
Nuclear Physics B173 (1980) 365-396 
© North-Holland Publishing Company 

A N O M A L I E S  OF T H E  F R E E  L O O P  W A V E  E Q U A T I O N  IN T H E  
W K B  A P P R O X I M A T I O N  

M. L/~ISCHER and K. SYMANZIK 

Deutsches Elektronen-Synchrotron DESY, Hamburg, W. Germany 

P. WEISZ* 

II. Institut fiir Theoretische Physik der Universitdt Hamburg, W. Germany 

Received 22 April 1980 

We derive a well-defined, reparametrization invariant expression for the next to leading term in 
the small h expansion of the euclidean loop Green functional tp(~g). To this order in h, we then verify 
that ~p(~) satisfies a renormalized loop wave equation, which involves a number of local, but 
non-harmonic anomalous terms. Also, we find that the quantum fluctuations of the string give rise, 
in 3 + 1 dimensions, to a correction of the static quark potential by an attractive Coulomb potential 
of universal strength O/string = 1~'/7". 

1. Introduction 

It is conceivable  [1] that  a reasonable  zeroth approx imat ion  to the Wilson loop 

expecta t ion  ~ ( ~ )  in a n o n - a b e l i a n  pure  gauge theory can be ob ta ined  by assuming 

L(o')~(c¢) = O, 0 ~ o" ~ 2 ~ ,  (1) 

d e f  t~ 2 d e f  d 
L(tr)  = 6x,~(ty)6x,(o') ~-M4x'(o') 2 , x~ = do.X~,. (2) 

Here ,  c¢ deno tes  a closed, infinitely different iable  and double  point  free curve in 

R a, x ,  (cr) is a pa ramet r i za t ion  of ~ and  M a cons tant  mass parameter .  As it stands,  

the loop wave equa t ion  (1) does not  have a wel l -def ined meaning ,  because  the second 
var ia t ion  

62F 

~x,~ (o-),~x~ (,~ ) 
of a we l l -behaved  func t iona l  F is a d is t r ibut ion  in o" and A, which will in general  be 

s ingular  at ~r = A. The  conven t iona l  t r ea tmen t  [2] of this difficulty starts f rom the 

obse rva t ion  that  L(o-) has the form of a bunch  of ha rmonic  oscillator hami l tonians .  

Norma l  order ing  with respect  to a sui table  basis of crea t ion and  ann ih i la t ion  

opera tors  then  yields a wel l -def ined wave opera tor  :L(cr): .  The  t rouble  with this 

p rocedure  is that  the wave equa t ion  becomes  incompat ib le  with the r e q u i r e m e n t  that 

~ ( ~ )  is r epa ramet r i za t ion  invar iant :  
d e f  t R(o')O(c~) = 0 ,  R( t r )  = x~,(o-) - - - -  (3) 

6 x ~ ( o ' )  " 

* Supported by Deutsche Forschungsgemeinschaft. 
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In fact, we have 
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[R (or), :L(A):] = - 8 ' ( t r - A ) ( : L ( c r ) :  + :L(A):) 

d M  2 
+ ( 8 " ( o -  - A )  + 8 ' (o"  - 3 t ) ) ,  (4)  

6¢r 

so that any functional 4J satisfying (3) and 

:L(o-) : 0 ( ~ )  = 0 

must vanish. In the present context, we therefore find the conventional renor- 
malization of eq. (1) unacceptable. 

In this article, we derive the leading terms of the small h expansion of a functional 
integral representation [3] for 0(%0). Letting h ~ 0 is equivalent to taking M--> oo, 
while keeping %0 fixed. In this limit, one obtains an asymptotic expansion of the form 

0 ( ~ ) - M "  e -M2A~) ~ 2 -~, ( M )  0,(%0), (5) 
/ , ' - -0 

where A(%0) is the minimal area enclosed by %0. The overall exponential factor 
exp ( -M2A(%0))  has elsewhere been shown [4] to follow from the loop wave 
equation (1) and the assumption that 0(%0) decays smoothly for uniformly large 
loops. We here derive a finite and reparametrization invariant, but not very explicit 
formula for 0o(%°). Still, the expressions are explicit enough to investigate how the 
wave equation (1) is renormalized to this order  of 1 / M  2 and to compute the quantum 
corrections to the classical linear quark potential. 

At first sight, one might attempt to determine 0o(%0) by inserting the expansion (5) 
into the loop wave equation (1), thus obtaining an equation for 0o: 

8A 8 82A I 
2 6x.(cr) 8x.(o') + 6x.(~~x.(o') l  0o = O.  (6)  

The difficulty, however, is that the second variation of A is singular at coinciding 
arguments: 

82A =£x d - 2  Ix'(cr)llx'(A)[ R x , Z l n ½ d s + f i n i t e t e r m s .  (7) 
8x~ (cr)ax.  (,~ ) ~c (,:Is) 2 27r 

Here,  As is the length of the piece of %0 between x ,  (or) and x~, ()t), and R denotes the 
curvature scalar at x,(,~) of the minimal surface spanned by %0. A subtraction of the 
loop wave equation (1) is therefore unavoidable, once one assumes that 0(%0) has a 
smooth asymptotic expansion for M ~ oo (or, equivalently, for fixed M and uni- 
formly large loops %0). In particular, we cannot use the unrenormalized eq. (6) to 

compute 0o- 
Our paper is organized as follows. In sect. 2 we review the functional integral 

representation for 0(%0) proposed by Eguchi [3]. The large M expansion then 
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amounts  to evaluating the integral by the saddle point method.  We thus study surface 

fluctuations around the minimal surface spanned by c~ (sect. 3) and per form a 
gaussian integral to obtain ~Oo(~) (sect. 4). In sect. 5 we then show that 4t0 satisfies a 
renormalized version of eq. (6), which can be seen to stem from a renormalized, local 
loop wave equation replacing eq. (1). Finally, 00 is exactly evaluated for a large 
rectangular loop, giving quantum corrections to the static quark potential  (sect. 6), 
and conclusions are drawn in sect. 7. A number  of appendices are included, dealing 
with the rather involved technicalities that arise, when computing determinants  of 
differential operators.  In appendix F we also discuss an anomalous loop heat 
equation, which is not directly relevant to our investigation, but may be interesting 
for readers familiar with another  approach [17] to the quantized string theory. 

2. Functional integral representation for the loop Green function 

We first define a kind of loop heat kernel Kc[x]  as an average over  all fields &.(z) ,  
where z ranges over some simply connected, bounded region F in N2: 

Kr[x]  = f @cb. e x p -  S. (8) 

The action S is chosen to be [7] 

1 4fF 
S = s M  d2zlg], 

where 

[gl = det (gab), (9) 

gab =Oath • 0b&, a, b = 1, 2 ,  (10) 

is the natural metric on the surface in R a represented by &.(z).  The boundary 

condition ~b.lor = x .  in eq. (8) means that only those fields ~b. which map OF onto 
(with no further specification) should be integrated over. 

The stationary points of S are minimal surfaces in a special parametrizat ion,  where 
]g] = constant. Another  outstanding proper ty  of the action is its invariance under 
symplectic coordinate t ransformations in the z-plane, i.e., those transformations,  

which have unit jacobian. Since, by a theorem of Moser [5], any region F can be 
mapped  onto any other  F'  by a symplectic t ransformation provided only that the two 
have the same area, it follows* that Kc[x]  does not depend on the shape of F, but 
only on the area a of F. It has then been shown [3] that formally 

2M4  ~ K r [ x ] =  1 6 2 
Oa x'(o') 2 6x~, (cr)¢3x, (o') Kr [x  ] " (1 1) 

* We here assume that ~&. is invariant under symplectic coordinate transformations. This will be 
justified below in the WKB approximation. 
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The Laplace transform 
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ct9 

O(c~) = So da e-a/ZKr[x] (12) 

therefore provides a formal solution of the loop wave equation (1), which, by analogy 
with the one-particle case [3], can be expected to be something like a Green function 
for loops. 

Kr[x] is a reparametrization invariant functional of x,(o-). Superficially, this 
follows from the fact that the boundary condition on the fields ~b~, integrated over in 
eq. (8) does not refer to a parametrization x ,  (tr) of ~, but merely requires that the 
boundary of the surface described by ~b~, is c¢. The real question is, however, whether 
or not this boundary condition makes the integral (8) well-defined (disregarding 
ultraviolet divergences). That this is indeed the case, will be verified later within the 
WKB approximation. In particular, an ill-defined average over all parametrizations 
of g" effectively gets absorbed into the group volume factor stemming from the 
symplectic transformations, which leave F invariant. This group volume factor on 
the other hand, can be easily extracted from Kr[x] by the Fadeev-Popov method. 

As M ~ oo, we see that the integral (8) is dominated by the stationary points of S. 
The 1/M 2 expansion of Kr is therefore obtained by expanding (8) around the 
minimal surface enclosed by c¢. Let  q~,(z) denote a solution of the equations of 
motion implied by 6S = 0": 

aa(Iglg"bOb¢,~) = O, 

subject to the boundary condition 

(13) 

q~, (z (tr)) = x~, (or), for some parametrization z (or) of aF.  (14) 

q~,(z) is not uniquely determined by the loop % but only up to a symplectic 
coordinate transformation mapping F onto itself**. Eq. (13) implies that Ig] = 
constant and, since 

A(C~) = frd2Z [ g [ t / 2 ,  

we have 

Igll/2=A/a. (15) 

To compute ~Oo(C¢) we thus have to study the gaussian fluctuations of 4~, around 9, .  

* In what follows, gab denotes the metric (10) of the minimal surface described by ~0,. gab is the inverse 

of gab and indices are raised and lowered with these tensors. 
** If ~ bounds several minimal surfaces, we choose the one with least area. The critical case, where there 

is more than one surface with least area, will not be considered. 
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3. Properties of the fluctuation operator 

Consider a fluctuation 

(hu = q~ +erl~ + e2~:# +O(e3)  

around q~.,, which leaves the boundary ~ fixed, i,e. 

2 
I -- "~ t! t 

r l u o c x . ,  ~ ,  2x,ZXgOCx~. 

Then, up to O(e 2) we have 

AZ,  z A f 1/2 
m - 4 S = ~ a * e  ~ a  J i -d2z  pgl rt,.zl.~n~, 

where 

369 

(16) 

(along OF).  (17) 

(18) 

A . ~ n ~ = - o " [ l g [  1/20~(Igll/%Jb)]o.q,. ,  (23) 

which is again longitudinal. 
From eq. (23) we see that all modes of the form 

rh. = ]g]-l/2(OaA )EabOb~ta, , e a b =  --~:ba , El2 = 1 , (24) 

are annihilated by A,.~. These zero modes are a reflection of the invariance of the 
action S under symplectic coordinate transformations.  Namely, if &~, [eq. (16)] is 
related to g,. by an infinitesimal area preserving coordinate transformation,  they 

we have 

- - 1 / 2  1 / 2  ab &,~ =--Igl aolgl M~,Ob, (19a) 
MT.~ 6.~gab a b a b ~b c = +2(0 W.)(0 ~0~)-(0 ~o~)(0 q~,.)-g (0 ~.)(0cq~). (19b) 

Here ,  we have introduced various factors [gl 1/2 for later convenience in order to have 
a fluctuation opera tor  A~.~, which is invariant under general  coordinate trans- 
formations in the z-plane. 

A close inspection of A.~ reveals that it splits into a longitudinal and a transversal 
part  

L T A. .  = A.v + A.~,  (20a) 

A L.~, = QgoAo,~Q,.~ , AT .  = (6.o -- O,.o)Ao,~(8,~ - Q~v) , (20b) 

with Q~.~ the projector  onto the tangent plane of the background minimal surface: 

Otxu = (OaCp~)g ab(ObCv) . (21) 

More  explicitly, for a longitudinal mode 

n .  = o )aO~.  (22) 
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have the same action and consequently A~,~7~ = 0. Note that for the zero modes (24), 
the boundary  condition (17) reduces to Dirichlet boundary conditions: 

it = 0 ,  along OF. (25) 

In the space of longitudinal modes,  Akv has no other zero modes.  For the non-zero 
eigenvalues, we assert that they are precisely the same as those of the laplacian 

L = -Igl-a/20algla/2gabo~ (26) 

with Neumann  boundary conditions imposed: 

L v  = E v ,  nOOaV = 0 ,  

n a = gablgll/2Ebc2C ' 

Here ,  ds denotes the arc length element:  

Indeed,  defining 

along OF, (27a) 

d ~ c  c 
~s z . (27b) 

ds = (gab d z "  dzb) 1/2 = Ix'l do' .  

we see f rom eq. (23) that 

A~,~r/~ = Erh, ,  

Conversely,  

(28) 

! 
r/ .  oc x . ,  along OF. (29) 

v = l lgl-1/2Oa[Igll/2gab (ObcC.)~q.] 

solves eq. (27) if r/, is a longitudinal solution of eq. (29). 
We finally mention that in case of a planar curve c£, AT reduces to d - 2 copies of 

the laplacian L. In any case, A T is an elliptic differential opera tor  in the space of 
transverse fluctuations with Dirichlet boundary  conditions and has a discrete spec- 
t rum of (in general) positive eigenvalues. 

4. Computation of ~bo(~) 

The gaussian approximation to the integral (8) is now obtained easily, the only 
complication being that a symplectic group volume factor must carefully be extracted 
h la Fadeev-Popov .  A most convenient "gauge"  fixing condition is 

Cab (0a~0~)Obrh. = 0 (30) 
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which is similar to the background gauge condition used in gauge theories (see, e.g., 

ref. [13]). The outcome then is 

1{ A2W} Kr[X] = exp - M 4 - - +  , 
a 

(31) 

W = T r l n  A T + Tr  ln M~lgl L -  Tr  ln 
-YU"  

The first trace here is to be taken over  transversal modes  only. The boundary 
conditions for A T and L (the contribution of the longitudinal modes) are Dirichlet 
and Neumann,  respectively [cf. eq. (27)]. The trivial zero mode,  v = constant, of L is 
to be omit ted in the trace, of course. The determinant  of/_~ is the Fadeev-Popov 
determinant.  As a differential operator ,  L is equal to L [eq. (26)], but the boundary 

conditions imposed are Dirichlet rather  than Neumann.  
Of course, W is U V  divergent and must be regularized. The divergent parts of W 

can then be subtracted by adding appropriate  counter terms to the action S. To 
regularize the determinants  in eq. (31), we use the Pauli-Villars method*.  We thus 
introduce a set of large regulator masses M i and fixed numbers  ei ( j  = 1 . . . . .  t,) such 
that 

e, = - 1 ,  i eiM~" = 0 ,  (p = 1 . . . . .  u - l ) .  (32) 
/ = 1  j = t  

When the contribution of the corresponding Pauli-Villars ghosts is taken into 
account, we obtain a regularized expression for IV,,: 

Wreg = Wreg(A T) -]- Wreg(L) -  Wreg(/~), (33) 

where, for example,  

2 u 2 -] ej 
Wreg(AT) = T r l n / M z l g [ A T  [1 [ M ~ I g I ( A T + M ~ )  J } 

[ 2rr / = 1  I_ 2rr 

= T r { l n A T +  ~ e i l n ( A T + M 2 ) } .  (34) 
i=1  

Wreg is finite provided v ~> 2. To extract the divergent part  of Wreg as Mj -+ 00, we 
proceed as follows: first note that 

W r e g ( A T )  .~- l e o  dt(1 e '~ -- + ~ 8 i ) T r e  -taT. 
&) t \ j=l 

As t ~ O, we have 

2 
Tr e -taT = Z t-l/2at/2(AT) + O(x/t), 

I = 0 

* We use a version of this method familiar from instanton calculations [18]. 

(35) 
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and consequently, as Mj --> co, 

Wreg(AT) =--O~1(AT) L e,M~ lnM~ +2x/~/2(A T) L 
1=1 /=1 

 jM, 

+ cY0(A T) L ei In M 2 + Wpv(AT). 
j= l  

(36) 

Explicitly, the finite part Wpv is* 
oo 

Wpv(AIT)  = a o / " ( 1 )  - Io ~ { T r e  - t a t  -cqt - l -a l /2 t -a /2-ceoO(1- t )} .  (37) 

The divergent parts of Wreg are thus proportional to the Seeley coefficients oQ/2, 
which in turn can be calculated perturbatively. A table of the Seeley coefficients of 
d x, L and/~ is contained in appendix B. 

Summarizing, we have 

Wreg- d - 2 A ( ~ )  L eiM~ lnM~-]z/L(@) L ejMj 
4rr j = l  1 = 1  

+ (d 8 J =x In + W v(a + W,v(L) - W,v(£).  (38) 

Here, L(~)  denotes the length of rg, and x is the integral of the curvature of the 
minimal surface: 

x ( c ~ )  = Ird2z [gll/RR, R: curvature scalar**. (39) 

Eq. (38) can be simplified noting that (appendix C) 

Wpv(L) - Wev(/~) = in A(c~) - x (c£) + C,  (40) 
4~r 

where C is a constant. Wpv(A x) is perhaps also calculable. In any case, it is a 
well-defined functional of the background field ¢~, and the parameter region F. 
Suppose that i~, (z), z ~/~, is another solution of the field equation (13) describing the 
same minimal su]'face bounded by c£ as q~, does. Then, there exists a mapping 
f :  F ~ ff with constant j acobian such that q~,(z)= i , ( f ( z ) ) .  Since A T is invariant 
under general coordinate transformations, it follows that the spectra and hence the 
determinants of AT(q~) and AT(if) are identical. We therefore can consider Wpv(A T) 
to be a functional of ~ alone, which, as such, is independent of / ' .  

* One can show that  Wpv = -~"(0), where ~(s) is the zeta function of A x. 
** R is twice the gaussian curvature. 
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To obtain tO(cg) from Kr[x] we finally have to integrate over a [cf. eq. (12)]. Since 
Wr~g is independent  of a, this is easily done: 

tk(cg) = CM e-M~A(~e) exp { ~ 2 A  (cg) i ei M2 l nM2 
i=1 

+~dL(cg) ~ eiMj+&x(cg)( i eilnM~ +I ) -~WPv(AT)}  . (41) 
i=1 bqT \ i = 1  

The most divergent term can thus be absorbed in a renormalization of M 2. The term 
proportional to L(Cg) can be removed by a wave-function renormalization 

~0(~) + e-"L(~O (cg) (42) 

(such a renormalization is also needed to define the Wilson loop expectation value in 
perturbation theory [6]). To remove the logarithmic divergence, we have to add a 
counter  term 

(43) 

to the action, where gab and R are the metric and curvature scalar of the surface 
~b~(z) to be integrated over in eq. (8). A new dimensionless coupling constant y 
appears here, which is not too surprising, since the integral (8) is superficially 
non-renormalizable.  

To sum up, we obtain the following renormalized WKB approximation to the loop 
Green function: 

gtren(cg) = CM e -M2a(~) exp {yx (cg) _ ~ Wpv(AT)}. (44) 

A finite wave-function renormalization factor [eq. (42)] has been omitted here, since 
it does not influence the renormalized wave equation (cf. subsect. 5.3) in any 
essential way. Also, if 0(c~) is identified with the Wilson loop expectation value in 
QCD, such a factor merely amounts to a finite quark mass renormalization. We 
emphasize that although we were unable to produce an explicit formula for 
Wpv(d'r), 0ren(~) has been shown to be a well-defined and reparametrization 
invariant functional of x~(o-). We finally mention that eq. (44) could also be derived 
formally starting from 

g,(cg) = f~lo~=-x, @4'~, exp -M2ag[~b], 

where 

~¢[4 , ]  = Ird2x Igl ' / 2  
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is the area of the surface described by 4~.(z). Indeed, noting that 

fF 1/2 T "-~[~] = ~ [ ~ ]  + e 2  d2z Igl rI.A.~,'rl. + 0 (e3)  

for fluctuations (16) around a minimal surface, one obtains eq. (44) by a saddle-point 
integration as before,  except that one must be rather cavalier about  various mean-  
ingless measure  factors, which appear,  when the Fadeev -Popov  procedure is applied 
to deal with the longitudinal modes. 

5. The renormalized wave equation 

In this section, we investigate to what extent the renormalized amplitude ~Oo given 
by eq. (44) satisfies the loop wave equation (6). This involves two steps: first we must 
find a manageable  expression for the second variation of A(C¢) and secondly we must 
compute  

a T A ~((¢1 p .  ~ Wpv( ) and P" 6 x .  " 

For notational convenience we use the abbreviat ion 

8.4 
P~" = ~x. ' (45) 

5.1. SECOND VARIATION OF THE MINIMAL AREA A(~) 

In terms of the field ~0.(z) [eqs. (13) and (14)] describing the minimal surface X 

spanned by %~, we have 

p .  = Igl -l/2(Oa(~tt) ~ab (Ob~v)X iv. (46) 

p,.(o-) is thus a vector in the tangent plane of X at x~,(o-). Fur thermore,  

p • x ' = 0 ,  p 2 = x , 2 ,  (47) 

so that 

8p~ (~) = 0 

for any longitudinal variation 3x,.(A) of qg, which vanishes, when A is near tr. To 

compute  

6 2 A  

6x~ (~r)6x~ (,X) 

for o- ¢ A, it is therefore sufficient to consider transversal variations of c¢ only: 

(x ' .  6x)(A) = (p • 6x)(A) = 0 ,  8x.(A) = 0 ,  forA near tr.  (48) 
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For such curve deformations,  we have 

a p .  (o-) = ]gl -a/2 E~, {(0oa,p. )(z )(ow~)(z ) + (oo,p.)(z )(Oba'p~)(Z)}~ = ~ c~X '. (~r). 
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(49) 

&p,. is a solution of the linearized field equation (13): 

a~,~&,. = o ,  ( s ~ ) ( z ( a ) )  = S x ~ ( a ) .  (50) 

Since 8x. is transversal, we may assume 8¢,, to be transversal, too (cf. sect. 3). To 
solve the boundary  value problem (50), we introduce the transverse Green function 

G T defined by /iv 

T A..G.o(z,  w) = 1g1-1 /2 (8 ,o  - O ~ z o ) 6 ( z  - w )  , (51a )  

G v G T O.~ ~o= ,~O.o=O, (51b) 

T T G.~(z ,  w)lw~or = 0 G. . (z ,  w)]~.~r = • (51c) 

By Stokes '  theorem we then obtain 

IF' 1/2 T T &o.(w) = d 2z Ig[ {6~o(z)Ao~a..(z , w)-(Ao.&o.)(z)Go~.(z, w)} 

1/2 bc T = dz ~ Eaolg[ 8xo(z)Mo.acG.~,(z, w) 
F 

2¢r 

= - J o  dA ' ~ T Ix (A)lSx.(A)n O~G~,(z(A), w) 

[n ~ denotes the normal vector (27b)]. Inserting this into eq. (49) finally gives for 

o ' ¢ h  

62A 
[x'(~r)ln~(cr)O.GT~(z(cr), z(a ))~bnh(a )lx'(a )[ . (52) 

6x .  (cr)ax~ (a ) - 

Of course, this is not a very explicit formula since the Green function GT. is not 
generally known, However ,  it is good enough for our purposes;  for example,  the 
short-distance expansion (7) can be derived on the basis of eq. (52) (subsect. 5.2 and 

appendix D). 

5.2. FIRST VARIATION OF x AND Wpv(AT) 

To check eq. (6) we only need to know how x and Wpv(A T) change, when cg is 

deformed along the minimal surface X it spans. Thus, let 

8x. = 8zaaa~,  (53) 
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so that 6x and 8 W p v ( A  T) are the variations of x and WPv(AT), when the background 
field ~ ,  is kept fixed and the paramete r  region F is varied according to 

z ~ (o') ~ z "  (o') + 6z  a (o').  (54) 

We here make  use of the fact that ~ and the eigenvalues of A T are independent  of F 

as long as q~, satisfies the correct boundary  conditions along OF. From the definition 
(39) of x it now follows that 

8~ = 8zae.bZ'b  lg[1/2 R , 

and therefore 

t~X 
p ,  ~ - -  = x ' 2 R .  (55) 

ox,, 

To compute  8Wpv(A T) is more  difficult. Let E be an eigenvalue of AT: 

A.~v~ = E v . ,  Qu~v~ = 0 ,  

Ird2Z I g l ' %  2 = 1 

When OF is varied we have 

Integrat ion yields 

It follows that 

v. lor= O, 

A.~6v~ = 6Ev~. + E 6 v .  , Q.~Sv~ = 0 ,  

~3v~, + 8z  a Oav~. = O, (along OF) .  

t~E = I F d 2 z  Igll/2(ut~At~ut~l)v -- 6ut~A~vuv) 

2¢r 

= -  Io do" [X'(cr)l~za(~)nb(~r)(OaV • obv)(z(cr))  . 

6 E  = _ x , 2 ( n a O a v ) 2  . (56) 
P~" 8x~, 

Next we apply this formula to compute  [cf. eq. (34)] 

6Wreda  T) 
P" 8x,.(o-) 

p a T ~ T , M j  / 
= -  x In 0a G,., .(z, w) + I2 Eic., . .  tz, w bnblx' , 

i = 1  .J ~ z=w=z(o') 
(57) 

where G~'~ M denotes the massive Green  function of d ~ .  We thus see that except for 
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the Pauli-Villars regulator contribution, which subtracts the short-distance 
• • • a T ~ b smgulanhes of n OaG~.f.Obn , p.(t3/t~&.) W~g equals the second variation (52) of A at 

coinciding points. Now, in the limit where first tr-:. A and then M/--> co, we have 
(appendix D) 

a .-,T,M i, W)~bnb I e]n C3at.r~ ~Z, 
j = l  z=z(o-) 

w = z ( X )  

d - 2  R d - 2  (p • x " )  2 

7r(As) 2 [ln½As-F'(1)+¼d]q 12~- (xn) 3 

+ i e i [ ~ 2 M ~  lnM~ d - 2 p _ : x "  . + R  M2 ] 
j=l 4 ]x,i 3 ~'uj 4~r m , (58) 

where 

A 

As = I~ do) ]x'(oJ)[ (59) 

is the length of the (shorter) arc between x (or) and x (A). 
From general principles, we known that the short-distance singularities in eq. (57) 

must cancel. Via eq. (52), we thus infer the validity of the short-distance expansion 
(7). Defining a finite part 

~2A 
F.P. 

~x.(A)~x.(~) 
•2 A t 

= lira / 
d-2[x'(o-)[Ix '(A)l ~ } 

t- - -  t- x ' (h)2  In ~As (60)  
77" ( A s )  2 

eq. (57) becomes 

P, 
6Wr~g=F.p" 6 2 A  1 ( F , ( 1 ) _ ¼ d ) x , 2 R _ d - 2 [ p  . x"] 2 

~3x~, 6x~.~3x, 21r 12rr k x '2 ] 

- ~. ei x'ZM~ l n M ~  d - 2  " '2R " 
i = 1  4 ]X~ M~.+~-~--InM/ . 

Finally, noting 

t ~ l ( A T )  d - 2 x , 2  
P" 6&, 4¢r ' 

(~Ot'l/2(AT) d - 2  p • x" 
P" ~x.  8 4 ~  Ix'l ' 

6a0(A T) 1 
x n R  , p/.L m 

t~x~ 4~r 
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we see from eq. (36) that the variation Wpv(A T) is finite indeed as Mj ~ co: 

6WpV=F.p" 62A l l r (F, (1)_¼d)x ,2R - d - 2 [ p  . x"] 2 
Pc 6x----f- 6Xc6X~ 12~ \ x '2 ] " 

(61) 

5.3. A LOCAL R E N O R M A L I Z E D  W A V E  E Q U A T I O N  

Summarizing the results of the preceeding subsections, we see that the WKB 
amplitude, 

0o(q¢) = C exp {yx (q g) - ~ Wpv(AT)}, (62) 

satisfies the following renormalized wave equation, which replaces eq. (6 ) :  

{2pc ~ + F . p .  62A d-2{p 'x"~2_~__~(F , (1 )_¼d+4ccy)x ,2R}Oo=O 
6x,  6Xc6X c 12~" \ x '2 ] 

(63) 

The divergent functional laplacian acting on A has thus been replaced by its finite 
part and two completely new anomalous terms must be added. 

Since R and p~ depend non-locally on the curve (¢, eq. (63) is not local. However, 
we can consider it stemming from a local, renormalized (up to the second order in 
1 / M  2) full wave equation, which replaces the formal eq. (1). To see this, note first of 
all that when the local operator 

1 6 
/~c(o r) = - M 2  6Xc( t r  ) (64)  

is acting on a wave function ~O(q¢) of the form (5), we have 

/3c (o')t9(c~) = pc (o')~(c¢)(1 + O(~22))  . (65) 

The anomalous terms in eq. (63) can thus be rewritten as local operators acting on the 
full amplitude ~/,(q¢), provided they are polynomials of Pc, P~ . . . .  and local functions 
of x'~,x'~ . . . . .  This is obviously the case for (x'2)-Z(p • x") 2 and a little algebra 
(appendix E) shows that along c¢ 

2 ,2 .2 
R = - ~ g { x  x - ( x " x " ) 2 - 2 ( x  ' ' ' p ) a + p 2 p ' 2 - ( p ' p ' ) 2 } .  (66) 

We thus obtain the following reparametrization covariant, local equation: 

6 2 M2 d - 2  Ix'(tr) I Ix'(,~)l 
[ - l i ra  6xc(o.-~xc(a) ~r t ~- ,~ (~ l s )  2 

M 2 1 
2zr x'2/~ In ~As] + M4x '2 - M E  d - 2 [ x "  p~ 2 

- 12~r  \ x ' 2 ]  

m 2 
2~" (F'(1) -¼d + 41rv)x'2/~} 0(c~) = 0 ,  

where /?  is equal to the expression (66) with p replaced by i0. 

(67) 



M. Liischer et al. / Free loop wave equation 379 

The renormalized wave equation (67) has no no practical value of course, but it 

shows that the WKB amplitude (44) does not violate the fundamental requirement 
that the interactions of the string bits with each other are short ranged (this is 

certainly one of the basic assumptions to be made, when linking the string theory to a 

non-abelian gauge theory [1]). We do not expect eq. (67) to be valid to all orders of 

I / M  2. Rather, the full wave equation is likely to contain an infinite number of 

anomalous terms involving higher powers of 1 / M  2 and/3 ,*  as well as new free 

parameters like y. It is conceivable then that upon summing the large M expansion, 
the wave equation becomes non-local within a range of order 1/M. 

6. Quantum corrections to the quark-antiquark potential 

The potential V ( R )  between two infinitely heavy quarks at a distance R due to the 

glue string between them can be extracted from 6 (~ )  by considering a fiat rectan- 

gular loop c~ with side lengths T and R and taking T to infinity: 

4 j ( ~ g ) - e x p -  T V ( R ) ,  ( T - ~ z ) .  (68) 

From the WKB formula we first of all obtain a linear potential M2 R,  but there is also 

a quantum correction to this classical result: we shall show below that 

VWKB(R) = M 2 R  d -  2 Ir R-1  + constant.  (69) 
2 12 

Thus, the quantum fluctuations of the string give rise to an attractive effective 
Coulomb potential in 3 + 1 dimensions. The "coupling constant" 

1 
Ogstring ~ 1~77"  ~ 0.261 . . .  (70) 

is universal: it does not depend on any parameter at all. For dimensional reasons, we 

expect that eq. (70) is exact, i.e., the corrections of V ( R )  due to higher orders of the 
1 / M  2 expansion decrease more rapidly than R -1 for R ~ ~ .  We emphasize that eq. 

(69) is valid for large R only and is not to be compared with the perturbative quark 

potential, which is accurate for small R. 

We now proceed to prove eq. (69). For a flat loop ~, x (~)  is zero, of course, and 

Wpv(A T) = (d - 2) W p v ( - A r ) .  (71) 

Here, F has been identified with the region bounded by q¢ and Ar = 0a0a is the 
laplacian in _F' with Dirichlet boundary conditions imposed. Although W e v ( - A r )  is 
not generally explicitly calculable, one can prove the following (appendix C): let 

'~ Using p2= X,2, the expression (66) can be reduced to a polynomial of only second degree in p. 
However, to verify the reparametrization invariance of the resulting formula, one has to use p2 = x,2 
again. Since this relation is no longer valid, when p is replaced by/~, the alternative/? would not be a 
reparametrization-invariant operator. 
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D C , (  - )°  
R V 

A B 
I., T 

Fig. 1. A rectangular Wilson loop c¢ with smoothed out corners. 

f ( z ) ,  z ~ F, be a holomorphic mapping of F onto some other region/~. Then, 

l@~ fo F'abZmz'b W p v ( - A r )  = Wpv(-AC) + do ,2 In 1o/I  ~ 
F Z 

I t + 127r dZz G In IOzfl~o~ In I o / I  ~ , (72) 

where z a(o ") is any parametrization of OF. We apply this formula to the curve 
shown in fig. 1, i.e., to a standard Wilson loop with smoothed out corners at 
A = - } i R ,  B = T - ½ i R ,  C = T + ~ i R  and C = } i R * .  It is understood that as T ~ c o ,  
the shape of the curve between B and C, and D and A, respectively, is kept fixed. 
Next, we choose 

e ~z/R -- l 
[ ( z )  - e~Z/R + 1 '  (73) 

which maps the strip 

{z ~ CI-½R < I m z  <½R} 

onto the interior of the unit disk. f maps F, the region encircled by ~, onto a domain 
/~, which is shown in fig. 2. 

Fig. 2. Image of f '  under the holomorphic mapping (73). When T ~ o G the shaded area near 1 smoothly 
shrinks to zero. 

* A strictly rectangular loop is not appropriate, because corners give rise to additional divergences, 
which have not been subtracted from Wpv(--Ar). 
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To determine the quantum correction to the potential V ( R )  we have to evaluate 
W p v ( - A r )  for T -> 0o. In this limit,/z smoothly approaches a bounded region so that, 
in eq. (72), Wpv(-At ~) does not contribute to the quark potential. Noting 

O J = --R-2 7r e ~ z / n 2 rr - ,, z / n 
(e,,Z/n + 1)2-~ ~ -  e , (Re z --> oo), 

we see fur thermore that as T--> oe 

2 c Eabztaz"b.~ = - r T f  B do .~abZ'aZ"bZt ~ ~ r d a  In loaf[ 2 +0(1 )  

27r 2 
= - T  +O(1)  

R 

(the integral in the coefficient of T is just the total angle, about which z'  rotates, when 
one runs along OF from B to C, and is therefore independent of the precise shape of 
the curve). Finally, noting 

2 2 
37" # 2  77" 

IOz In Io#12f = ~ .  - ,  ~ -~ ,  (Re z -,, oo) ,  

we obtain 

Altogether,  we have 

f r d 2 z  IO~ In IOJfl2=RT+O(1). 

77" 
W e v ( - A r )  = - T + O(1) ,  (74) 

12R 

which proves eq. (69). 

7. Conclusions 

The fact that the WKB approximation to the string Green functional ~(c~) derived 
in this paper satisfies a renormalized local wave equation [eq. (67)], which is 
compatible with reparametrization invariance, is encouraging and feeds our hope 
that the classical Nambu-Go to  string theory can ultimately be quantized without 
violating fundamental principles. To leading order in h, the renormalized wave 
equation reduces to the formal loop wave equation (1), but in the next to leading 
order  a few local anomalous terms appear. That these are not harmonic, i.e., not 
quadratic in x~, and/3, ,  shows once more that a simple-minded normal ordering 
subtraction of the formal loop wave operator  L(cr) cannot work. The appearance of 
anharmonic quantum corrections to the loop wave equation is not totally surprising 
from the point of view of the classical string theory either, since the classical phase 
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space is a complicated non-linear manifold. Also, it matches with the observation 
[14] that random surfaces on a lattice must have some self-interaction, if the 
associated partition function is to be finite. 

The most interesting physical result of our investigation concerns the potential 
between static quarks due to a relativistic (glue) string connecting them. Namely, we 
found that the transverse zero-point vibrations of the string produce an effective 
attractive Coulomb potential, which adds to the classical linear potential [cf. eq. (69)]. 

The strength of this Coulomb potential turned out to be universal and exactly 
calculable. In 3 + 1 dimensions, we obtained astring= 0'261 . . . .  a value, which is 
about what one gets from fitting the charmonium levels with a non-relativistic 
potential model (Eichten et al. [ 15 ], for example, quote 0.52 as their favourite value). 
A detailed phenomenological discussion is premature,  however, since, e.g., we do 
not yet know what precisely the kinetic energy associated with the collective motion 
of the string is, but expect it to contribute substantially to the S-P level splitting. 

The meaning of the superficial non-renormalizability of the integral represen- 
tation of the string Green functional t)(~) [eqs. (8), (12)] is not clear to us, but we can 
think of various possibilities. It is, of course, conceivable that the quantized string 
theory cannot live without an ultraviolet cutoff. On the other hand, we cannot 
exclude the possibility that a renormalizable expression is obtained after summing 
the large M expansion (or parts of it). This is what happens in the three dimensional 
non-linear o--model, where the 1 /n  expansion is renormalizable, but the canonical 
small coupling expansion is not [16]. This non-perturbative issue can perhaps be 
studied within the large d ( = space-time dimensionality) expansion, to which ~ (~)  
appears to be accessible. A third possibility to understand the non-renormalizability 
of the large M expansion is finally suggested by the renormalized WKB loop wave 
equation (67). Namely, it might turn out that the full renormalized wave equation is 
effectively non-local with a range of order 1 / M ;  in other words, that the string 
fattens upon quantization. It is conceivable then at the infinitely many parameters 
arising from the non-renormalizability of the theory merely reflect the existence of 
many different self-consistent non-local string models. 

One of us (M.L.) would like to thank the staff of the Theoretical Physics Division of 
the Tel-Aviv University for hospitality and interesting discussions. 

Appendix A 

A MORE EXPLICIT FORM OF AT 

The transverse fluctuation operator  A T acts on modes r/~, orthogonal to the 
minimal surface -Y described by q~,, i.e., modes satisfying 

~7,~G~o. = 0 ,  a = 1, 2. (A.1) 
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To compute  the Seeley coefficients of A T and the short-distance behaviour of the 

massive Green  function G~'~,  we first eliminate the constraint (A. 1) by introducing a 
suitable moving f rame along Z. With respect to the moving frame, A T reduces to a 
second-order  elliptic differential opera tor  acting on u n c o n s t r a i n e d  wave functions 

/~i(Z), Z e F ,  i = 1 . . . . .  d - 2 ,  aidar = 0 .  (A.2) 

Standard perturbat ive techniques then apply to this form of A T. 
The moving f rame along Z is built f rom the vectors 

0aq~,,, e~,, (i = 1 . . . . .  d - 2 )  (A.3) 

satisfying 

i e i ' i e . = 8  'I, e ' G q ~ = 0 .  (A.4) 

Of course, the transversal basis vectors e i are not unique, but any two choices e i and 
~ i  e are related by a gauge transformation 

= A i e  , A e O ( d  - 2). (A.5) 

As z varies, the f rame moves according to 

c i i 
aaOb~p~ = F ~ b  a~p~ + V a b e ~  , 

(A.6) 
C3aei i j  j T r i  b c ~  = - A a e .  --  V a b g  O c q ~ ,  

the connection coefficients being 

F~b 1 ~d, = ~g t3agbd + 3 b g a d - - O d g a S } ,  
(A.7) 

Vi,~b = - O a e  i • Obq~, A ~  = e i • aae i 

[gab is the metric of Z, cf. eq. (10)]. Under  a gauge transformation (A.5), viab 

t ransforms like a vector and A~ like a gauge field. 

In order  that a metric gab and a set of connection coefficients V~ab = V~a and 
A~ = - A ~  [g~ determines FCb via eq. (A.7)] stem from a minimal surface as 
described above, it is necessary and sufficient that 

e~b { GF'~c  e d i . . ,  e,~, - F ~ f  b~ + V a ~ v b ~ g  ~ = 0 ,  (A.8) 

-Fa~V~d +A~Vb~} = 0 ,  (A .9 )  

i j  i k  k i  ~ r i  t r j  c d l  
e~b{OoAb + A . A b  - V ~ V b d g  t = O  (A.IO) 

a b  t r i  G l g l = 0 ,  g vob = 0 .  (A.11) 

Namely,  the first three relations are the integrability conditions for eq. (A.6), 
whereas eq. (A. 11) guarantees that the surface is minimal. 

Any transversal mode  rl~ can be represented by 

i 
r l .  = e~2t i .  (A.12) 
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After some algebra, using eqs. (A.8)-(A.11),  one finds 

= e ~ ( H A ) i ,  A ~.rl v i 

where H is given by 

(A.13) 

H = --Igl-1/eOalgll/2gabOb + U, 
(A.14) D ~ =  ii iv -1 i i 6 0 a  + A ~ ,  U" =lgl ~ac~dVobVcd. 

Obviously, H is an elliptic differential operator,  which is gauge covariant and 
invariant under general coordinate transformations in z-space (provided the fields 
gab, A a  and Vab are transformed appropriately). H also represents A T in the sense 
that if 

AVrl = Erl, O',l = O, frd2Z Igll/2r~ 2 = 1, (A.15) 

then 

t "  
HA = EA , Jrd2z Igll/ZA 2 = 1 (A.16) 

where r/ and A are related by the moving frame 

i 
Ai = e i • "rl, rh,  = e , A i .  (A.17) 

In particular, the Seeley coefficients of H and A v are the same and their Green 
functions are simply related. 

Appendix B 

T A B L E  O F  S E E L E Y  C O E F F I C I E N T S  

Let A stand for any of the operators H (which is equivalent to A T, cf. appendix A), 
L or [.. We define its heat kernel by 

(~7+ a)K~(z ,  w ) = 0 ,  lim Kt(z,t_,0 w)=lg l -1 /2~(z -w)  (B.1) 

and appropriate boundary conditions along OF, i.e., Dirichlet for H and /_7 and 
Neumann for L. For any test-function f, which is C °o in the closure of F, one has* 

d2z [glX/2 f (z  )K,(z, z) ,~o= E t-'/2tO,/2(f[A ) + 0 ( 4 0 .  (B.2) 
l=0  

* For  A = H,  Kt  also car r ies  indices  i, j = 1 , . . . ,  d - 2 .  Eq.  (B.1) is to be r ead  as a ma t r ix  equa t ion  in this  
case,  and  the  @t/2's are  mat r ices ,  too.  
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The Seeley coefficients au2(A) are then obtained by 

cq/2(A) = Ou2(f = I [A) ,  (A = L, L ) ,  
(B.3) 

al/2(H) = Tr ~l/2(f = 11H). 

They are the coefficients appearing in the small t expansion of the trace of the heat 
operator:  

t ~ 0  2 
Tr e t A  = Z t-uzat/2(A) + O(x/t) . (B.4) 

/ = 0  

Seeley coefficients of various operators have been calculated previously. The case 
without boundary is discussed in Gilkey's book [9], and the laplacians L and/~ have 
been considered, e.g., by Kac [10] and by Stewartson and Waechter  [11] for gab = 6ab, 
and by Balian and Bloch [12] for general gab. We computed the Seeley coefficients of 
A T, L and/~ by first choosing coordinates such that 

F = { z c R Z l O < z a < l } ,  g a b O C 6 a b ,  

and perturbing about the case with constant metric (and • • u vanishing A a, U'I in the case 
of H) .  We do not give any details here, however, but merely quote the results: 

6,1 
ii 

Jo ds f , (B.6) ~ 0 1 / 2 ( f l H ) = - 8 - - ~  r 

= ¢~u f ~0~(f]H) 24~- Jor dsna{30af -2(vs~a)~ 

1 Irde z igll/2{6UR -1 i i -6 lg[  %o%dVabVcd}f. (B.7) 
+ 24¢r 

The notation is as follows: ds is the arc length element (28), n a denotes the normal 
vector (27b) and Vs the covariant derivative along OF: 

d 
~ sZa = -~S Za -- 1"CabZ b 2c , (B.8) 

The connection coefficients F~b and V~b are defined in appendix A. Finally, the 
scalar curvature R is given by 

R ~ a  bc 1~ bacg , 
(B.9) 

a a a e 
R bcd = Oc1"bd -- Fed1"bc  -- (C ~ d).  

Using the Gauss-Bonnet  formula 

½Ird2z'g[1/2R-I~ ds n~Vs2~ = 2rr, (B.10) 
F 
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and 
[gl-l~cEbdVi~bV~d = R ,  (B.11)  

which is a consequence of eq. (A.8), we obtain the Seeley coefficients of / l  T (alias H) :  

0 : 1 ( / i T )  = d - 2 A(C~), (B.12) 
47r 

O~ 1 /2 . (AT)  - d 8 ~ 2 L ( ~ ) ,  (B.13) 

a o ( A T )  _ d - 2 1 
6 4~ "x(~)"  (B.14) 

For L, the laplacian (26) with Neumann boundary conditions (27a), we find 

01(flL) = 4-~ IF d2z Igll/2f, (B.15) 

1 i 0 1 / 2 ( f l L ) = - ~  rds f ,  (B.16) 

Oo(flL) = - 
1 2 

l lordsn"{33,f+2(Vs2~)f}+~-~--~yrdzlg['/2Rf, (B.17) 
247r 

=1__ A a,(L) 4rr (c~), (B.18) 

O~l/2(L) = 8 @ L ( ~ ) ,  (B.19) 

ao(L ) = ~. (B.20) 

If Dirichlet boundary conditions are imposed instead, only a few signs change: 

0l(f]/:)  = 4- ~ yFdZz [gll/2f, (B.21) 

1 
O~/2(fl/~) = - ~ Iords f ,  (B.22) 

1 dsna{30,,f-2(V,G)f}+~-d-~ d2z Ig[~/2Rf, (B.23) ~°(f l£) :  2-G~ F 

at/2(l~) = (-1)tal/2(L),  (l = 0, 1, 2). (B.24) 

Appendix C 

PROOF OF EQS. (40) AND (72) 

Note first that L and /~ are form invariant under general coordinate trans- 
formations in the z-plane, provided, of course, the metric gab is transformed 
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appropriately. In particular, the eigenvalues of L and/~ and therefore Wpv(L) and 
Wpv(/~) are geometric invariants, depending on the background minimal surface 2 
only, but not on how X is parametrized. To prove eq. (40), it is convenient to choose a 
parametrization of 2 where 

gab(Z) = e-2°~z~6ab, Z ~ F. (C.1) 

Then 

L = - e 2 ° A  , (C.2) 

so that Wpv(L) and Wpv(/~) are functionals of p and F. We now vary p keeping F 
fixed and compute the variation of Wpv(L). To this end, we first derive an expression 
for the variation of the eigenvalues of L. Thus, let 

Lv = Ev ,  Eabztaob v = 0,  (along OF), 
(C.3) 

Ird2Z Igll/2v e--- 1 P 

Taking the variation of the eigenvalue equation, we obtain 

28pEr + LSv = BEy + ESv , 

eabz'aob•t)  = 0 ,  (along OF). 

Then, multiplying this with ]g]W2v and integrating yields 

6E-E f rdZz lg ] l / z28pvZ=Ld2z]g]1 /2 (vLSv -SvLv )=O.  (C.4) 

It follows, in particular, that 

8 Tr e - tL= tOat fr  dzz ]g(z)]l/226p(z)K'(z' z) , (C.5) 

where Kt(z, w) denotes the heat kernel (B.1) of L. 
As for A T [eq. (37)], Wpv(L) can be expressed in terms of the heat kernel, except 

that the trivial zero mode, 

v = constant = A ( ~ )  - 1 / 2  , (C.6) 

of L must properly be taken into account: 

P 
o 0  

W p v ( L )  (~o 1)F'(1) -jo t { T r  e " - ~ , t  - 1 -  ~,/2t a/2-~00(1 - t ) -  O(t-  1)}. 

(C.7) 
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Now,  using eq. (C.5) and  6ao = 0 we arr ive at 

~Wpv(L)=-!imo{Ld2z[g11/226pK,(z,z)l '[~-6ale-1-6a1/22e-~/z } 

20o(6p[L)-A(C~) -1 IrdZZ [gla/226p. 

The  last t e rm  here  comes  f rom the uppe r  end t = co of integrat ion,  where  K, reduces  

to the p ro j ec to r  on to  the zero m o d e  (C.6): 

lim Kt(z, z) = A(C~) -1 . (C.8) 
t ---~ o o  

Since the Seeley coefficient funct ion Oo(f]L) is known  [eq. (B.17)], the p - d e p e n d e n c e  
of Wpv(L)  is explicitly calculable.  For  the met r ic  (C.1), we have  

[g[1/ZR = 2Ap , ds n ~ = e~b dz b , 
(C.9) 

EabZ pa z t~b 
ds naVs2a = - & r  ,z d z a  eabObP ' 

Z 

where  z~(tr) is any pa rame t r i za t i on  of OF. Hence ,  

1 L +1Io 8Wpv(L) = d2z 6pAp ~ dzaeabOb6o 
F 

+ 1 dz e.bSPObP + 1 do ,2 6P +A(~)  -~SA(~) 
r ~ r z 

= S { - ~ - ~ I r d 2 z l  (3ap)2 _~¢r frd2zAp 

1 eabZ'"Z "b A(C~)} . 
+ ~-~ forda z, 2 p + l n  

It  fol lows that  

Wvv(L)-  12rr ~ d2zAp 

IO EabZ t a z .b 1 do ,2 p + l n A (  c~)+c(F)' 
+6-~ r z 

(C.lO) 

where  the cons tant  c (F)  m a y  d e p e n d  on F but  not  on p. 
R e p e a t i n g  the above  calculat ion for /~,  we obta in  on the o the r  hand  

Wev(/~) = - 12---~ ~ d2z Ap 

+ 1 fO ~abZmznb 
do" z'2 P + [ ( F ) ,  

F 

(cA1) 
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so that altogether 

W pv(L) -  Wpv(/~) = In A(Cg)- ~--~ dZz Igf'/ R +c(r ) -e ( r ) .  (C.12) 

This is eq. (40) except that the constant c (F) - ?(F)  might still depend on F. It cannot, 
however, since all other terms in eq. (C.12) are geometric invariants and are 
therefore independent of what parameter  region F is,chosen. 

It is now an easy matter  to establish eq. (72). Let 

f : F ~ [ ' ,  f ( z )  = w ,  (C.13) 

be a holomorphic mapping. Then, A/, can be pulled back to an operator  defined on F 
by 

4 
A r  = 40wO~ = ,~-~,20~0~ = e2°Ar .  (C.14) 

IOJI 

where 

19 = -½ In [Ozf[ 2 . (C.15) 

We are thus led back to the case considered above and conclude from eq. (C. 11) that 

6-~I~ "a~z'°z"b l i t  Wpv(-A~) = W p v ( - A r )  + do z ,  2 O - ~  d 2z (Oap) z , 
F 

(C.16) 

where Ap = 0 has been used and ( (F )  has been identified with W p v ( - d r )  to match, 
when/~  = F. Inserting eq. (C.15) into eq. (C.16) finally yields eq. (72). 

Appendix D 

P R O O F  OF T H E  S H O R T - D I S T A N C E  E X P A N S I O N  (58) 

We first derived eq. (58) by perturbatively expanding G S ~  around the massive 
Green function of the free laplacian in a square with Dirichlet boundary conditions 
imposed. This method is foolproof,  but the actual computations turned out to be 
extremely tedious. We therefore resort to another rather indirect derivation, which 
relies on the invariance properties of A T, power counting and some formulae 
obtained in the preceding appendices. 

According to appendix A, A T can be identified with the operator  H [eq. (A. 14)] 
x~t via the moving frame e~. Correspondingly, the Green function G, ' ;  can be written 

in the form 

T M  i M e~ , ( z )~ i i  (z, w ) e i , ( w )  (D.1) G , ;  (z,  w ) =  
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where c~iff is the massive Green  function for H :  

( H  u + 6UM2)~3~(z, w) = ai~lgl-l/=a(z - w) ,  
(D.2) 

M ~u (z, w ) = 0 ,  for z ~ a P  or w ~ a F .  

In what follows, we shall consider the fields gab, A~  and U ii to be independent  of each 
other and compute  the short-distance expansion of 

Mk 
C i i ( z , w )  = ~ ekna(z)C~a~ii (Z,W)'~bnb(w) z , w ~ O F ,  ( D . 3 )  

k = l  

in the limit where first z --> w and then M / ~  co. Eq. (58) can then be obtained by 
contracting with e~,. 

We first consider the simplified case Aa = U = 0. Then,  

Hi~ = (~iif_~ , ~i~ = 8ii~ M , Cu = 6ii C ,  (D.4) 

where ~qM is the massive Green  function of/~. To compute  C, we exploit the form 
invariance of C a n d / ~  under general coordinate transformations in the z-plane, 
which allows one to reduce the problem to a situation, where 

deI 
r = O  ={v~R211vl<l}, 

gab = e-2°t~ab, /~ = - - e  2aA . (D.5) 

Our  strategy to calculate C is as follows. Suppose we keep P fixed and distort the 
circle OD by an infinitesimal amount  6z(O) as shown in fig. 3. The Pauli-Villars 

regularized determinant  of /~  then varies according to 

eZOf.abz,a(o ) t~ W reg ( /~ )  = {n"OJ~(z, W)'~bn b + C(Z,  W)} . . . . .  (0) ,  (D.6) 
6zb(O) 

a formula which can be established easily following the method explained in subsect. 
5.2. The point now is that all terms in eq. (D.6) except C are in fact known, so that C 

can be determined this way. 

72 

6 Z(e) 

Fig. 3. A d e f o r m a t i o n  8z (0) of the  uni t  circle OD. 0 is the  polar  angle.  T h e  curve • (0) = z (0) + ~z (0) b o u n d s  
a d o m a i n  P. 
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We proceed to explicitly evaluate the various contributions in eq. (D.6). First note 
that for the special metric (D.5), the massless Green function ~ of L is actually equal 
to the Green function of the ordinary laplacian: 

~J(z, w)= ~l----[ln [ 1 - z f f l - l n  I z - w l ] ,  z = z l q ' i 2  2 , etc. (D.7) 
,~7"r 

It follows that for z, w ~ aD, z -+ w 

1 e 20 
n~OS~(z, W)'Obn b = ~ +  1--~{1 + 2e.bZ'~ObP 

+ 2z'az'bOaObP + (z'aOap) 2} + O(As ) ,  (D.8) 

where As is the length (with respect to the metric gab) of  the arc between z and w and 
the curly bracket is to be evaluated at z = w = z(O). 

Next, consider the left-hand side of eq. (D.6). From eq. (36), which is also valid 
when A T is replaced by/~, and the Seeley coefficients tabulated in appendix B, we 
obtain 

6Wreg(£) ~Wpv(£) 
Eab Zta (~Z b ~" ~ab Zla ~zb 

e -20 v 
+ ~ k ~ = l e k M i  l n M i  +¼e-°(1 nl-'abz'aobp) i ~kMk • 

k=l 

Eq. (C.11) with 5 (F )=  Wpv(--AF) now applies, yielding 

,~ aWpv(IS) e.bz ,a a W p v ( T a r )  

(D.9) 

1 
+ ((a,p) 2 - 3Ap . . . . .  b +4e~bZ OW+2Z Z a, Obp}. (D.10) 

12~" 

Finally, the variation of Wpv(-Ar) can be computed from eq. (72). Namely, let/~ be 
the region bounded by the deformed circle z (0) + 8z (0), 0 ~< 0 ~< 21r (cf. fig. 3), and let 

f ( z )  = z + S f ( z ) ,  8 f (e i° ) -Sz(O)OCz' (O)  

be a holomorphic mapping from D onto/~. Then, 

8Wpv(- -Ar)Ir=D = -- 12----~ dO (O~Sf+ 0~8/) 

= fO2 dO,abZ° Zb 
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and consequently 
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Eabz,a (~ WpV(b AF) 1 
r= =6-g • 

(D.11) 

Collecting eqs. (D.8)-(D.11) and feeding them back into eq. (D.6), we obtain the 
short-distance expansion of C ( z ,  w): 

C(z, w)= 1 e 20 
+ 1 -~{1  + 2eabZ'aObp -3Ap  "+-(~abzta~bp) 2} TI" (As) 2 

1 
+-- ~ ekM~ lnM~+le°(l+eabZ'aObp) ~ ekMk. (D.12) 

4zr k=l k=l 

A generally covariant expression reducing to (D.12) in the special case (D.5) is easily 
found: 

1 1 a 2 R 
C ( z ,  w)  = - .(,as)2 + ]~ -~ (n  V~.) 81r 

1 ~ ekM21nM~ 1 a . zn V,Za ~ ekMk (D.13) 
-k- ~-~ k=l k=l 

(cf. appendix B for unexplained notation). This relation is thus valid for arbitrary 
metrics gab and domains F. 

Let  us now go back to the general case with non-zero fields Aa and U. Again, 
taking advantage of general covariance, we choose 

def 2 2 
F = Q  ={VE[~210<va<I}, 0 < w l < z l < l ,  w = z  = 0 ,  

(D.14) 

gab = 6,b e -2~ (D.15) 

From power counting and gauge invariance we conclude that in the short-distance 
limit 

Cij(z, w) = C(z, w)T(z, w)°+D(z, w)UiJ(w)+E(z, w)Fii(w) (D.16) 

where C(z, w) is given by eq. (D.13) and 

z l  / i  

w) = P e x p -  11  dv 1 Al(v 1, 0) ,  P: path order ing,  T(z, 

(D.17) 
F = Eab(f~aAb +AaAb) • 

Furthermore,  the coefficients D and E are at most logarithmically divergent as z ~ w 
and may depend on o-(w) and the regulator masses Mk, but not on Aa, U or the 
derivatives of cr at w. It is not necessary to compute E, because F ii is antisymmetric in 
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the labels i,/, which ultimately will be contracted. To calculate D, we specialize to the 

case 

Aa = 0 ,  U ij = 6~iu = constant ,  o- = constant .  (D.18) 

An explicit expression for the massive Green function is then given by 

oo 

fo ~ij (z, w) = 6ij dt exp [ -e-2=(u +M2)t]K°'(z,  w) ,  (D. 19) 

K ° being the heat kernel of the laplacian in the square Q with Dirichlet boundary 
conditions: 

1 = .  =_ {exp 1 a _ _ w a  2m)2 ] ,,O~z,w~:~o~ ~ [ ~  - 

It is a trivial exercise to extract from these formulae the short-distance expansion 

{ 1 u( ) 
cij(z,w)=~,j ~-(,asf 2~- l n l a s - F ' ( 1 ) - } k = l  ~ e k l n M ~  

~ ~) + - -  ekM~ l n M  , (D.21) 
art  221 

so that 

) = -- ln~As+~ e k l n M  2 • (D.22) 
k = l  

Finally, we note that for fields Aa and U stemming from a minimal surface as 
described in appendix A, we have 

e2(z)T(z, w)%'.(w) = d -  2 +ln(as)2+O((as)3) ,  
(D.23) 

i i i i  = U i i  e~.U e~. = R ,  

so that 

ei.(z)Cii(z, w)e~(w)= ( d - 2 ) C ( z ,  w) 

+ 2 ~ ( F ' ( l ) - ½ - 1 n l A s + l  ~. e k l n M 2 ) .  
k = l  

This relation is in fact identical with eq. (58), since 

° = 1 1  n ~ s Z a  Xt  - 3 X "  " P , Plz = - -  

for minimal surfaces. 

~A(~)  
6x.  

(D.24) 

(D.25) 
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Appendix E 

P R O O F  OF EQ. (66) 

Both sides of eq. (66) transform as scalars under coordinate transformations in the 
z-plane so that without loss, we may assume 

gab =e-Z°-6ab, F=O={v~R2lO<v" <l}. 

The field c#, describing the minimal surface spanned by ~ satisfies 

in these coordinates. Along the piece of OF with v 2 = 0, we have (for a convenient 
parametrization of (~) 

x . (a )  = ~ ( a ,  0), 

p.(X) = -(02~o.)(a, 0). 

Now, 
1 

R = 2 e2~Acr = - ~-~,2 A In (01~) 2 

= (x'2) 3 {2((x' • x") 2 + 2(x ' .  p,)2 _ x'2x'a - x'2p'2}, 

which is equivalent to eq. (66) on account of 

p 2 : x t 2 ,  X t " p : O .  

Appendix F 

AN A N O M A L O U S  L O O P  H E A T  E Q U A T I O N  

Recently, Polyakov [17] proposed to construct the string Green functional ¢/(cg) 
from a loop heat kernel ~ [z ,  x] depending on a closed curve z"(cr) (0 ~< cr ~< 2rr) in 
the plane and another one, x,.(cr), in space-time, za(cr) is interpreted as the proper  
time (or, more accurately, the proper  coordinates) of the string element x.(cr). 
3f[z, x] is required to be invar iantunder  simultaneous reparametrizations of z a and 
x~, i.e., 

{ ,a 8 x ' - - -~-8/Yf[z,x]=0 (F.1) 
z a - - j+  ~ ~x~J 

It should also be a solution of the loop heat equation 

,a 6 
,o z 
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SO that  a solution of the wave equation (1) can then be obtained by 

= f ~z:~C[z, x]. ~(~) 
,1 

395 

(F.3) 

As an explicit solution of eqs. (F. 1) and (F.2), Polyakov suggests to take 

Y([z,x]~I~,,~z<~))=~<=)~&,exp(-½M2[rd2z(Oa&,)2 ) , (F.4) 

where F is the region in the plane encircled by z~(o-), 0~<~r ~<2¢r. Performing the 
gaussian integral over  &,,, this can be rewritten as 

?T{[ z, w] a: [det (-At)] -a/2 exp ( - ~ M  2 W ) ,  
(F.5) 

W = - ~  dz ~ dw%~aEc~&,(z)ObGr(z, w)Od&,(w). 
Ja F 

Here,  Gr(z, w) denotes the Green function of the laplacian in F with Dirichlet 
boundary  conditions and det ( -dr )  is the Pauli-Villars finite part* of the deter-  
minant of - A t  [cf. sect. 4 and eq. (72)]. 

As the loop wave equation itself, the heat equation (F.2) is only formally valid and 
must be supplemented by a subtraction prescription. Specifically, for the kernel (F.5) 
one finds 

62K[z'x] ~S=°IM-~Rd2 +o(1)}Y~[z,x] (F.6) 
&,.(o'+e)6x~,(o-) t 1re 

Furthermore ,  as in sect. 5 one shows that Yd[z, x] is an exact solution of the following 
renormalized heat equation, which replaces eq. (F.2): 

, a  

Ca:  (Or) 6Z ~io') 

1 lim [ 
~"~ ~ - ' ~  e ~ 0  k 

4 z: : , 

62 M2d 4 t 2 1 
+- - - - z+M x (or) lY([z,x] 

ax. (o" + e)6x,.(o') rre J 
(F.7) 

The anomaly appearing here is a function of z a alone and is crucial to maintain the 
reparametr izat ion covariance of the equation. On the other hand it sheds some doubt 
on whether  ~ ( ~ )  can indeed by constructed f rom Y([z, x] via eq. (F.3), in particular 
since the singularity (F.6) is not what one expects for ~(c~). 

* The infinite parts do not show any interesting dependence on OF, being proportional to the area and 
circumference of F, respectively. 
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