misleading. The main purpose of  the present 
work is to derive rules and quantities which preserve 
exact kinematical relations in the parton branching 
process. In this way one can estimate the size of  cor- 

rections to LLA. However, we have not really improved 
the QCD treatment beyond LLA. Our method is also 
suited to an efficient numerical calculation of  any ex- 
clusive or inclusive quanti ty at the parton level using 
Monte Carlo simulation. 

The kinematics relations are simplest when one uses 
as the scaled variable the light cone variable z denoting 
the energy + longitudinal momentum fraction of a 
parton from the parent parton: 

z = (E 1 + Plll)/(E + [P[) ,  (1) 

In the branching vertex p -+ p 1 + P 2  the following exact 
formula holds 

p2= p2 + + - -  (2) 
z ~ z ( 1 - -  z ) '  

where PT is the transverse component  o f p  1 perpendicu- 
lar to p. In LLA the dominant contr ibution comes from 

p2,  _2 p2 the region 1 ta2 '~ , thus p2 and z-distributions be- 
come independent.  In the phase space integral p l  2 and 
p2 are integrated up to p2,  which results in a numeri- 
cally significant contribution from a kinematically for- 
bidden part of  the phase space. 

Let us next consider the discontinuity of  a quark 
propagator or, in probabilistic interpretat ion the dis- 
tribution of  the valence quark of  (off  shell) mass Qo 
in the fragments of  a quark created e.g. in e+e - anni- 
hilation at c.m. energy Q >> Qo" As in LLA [1 - 6] we 
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shall consider tree diagrams only, further we shall re- 
place the dressed vertices and propagators by the run- 
ning coupling constants and bare propagators, while 
we keep the exact kinematics relations and the correct 
phase space integral. Remembering that the probabili- 
ty for finding a valence quark in a quark is unity, we 
obtain 

Pm(Q2;q21 . . . .  q22,p2 ) (3) 1 = N q ( Q  2) m=0 

where P0 = 1 and (see fig. 1) 
m 2 2 

Pm(O 2. q2 . . . .  q2m,p2)= f k~_l °es(Pk+l)dPk+l 
" ' - 27rp2+ 1 

Pk+l --Tk - 1 dZk ' 

4 (1 + Z2)/(1 Z) P(z) --- ~ - . 

(4) 

(s) 

For clarity we have assumed that gluons do not decay 
and in order to get a finite result we take q2 = Qg. The 
factor Nq (Q2) is the unbalanced renormalization con- 
stant which is left over, when dressed propagators aqd 
vertices are recombined into running coupling con- 
stants [2]. Alternatively we may consider eq. (3) as a 
definition of Nq(Q 2) according to the Kinoshita-Lee- 
Nauenberg theorem. Physically interpreted Nq(O 2) is 
the probability that the quark is created (in the e+e - 
annihilation vertex or some other hard process) direct- 
ly with mass Qo and hence does not emit gluons corre- 
sponding to the term U0 in eq. (3). 

To generalize eq. (3) to contain gluon decays we 
have to sum over all possible branchings of each of the 
gluons. If  there were no kinematic correlations between 
gluons and the valence quark under consideration in 
eq. (3), each branch would just contribute a factor 1. 
In the absence of such correlations there exists thus a 
renormalization condition for the gluon "form factor" 
Ng(Q 2) similar to eq. (3). Nq and Ng are the QCD 
analogues of  the Sudakov form factor. Due to the cut- 
off O0 they are both  finite, but will rapidly tend to 
zero, when Qo decreases. In the case of  QCD eq. (3) 

o 
' ,  pm*l P . . . . . . . . .  P2 

# \ \ 1 
qm . . . . . .  q2 q~ 

Fig. 1. A tree diagram contributing to eqs. (3), (4). 

contains c~ s (4Q2), and the condition c~ s (402)/7r < 1 
must be satisfied, hence O0 > A/2. The normalization 
condition (3) and the limitation to the class of  tree 
diagrams specify the solution completely without 
further approximations. It is simplest to represent the 
solution in the form of an integral equation as follows: 
Firstly we shall redistribute the factors Nq and Ng in 
such a way that the propagator for a parton of type a 
becomes 
Na(p2 ) 2 2 O~s(Pa)dP a 
Xa(pa2 ) 27rp 2 , (6) 

where p2 is the off  shell mass squared of the parent 
patton. As in eq. (3) at each vertex a ~ bc there will 
be a factor 

( Pa~bc(Zb) 0 p2 Zb 1 ~ Z  b d z b '  (7) 

where Pa~bc are suitably normalized Altarelli-Parisi 
decay functions without 6-functions. Sum of  the tree 
diagrams using rules (6 - 7) gives directly the cross 
section. Without loss of  generality we can assume 
Nq(Q 2) = Ng(O 2) = 1, the normalization condition (3) 
can then be written in the form 

Q2 Na(O2) 
1 =Sa(Q2  ) + f Na(p2-- ~ P a ( p 2 ) d p  2 , (8) 

Qg 
where r a ( p 2  ) represent the sum of all diagrams, where 
the parton a decays. Writting the decay explicitly using 
our rules ( 6 - 7 )  one gets 

r a (Pa  2) = ~ °%(p2a) 
2~rp 2 

X fPa__,bc(Z)O(p 2 p2 p2 z ~Z_ z] dz 

Nb(P 2) 
X - -  [6(p  2 - O2) + pb(p2) ]  

Nb(p2)  

x Nc(p2)[6(p2 0 2) 2 2 2 
- - ~ + Pc (Pc) ]dPbdPc  (9) 

Nc(p ) 
as the final result. The indicated sum applies only for 
gluons, in that case Pg = Pg~gg + Pg_.q~ corresponding 
to the two decay channels. We emphasize that the 
equation obtained does not involve any approximations 
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after the form of the matrix elements in terms of the 
Altarelli-Parisi functions and renormalization conditions 
(8) have been fixed. For a classical relativistic branching 
process this would be an exact solution. 

To assess the significance of eq. (9) it is important to 
see how it reduces to the known results in LLA. In view 
of the fact that we have not really rigorously solved 
QCD beyond LLA but only indicated a possible form 
of the generalization based on branching ideas, the 
fact that eqs. (8)-(9)  reproduce the LEA results is 
nearly as good a derivation of eqs. (8)-(9)  as the one 
given earlier. As pointed out above one assumes in 
LLAPa 2 >>p2b,Pcin a vertex a --' b,c, which decouples 
n2, p2 and z distributions, nevertheless one integrates 
pb ~ anCd pc 2 up to p2. Performing these approximations 
in eq. (9) and using eq. (8) in the integration over pb 2 
and pc 2, eq. (9) reduces to tlle simple LLA form 

[ , a ( p 2 ) , , , ~  as (p2)  fpa_~be(Z) 
2~p 2 

X O(p2- Q~_ Q2 ~ dz. (10) 
z 1 - z !  

As seen below this is numerically a very poor approxi- 
mation, since it grossly overestimates F a. Neglecting 
p2 dependence of a s and extracting the leading loga- 
rithms we obtain (C F = 4/3) 

Nq(Q2) ~ exp - CF (log 2Q2 - 3log • (11) 
Xn( @ o0 2-5 
If one could set a s = (~s (Q0 2) this would agree with the 
Sudakov form factor derived in ref. [8]. In our case, 
however, the steps leading to eq. (1 l) cannot be numer- 
ically justified. Among others, notice that eq. (11) does 
not satisfy the factorization property discussed below. 

In order to carry out a numerical solution of eqs. 
(8)-(9)  we first note that eq. (8) simply tells that 
F(Q 2) is the logarithmic derivative of N(Q 2) 

Fa(Q2 ) = - d O  ~ log Na(Q2 ) 

QZ Na(O2)=exp{_ f pa(p2)dp2} " (12) 

Substituting this into eq. (9) one obtains coupled non- 
linear integral equations for I 'a(p2),  which are rather 
easy and fast to solve numerically. The simplicity is 

due to the fact that Pa(p 2) is given in terms of 
pa,(p~), where x / ~  ~< @-7 _ Q0, hence the solution 
can be integrated in a single iteration. Values of Nq(O 2) 
obtained from this procedure are plotted in fig. 2. One 
can see that a change of Qo has a noticeable effect 
only at small virtual masses, which indicates the cor- 
rect infrared behaviours. The shape of Ng(O 2) is very 
similar, except that the slope is approximately a factor 
2 steeper than that of Nq(Q2). Fig. 2 also shows for 
comparison the LLA result based on eq. (1 l) [8]. Tile 
right hand side of eq. (11) describes a transition from 
the mass scale Q2 to Q2, which should be given by the 
ratio of N-functions. For comparison (in accordance 
with eq. (22) of ref. [8]) we therefore plot the function 

Nq(Q 2) = const 

(as (Q2)  ( s 31og0~2) } (13) Xexp ~ C F log 2 0 ~ - 2  

with s --- (100 GeV) 2 as a function of Q2 normalized 
' 2 . . . .  to Nq = Nn at O = s. The vahdlty of the denvanon 

[8] of eq. (13) is A~v/S ~ Q2 ,~ s. The present treatment 
clearly leads to numerically very important modifica- 
tions compared to LLA. 

As the kinematical constraints are correctly includ- 
ed it is straightforward to proceed to Monte Carlo 
simulation of parton branching. One simply has to 
generate three numbers z, p2, p2 at a given branching 
vertex according to the independent distributions P(z), 

2 2 + 2 2 2 2 
[8(p b - 00)  Fb(Pb)]/Nb(Pb ) and [8(p c - Qo) 
+ Fc(p2)]/Nc(p2), where N(p 2) and F(p 2) are the 
solutions of eqs. (8)-(9). If the values are outside the 

2 2 allowed kinematic domain, a new triplet z, Pb, Pc has 
to be repeatedly generated until the 0-function con- 
straint is satisfied. For gluons one actually must keep 
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Nq(O2) 
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0,= 0.B - j  
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Fig. 2. Nq(Q 2) plotted with Qo = 0.8 GeV, 2 GeV and 3 GeV 
(solid line). The LLA result N'q (dashed line) has been normal- 
ized toNq (Qo = 0.8 GeV) at (100 GeV) 2. 
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separately Pg.ogg and lPg~q~ as well as Ng~gg, Ng~q{ 
defined in an obvious way using eq. (12), since the 
generation of  the gluon mass determines at the same 
time the future decay channel. The above Monte 
Carlo simulation nicely demonstrates the probabilistic 
interpretation of our formalism. Once a parton has 
been created with definite momentum (and for gluons 
with the information about the decay channel) its de- 
cay is independent of  what happens to the other par- 
tons. In LLA the distributions of  z, p2 and pc 2 in a 
vertex a -+ b,c would also be independent, which is 
impossible due to kinematics. In our case these distri- 
butions are otherwise independent except that they 
are coupled by the 0-function. The normalization con- 
ditions (8), which are crucial for the correct cancella- 
tion of  infrared real and virtual singularities, together 
with the integral equations (9) take care of  the proper 
normalization of  the joint probability density. A 
quantity like Nq(O 2) is interpreted as the probability 
for a quark created fiom a parton of  mass O to get the 
mass Oo without kinematics constraint. Notice that 
with probabilistic interpretation all parton form fac- 
tors describing a transition (6) Q2 _+ pa 2 will be factor- 
izable Na(Q2)/Na(p2a), since the probability N(O 2 
-+ 002) (=- Na(O2)) = N(O 2 _+ p2) X N(p 2 -+ 002). Cor- 
respondingly the total gluon form factor Ng(O 2) is the 
product Ng = Ng_.+gg X Ng+q~, since the decay rates 
are additive Pg = I~g_~gg + Pg._.q~. In order to generate 
a gluon mass in practice one has to generate two mas- 
ses using Ng_+gg and Ng__.q~ independently and choose 
the larger mass. This is of  course distributed according 

to [8 (p2 _ O2) + Fg(p2)]/Ng(p2). In fig. 3 we have 
plotted the scaled momentum distribution of  a valence 
quark in a quark. D(plI/Q ) and D(I p I/Q) are our results 
for Q = 30 GeV, O0 = 1 GeV. DL~qA(Z) is the usual non- 
singlet fragmentation function, the moments of  which 
are 

Dq/qLLA (n) = [a s (Q2)/ot s (002)1 d~q , (14) 

with Q02 = 6 GeV 2. It is evident that the effect of  exact 
kinematics is to slow down the evolution appreciably, 
hence the standard estimates based on LLA can at 
best be qualitatively correct. Notice, however, that in 
our case the evolution ends at 4002(4 GeV 2 in fig. 3), 
since Na(Q2 ) = 1 for Q2 ~< 4Qo 2. in fig. 4 we have made 
a comparison with data on opposite side correlation 
from PETRA as measured by PLUTO [10] at 30 GeV. 
For this purpose we have included fragmentation into 
hadrons using a string picture [11 ]. Firstly we arrange 
all partons created in the evolution into preconfinement 
clusters [7]. After that each gluon is further split into 
qg:l using Pg_+q~ distribution: The resulting strings are 
split into hadrons with a Feynman-Field type algorithm 
[12] keeping the exact energy-momentum conservation 
for each string. Opposite side correlations should be 
sensitive to small deflection of quark and the antiquark 
due to nearly collinear gluon emissions. As pointed out 
by the PLUTO collaboration [10] as standard Monte 
Carlo program without QCD evolution was in slight 
disagreement with data on angular correlations. With 
our present formalism the QCD evolution seems to be 
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Fig. 3. Distribution of the valence quark in a quark according 
to the present parton evolution method with Q = 30 GeV and 
Qo = 1 GeV (solid line: D (p II/Q), z = longitudinal momentum 
fraction, dashed line: z = ratio of parton momenta). Dotted 
line: DL~ A fragmentation function, eq. (14) with Q~ = 6 
GeV2" ,~/ 
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Fig. 4. Comparison between PLUTO data [ 10] on opposite side 
angular correlations and the present result. The angle between 
contributing hadron pairs is 180 ° - 0 c. Solid line: with parton 
evolution, dashed line: no parton evolution, fragmentation of 
partons into hadrons is included. 
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sufficient to produce the required effect in rough agree- 
ment with data. 

In conclusion, we have presented a simple way of 
estimating the subleading log corrections to QCD evo- 
lution equations and shown that these corrections are 
likely to be sizeable. The method of generalizing QCD 
evolution equations leads in a straightforward way to 

Monte Carlo simulation of parton branching. First ap- 
plications indicate that agreement with data is improv- 
ed; the method can be applied to several other proces- 

ses. 
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