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We derive high-temperature cluster expansions for the free energy of vortices in SU(2) and 
Z 2 lattice gauge theories in 3 and 4 dimensions. The expected behaviour of the vortex free energy 
is verified. It obeys an area law behaviour. The coefficient of the area is shown to be equal to the 
string tension between static quarks. We calculate its expansion up to 12th order. For SU(2) in 4 
dimensions the result is compared with Monte Carlo calculations of Creutz and is in good 
agreement at strong and intermediate coupling. 

1. Introduction and summary of results 

Gauge  field theories have been  formulated  on a lattice [ 1, 2] in order  to s tudy the 

strong coupling region and  to apply non-per turbat ive  methods.  On  the other  hand, 
lattice regularization might  be a first step in a constructive approach  to con t inuum 

gauge field theory. In  the last years m a n y  results about  the phases of  lattice gauge 

theories have been obtained.  Certain gauge field configurations,  called vortices, 

turned out  to be relevant for the phase structure [3-10].  The  behaviour  of  the free 

energy of vortices turns out  to be an impor tant  quant i ty  for the character izat ion of 

different phases [8, 9, 11]. 
In  this paper  we study the vortex free energy in s trong coupling pure lattice 

gauge theories by the me thod  of cluster expansions. We consider  models  with 

gauge groups SU(2) and Z 2 on  a hypercubical  euclidean lattice A in v = 3 and  4 

dimensions. The gauge field variables U(b) E SU(2) and  o(b) ~ Z 2 are a t tached to 
the links b of the lattice. For  plaquettes P, with b o u n d a r y  OP consisting of  four  

links, one defines 

U ( P ) - -  I I  U(b) ,  ( p a t h - o r d e r e d p r o d u c t ) ,  
b E a P  

o(P) = II  o(b) .  (1.1) 
b E a P  

I Supported by Studienstiftung des Deutschen Volkes. 
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Expectation values are evaluated with the help of the path measure 

d/~ = Z - '  exp L ]-[ dU(b) ,  (1.2) 
b 

where L is the euclidean action, dU is the Haar measure on the gauge group and 

Z = f / - [  dU(b) exp L 
b 

(1.3) 

is the partition function. 
For  the definition of the free energy of vortices per unit extension one takes for 

the lattice A a finite box with specified boundary conditions. Either A is considered 
as a vortex container with some fixed boundary conditions U(b), b E OA as in ref. 
[8] or A is considered as a torus with periodic boundary conditions for the gauge 
field as in ref. [9]. By singular gauge transformations characterized by non-trivial 
elements ~, E F of the center of the gauge group, one changes the boundary 
conditions such that a quantum of vortex flux is created. In the case of a torus this 
leads to the twisted boundary conditions of 't Hooft  [9]. The corresponding change 
in the free energy of the system divided by the extension of vortex in the limit of an 
infinite extension is then called the vortex free energy per unit extension. For  a 
more detailed discussion of this quantity we refer the reader to ref. [11]. There its 
use for the characterization of the Higgs phase has been investigated. 

In this paper we shall be concerned with the behaviour of the vortex free energy 
at strong coupling, i.e., high temperature in the language of statistical mechanics. 
There the system is in the confinement phase [12]. Usually the confining phase is 
characterized by the area law behaviour of the Wilson loop expectation value. 
Alternatively it may be characterized by the behaviour of the vortex free energy. 
The vortex free energy per unit extension is supposed to decrease exponentially 
with the thickness of the vortex container [8, 9]. 

We shall verify this behaviour in the high-temperature region and thus confirm 
the above characterization of the confinement phase. We derive high-temperature 
cluster expansions for the vortex free energy and obtain an exponential decrease 
with the cross-section area of the container. The coefficient of the area is shown to 
be equal to the string tension between static quarks. We calculate the expansion for 
the string tension up to 12th order. For  the case of SU(2) in 4 dimensions the result 
is compared with Monte Carlo computations done by Creutz [13]. The results are 
in good agreement at strong and intermediate coupling. 

The string tension for SU(2) in 3 dimensions has been calculated previously by 
Duncan and Vaidya [14]. For Z 2 the expansion has been calculated independently 
by Kimura [15]. In a recent paper he gives the result up to 14th order. For  3 
dimensions the series seems to indicate the existence of a surface roughening 
temperature [.33] for the three-dimensional Ising model. 
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2. Cluster expansions 
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2.1. LATTICE GAUGE THEORIES AS POLYMER SYSTEMS 

Pure lattice gauge theories can be transformed into Gruber-Kunz polymer 
systems [17] by standard methods [12, 18]. Let the action of a pure lattice gauge 
theory with gauge group G be 

L -- E Lp -- E f l d x  l x ( U ( P ) )  , (2.1) 
P P 

where X is the real part of the character of a faithful representation of G with 
dimension d x = X(1). The Peter-Weyl theorem enables us to write down a Fourier 
expansion of exp Lp:  

e x p L p =  • c , (B )x , (V(P ) ) ,  (2.2) 

where (~ is the set of all non-equivalent irreducible unitary representations of the 
compact group G. The coefficients c~ are determined through the orthogonality 
relations of characters by 

¢v(fl) ~- fGdUXv( U - 1) exp L p ( U ) .  (2.3) 

Example 1: Z 2 theory 

L p = f lo(P) .  (2.4) 

Z 2 has two inequivalent irreducible representations: the trivial one and the defining 
representation. We denote the character of the defining representation by v = 1, 
because it is the restriction of the spin-½ representation of SU(2) to its center Z 2. 
The Fourier expansion is 

exp Lp = cosh fl + sinh f l -o(P) .  (2.5) 

Example 2: SU(2) theory 

Lp -- ½fl tr U(P) (2.6) 

The representations of SU(2) are labelled by j = 0, 2, 1 . . . . .  With the help of the 
Weyl integration formula [19] for class functions on SU(2), one finds 

cj(fl) = (2¢r)- lf2'~ dq0(sin ½q0)22 exp(fl cos ½q~)(sin ½qo)- ' s in(j  +½)q0 
"0 

= 2 (2 j  + 1)fl --lI2j+l(fl), (2.7) 
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with modified Bessel functions I n. It  will be convenient to write 

expLp=co(fl)(1 * ~ (Co(~))-Icj(~)xj(U(P)) } 
j~O 

= :c0( f l ) (1  + f p } .  (2.8) 

Since we are interested in expectation values or ratios of partition functions the 
factors Co(fl) cancel out and we are allowed to write 

e x p L p  = 1 + f p  = 1 + E djaj(fl)xj(U(P)), 
j ÷ o  

djaj(fl) = (Co(fl)) -lcj(fl), dj = dxj, (2.9) 

from now on. For Z 2 this reads 

e x p L e  = 1 + (tanhfl)o(P), d , =  1. (2.10) 

For SU(2) we have 

expLp  = 1 + E ( 2 j +  1 ) ( I , ( f l ) ) - I I 2 j + , ( f l ) X j ( U ( P ) )  , 

j ~ o  

dj - -2 j+ 1. (2.11) 

Expanding the product 

we get 

e x p L  = 1-[ exp L 1, -- l-i(1 + f p ) ,  (2.12) 
P P 

e x p L = Y ~  I I  fp ,  (2.13) 
P ~  

where the sum is over all possible sets ~P --- (P~, P2 . . . .  } of plaquettes in the lattice 
A. If one defines plaquettes to be connected if they share a link, one can 
decompose an arbitrary set P into connected components  Xi: 

o~ = [,_J X i ' X i, Xj disconnected if i ~ j .  (2.14) 
i 
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We write ~ = Y, iXi in this case. Calculating the partition function 

27 

z = f II~ dU(b)exp L = ~ f IIu dU(b) ,~II y,, (2.15) 

the contributions of the components  X i of o~ factorize into products of 

and the result is 

~,(x,) = f H au(b) III, ,  
PEX~ 

(2.16) 

Z =  E I I * ( X , ) .  (2.17) 
6)= •xi i 

Since fp does not contain the trivial representation, ¢ (Xi )  is zero if Xi contains a 
free link in the interior of A. A link is called free if it belongs to one plaquette of X i 
only. The only contributions come from those connected sets Xi of plaquettes, 
which have no free links or whose free links are contained in the boundary  0A of 

A. Let us call such sets of plaquettes polymers. (I)(Xi) is the activity of the polymer 
X i. Write 

0 (°~)  = ]-[ O(X) (2.18) 
x~@ 

if 0~ is a set of polymers which are mutually disconnected. The partition function is 
then 

Z = ~ * ( ® ) .  (2.19) 
® 

This is the partition function of a general polymer system on a lattice, as studied by 
Gruber  and Kunz [17]. 

2,2. CLUSTER EXPANSION FOR GENERAL NON-TRANSLATION-INVARIANT POLYMER 
SYSTEMS ON ARBITRARY FINITE LATTICES 

Usually cluster expansions for the free energy or correlation functions of lattice 
systems are derived by studying occurrence factors of certain graphs on a lattice 
and  making use of translation invariance. In this case it suffices to keep only 
contributions proport ional  to the lattice volume I A] and by doing this one arrives 
at the consideration of connected graphs. 

In the case of the vortex free energy we are not allowed to follow this line of 
approach.  One reason for this is the fact that the graphs under consideration cover 
a whole cross section of the lattice and their occurrence factors are not propor- 
tional to I AI. The other reason is that in the Mack-Petkova approach [8] one is 
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interested in systems in a vortex container, which are not translation invariant but 
depend crucially on the boundary conditions. So we have to use a cluster expan- 
sion which is derived without relying on translation invariance. This can be done 
with the help of moment-cumulant transformations. 

2.2.1. Moment-cumulant transformations [20]. Let I be a set, which will be a 
discrete one in later applications. By (a . . . . .  /3)n we denote a combination of n 
elements of I with repetitions. A moment ( ) is a mapping which assigns to each 
combination (ct . . . . .  fl) a number ( a  . . . . .  f l )  and ( ~ )  = 0 for the empty combina- 
tion. It may be looked at as a collection of symmetric functions of variables in I. A 
multiplication of moments ( ) '  and ( ) "  is defined by 

( 5 = (  5 ' o (  5",  

(,~ . . . . .  /3) = X  (,~ . . . . .  v ) ' ( 8  . . . . .  e ) " ,  
P2 

(2.20) 

where the sum goes over all partitions P2 of (a  . . . . .  /3) into two combinations 
(a  . . . . .  -/) and (3 . . . . .  e). The elements a . . . . .  /3 are to be considered as distinguisha- 
ble even if they occur several times. 

Example: 

(,~,/3, v )  = (a) ' ( /3 ,  v)" + (/3)'  (,~, v)" + (v ) ' (a , / 3 )"  

+ ( a , / 3 ) ' ( v ) "  + (B, v ) ' ( ,~ )"  + (a ,  v ) ' ( / 3 ) " ,  

(a ,  or, or) = 3 ( a ) ' ( a ,  or)" + 3(o~, a ) ' ( a )  " .  

The identity 1 of this multiplication is not itself a moment: 

1, if n - O ,  (2.21) 
l ( a  . . . . .  / 3 ) . =  O, i f n > O .  

The O-exponential of a moment  [ ] is now defined by 

oo 

exPo[ ] - - 1 +  ~,  ( n ! ) - ' [  ] " - - : 1 + <  >. (2.22) 

One finds 

( a  . . . . .  ~ ) = ~  [ a  . . . . .  f l ] [ y  . . . . .  8 ] . . .  [/~ . . . . .  p ] ,  (2.23) 
P 
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where the sum runs over all partitions of (a . . . . .  ~) into several combinations 
(a . . . . .  fl), (7 . . . . .  3) . . . . .  [ ] is called the Ursell function or cumulant of < ) .  

Examples: 

<~>=[~ ] ,  

<~,~,~> = [~,~,~] + [~ ,B ] [~ ]  +[ /~,~] [~]  + [ ~ , ~ ] [ ~ ]  + [~] [ /~] [~]  • 

The inverse of the cumulant-moment transformation [ ] ~  < ) is given by 

[ ] = l n o ( l +  ( ) ) ~ e x P o  [ ] = 1 + <  ) ,  

[ a  . . . . .  ~'] ---- ~ (-- 1) k-  l (k- -  1)! <a . . . . .  f l)<),  . . . . .  8 ) . . .< / . t  . . . . .  J,> 

P k factors 
(2.24) 

Now let 4'~, a E I be real or complex variables indexed by elements of I, and define 
the generating functional of a moment < ) by 

F({,~})= ~ E (~9-'<~,,..-,~>*~,'...'% 
I ' l m i  a l , . . . , a  n 

ffi (rt ,0-1<o . . . . .  

(a ..... /~)- i - 
(2.25) 

The n i are the multiplicities of the elements of (a  . . . . .  fl). For the cumulant [ ] of 
< ) define a generating functional f ( {~} )  in the same way. The main theorem of 
the moment-cumulant formalism states that 

1 + F({~a}) ---- expf((~b,~}). (2.26) 

It is proven by differentiating both sides several times with respect to the g'a- 
A useful rule for calculating cumulants is the inside-outside rule: replace every 

moment <7 . . . . .  8 )  in the expansion (2.24) of [a . . . . .  ~] by (<V . . . . .  8 , o ) -  
<V . . . . .  8)<o))  and you get the expansion of [ a , . . . ,  ~, a] into moments. 

2.2.2. Cluster expansions. We now apply the formalism of moment-cumulant 
transformations to a general polymer system and derive a cluster expansion. For 
this purpose we choose I to be the set of all polymers X on A. We consider the 
activities ~x:=  O(X) as variables. With the definition 

ffi ( 1, if every pair X i, Xy is not connected, <x,,.. . ,  x~ > 
( O, otherwise, 

<~)  -- 0, (2.27) 
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we reco~,nize the generating functional of the moment  ( > as the partition function 
of the polymer system: 

oo 

Z({4~(X)))--- 1 + E E ( n [ ) - I ( X l  . . . . .  X n > ( I ) ( X l ) "  " ' "  "(I)(Xn). 
n=l X D . . . , X  n 

(2.28) 

The factor of n! is cancelled by taking all permutations of X~ . . . . .  X~ together, 

which appear separately in ~x ,  ..... x ;  
The main theorem then leads us to the expansion of In Z: 

InZ({dP(X)}) = ~ (~n i ! ) - ' [X ,  . . . . .  X.]~(X,) ' . . .  "~(X.). (2.29) 
(X~ . . . . .  Xn) 

By induction it is easy to prove with the help of the inside-outside rule that 
[X 1 . . . . .  X~] = 0 unless X 1 u . . .  t_JXn is connected. A connected set of different 
polymers X i, i = 1 . . . . .  k with multiplicities n i will be called a cluster and denoted 
by 

c = (xT ' ,  . . . . .  x T : ) .  (2.30) 

We define 

a(C) = n i l  X 1 . . . . .  X l ,  , . . . .  X 2 . . . .  , X k . . . . .  X k ~=:  h i !  a ( C )  

n I n k 

(2.31) 

and arrive at the cluster expansion for In Z for an arbitrary polymer system: 

l n Z =  ~ . a ( C )  IX <b(X,) n'. (2.32) 
C X ~ C  

A simplification of the cluster expansion can be obtained as follows. If a polymer 
X can be decomposed into two polymers X 1 and X 2 which are connected only 
through a single link, the activity factorizes: 

, I , (X)  = (2.33) 

In the expansion of In Z the contribution of such a polymer X appears twice. First 
X is counted as a cluster consisting of a single polymer. Besides that one has a 
cluster consisting of the polymers X 1 and X 2. Both contributions cancel against 
each other. This result is generally true for all polymers X, which can be decom- 
posed into polymers Xi, such that each X i is connected to the remaining part of X 
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only through a single link. Thus one need not consider clusters of this type which 

we call reducible. 

2.2.3. Relation to the cluster expansion for translation-invariant systems. If a 
polymer system has translational invariance the cluster expansion for In Z can be 
derived in an alternative way. Because the free energy density F - -  ( i l iA 1)- 1 In Z is 
an intensive quantity, we can obtain In Z as the term proportional to [A] in the 
expansion of 

Z - -  e x p ( - B I  A IF)  "= 1 - f l l A I F +  . . . .  (2.34) 

A set 6D of polymers gives a certain contribution tb(°'D) to the expansion of Z. Let 
us group together all those sets ®'  which differ from ® by translations of the 
polymers. They all give the same contribution ~(6D). If o~--(X~ . . . . .  X . )  let us 
denote the number of related sets ® '  by g(X1, . . .  ,X , ) .  For  single polymers we 
have g(X) -- ]A [. For  two polymers we find the relation 

g(X1)g(X2) = g(Xl ,  X2) + b(X 1, X2) ,  (2.35) 

where b(X1,X2) is the number of ways to put X 1 and X 2 on the lattice (only 
translations allowed), such that they are connected with each other, i.e., they form 
a duster.  For the terms of order [A [, which are denoted by a hat, this yields 

0 = ~(X, ,  X2) +/~(X, ,  X2) = ~(X,,  X2) + b(X, ,  X2) .  (2.36) 

In a similar way one finds for the case of several polymers 

0 - -~(X 1 . . . . .  X . )  + terms where some polymers are connected.  (2.37) 

The remaining terms can be reduced step by step to the occurrence numbers of 
clusters. Carrying through this reduction one finds the following result: 

~(X l . . . . .  X , )  = ~ fi(C). (2.38) 
C=(XI ..... X,) 

The sum runs over all clusters which one can build out of X 1 . . . . .  X n by translating 
them independently over the lattice. The coefficients d(C) are here determined in 
the following way. We consider the Venn diagrams, i.e., set diagrams of X l . . . . .  X, .  
They are diagrams which show, how the X i overlap. All possible Venn diagrams V 
of X ! . . . . .  X~ form a semi-ordered set, where one sets V' c_ V, if every connected 
component  of V' is completely contained in a component of V and the cormected- 
hess conditions within it are preserved. 
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Example: 

X 1 X 2 X 3 

V" 

X~. X 5 X 6 

0 

X 5 X 6 

X~. 

Then fi(C) is given by 

! 

t~(C) = E ( -  1) I%1. (2.39) 
% 

The sum goes over all chains 3~: V 0 % V 1 C . . .  C Vm, [ ~ l :  = m where V 0 consists of 

isolated polymers and V m is the Venn diagram of the cluster C. It is possible to 
show that this fi(C) coincides with the one of subsect. 2.2.2. Inserting the combina- 
torical factors n~! for the multiplicities one arrives again at the cluster expansion. 

2.2.4. Improvement of the convergence by partial resummation. Even if the lattice 
A is finite, the cluster expansion for ln Z may diverge because it includes a 
summation over all multiplicities n i. It is possible to improve the convergence by 

I t  k doing these summations explicitly. If C = (X~" . . . . .  Xk ) is a certain cluster, call 
S = ( X ]  . . . . .  Xk) its skeleton cluster. For the skeleton clusters define partition 
functions 

Z(S) = • II @(X). (2.40) 
®_cS X ~ ®  

The sum includes all sets ® of polymers X ~ S, which are mutually disconnected. 
Again the cluster expansion leads to 

ln Z(S) = Y~ a(C) I I  O(X). (2.41) 
c ~ s  X E C  

The clusters C c_ S are of the foam (X~",. . . ,  X~,~), X i E S, ni ~ 0. Define 

*(s)  = Y a(C') II o (x ) ,  
c 'c_s XEC'  

(2.42) 
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where only clusters C' with n i > 1, all i, are included. This 
multiplicities gives us 
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resummation of 

In Z = E xI,(S). (2.43) 
S 

Next we express ~I'(S) in terms of logarithms of partition functions of sub-skeleton 
clusters. The set of skeleton clusters is a partially ordered set through 

A = (X i . . . . .  X , )  C_ (X, . . . . .  Xm) = B~=~(X,. E A=*X, ~ B). (2.44) 

Through successive application of 

't'(S) = In Z(S) - • ff'(A), 
A C,S 

(2.45) 

one finds 

S ' ~ S  S ' ~ S  x @ ~ S '  
(2.46) 

The coefficients Oss, are defined by 

Oss,= E ( -  1) I~q- (2.47) 
K(s, s3 

Summation is over all chains %(S, S'): S ' =  S o c, S I ( . . .  C S m - - S  and 1%1 = m. 

Formula (2.46) is a M6bius inversion [21] of (2.43). In (2.46) the sum over 
multiplicities is replaced by logarithms explicitly. The convergence problems in 
(2.32) which are due to the Taylor expansions of functions like ln(1 + x)  are thus 
eliminated. 

3. Cluster expansion for the free energy of vortices 

In this section we shall apply the cluster expansion method to study the free 
energy of vortices in the high-temperature region. We consider pure lattice gauge 
theories 

(i) on a vortex container with boundary conditions U and U~ as in ref. [11, (3.8)]; 
(ii) on a torus with periodic and antiperiodic (twisted) boundary conditions as in 

ref. [11, (4.30)]. 
As gauge groups we take SU(2) and Z 2. Unless stated otherwise the lattice spacing 
a is set equal to 1. 
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3.1. L E A D I N G  T E R M  

We insert the cluster expansions for l n Z  into the following formula (ref. [11], 
(3.10)) for the vortex free energy in case (i): 

fa(U) -- - I - ' [ lnZA(Uv  ) --lnZA(U)] , (3.1) 

where 1 = d I in v ffi 3 and 1 ffi did 4 in v -- 4 dimensions is the extension of the vortex 
and d2d 3 is the vortex container cross section. We obtain 

- ~ r ( X ; )  - IX ~ ( X , )  n' (3 .2)  
X i E C  X~ E C  

The activities of polymers in general depend on the boundary  conditions, which is 
marked by the index ~, for boundary conditions Ur. If  the intersection of a polymer 

X with 0A is completely contained in a simply connected par t  of 0A, the activities 
• (X) and ~r(X) are equal. This is due to the fact that Uv differs f rom U by a gauge 

transformation on every simply connected part  of OA. Therefore a cluster C gives 
no contribution to fA(U) unless it contains at least one polymer, whose intersection 
with aA winds around A in a topologically non-trivial way. The minimal clusters of 
this type are planes Z~: x 1 = const in v --- 3 dimensions and planes ~xl.~,: xl = const, 
x 4 = const in v - - 4  dimensions, if the vortex flux is chosen in the xl,  x I - x  4 
direction, respectively, as in (3.1). These clusters contain I.~1 = d:  d 3 plaquettes and 

we have 

• v(Z)  ~= ~ ( ~ ) .  (3.3) 

The leading term in the expansion comes from these minimal surfaces 

/A(u)=,-i y . . . .  

xl,(x,) 
(3.4) 

We are interested in the behaviour of the vortex free energy per unit extension 

f(d2, d3) = lim f^ (3.5) 
l---', oo 

in the limit of a large cross section [.~ [. For the evaluation of the above activities it 
is then sufficient to take into account only the term dl/2al/2(fl)Xi/2(U(P)) in fv, 
because the other terms are suppressed by a factor of 

( dja/ / dl /zat /2 ) I-I 

in the activity. 
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Successive applicat ion of the generalized or thogonal i ty  relation 

f dUx(UV, ) x (U  -IV2) = d f  IX(VIV2), 

allows integration over  all variables UCo), b E .~, and  the result is 

- 1 I z l  - 
( I ) ( ~ )  = (d l /2 )  Ixl+ (dl/2al/2([~)) XI/2(U(O£)) .  

This yields the leading term 

fA(U)=2dl/2(ai/2(fl))l-II-I X Xl/2(U(O~xt,(x.))) 
x t ,  (x4) 

ffi C e x p ( -  aol_--I) , 

with 

and 

For  Z 2 we find 

for SU(2) we find 

et 0 = --ln(al/2(fl) ) 

Cm2dl/21-1 E Xl/2(e(O~x,.(x.))) ~2d2/2, 
xl, (x4) 

l=d| , (d id4) .  
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(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

• (Z) = (d l /2 )  - IXl (d l /2a , /2 ( f l ) )  Izl = al/2(fl) Izl , 

fA = f (d2 ,  d3) = 2a~/2(B) : l  = 2 exp( -ao  IZl), 

with a o as in (3.9). 

(3.13) 

(3.14) 

a 0 = - l n ( I 2 ( f l ) / I i ( f l )  ) . (3.12) 

In case (ii) the leading contr ibut ion  comes f rom the closed planes ~- 
~Xl~ ~ x l , x  4 

which generate non-trivial  homology  classes on the torus. The  activities are 
calculated as in case (i) and the result is 

a o -- - I n  t anhf l  ; (3.11) 
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According to Mack and Petkova [8] and to ' t  Hooft  [9] such a behaviour of the 
vortex free energy is characteristic for a confinement phase. The leading term oi 
the cluster expansion thus confirms this characterization of the confinement phase 
which is known to occur at high temperatures B -  1 

3.2. COMPUTATION OF CORRECTIONS TO THE COEFFICIENT a 

The contribution of further clusters to the free energy of vortices yields correc- 
tions to the coefficient a o, as will be shown in this subsection. For  definiteness we 
consider the case of a torus with periodic and twisted boundary conditions. The 
results for a vortex container with fixed boundary conditions are similar. We 

consider the limit of a large cross section d2d 3. In particular we assume that d 2 and 
d 3 a r e  larger than the order n of the expansion in fl we consider. Therefore to order 
fin we are allowed to neglect contributions of order fll.~l, •d2 or flu3. 

As explained in subsect. 3.1 the contributing clusters C each consist of a large 
polymer 3 and some additional polymers X i attached to 3. ,~ covers a whole cross 
section of the lattice like the leading polymer. Clusters containing several large 
polymers like 3 are of order fll.~l and will be neglected in the following. Further- 
more, it suffices to take into account only the character X]/2 on most  of 3. Higher 
characters only appear  to order fl I-~l. 

The large polymer 3 is obtained from some plane 3 0 = 3x,,tx, ) by addition of 
several decorations. One gets a decoration in the following way. Cut out a hole of 
30 by removing a connected set of plaquettes. Take a rigid configuration of 
plaquettes as decoration and fit it into the hole, such that an admissible large 
polymer originates. This is illustrated in fig. 1. If we consider some order fin in the 

/ / 
+ 

decoration 

..'~'bWith a hote 

Fig. 1. Decomposition of a large polymer .~ into a plane -'-o with a hole and a decoration. 
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expansion, the diameter of ~ is assumed to be much larger than n (see above). In 
this case the decorations are much smaller than ~ itself. 

The other polymers X; of the cluster C are each attached to Z. In order to study 
how the clusters contribute to fA, we shall perform a second moment-cumulant 
transformation. For this purpose we write down the expansion offA in terms of two 
new kinds of polymers X i, Yi and take the logarithm. Consider some polymer 
attached to Z. If it does not touch any of the decorations at ,~, we call it a polymer 
of type X. If it is connected with some decoration, we regard them as a rigid unit. 
Polymers of type Y are such decorations with or without some other polymers 
attached to them. The cluster C under consideration may be viewed at as com- 
posed of polymers X; and Y,. touching a plane -~0. The product of the activities of 
all polymers in C can be expressed in the form 

• (~o) lI  a,(x,) II ,I,(YD, 
i k 

~(-~0) = exp(- a01-~l), (3.15) 

with well-defined activities ~(Yk)" In analogy with (2.28) we write 

A = 2 ~ ( - ~ o ) {  1 +  E E ( m ! ) - l ( W l  . . . . .  Wm) ficI)(Wi) '  (3.16) 
m > 0  W 1 . . . . .  W m iffi 1 

where W, is any polymer of type X or Y. The moment function (W 1 . . . . .  W m) is 
defined to be zero unless the W,. form an admissible cluster C, in which case its 
value is set equal to the combinatorial coefficient a(C). The moment-cumulant 
transformation yields 

ln(½fA) l n ~ ( ~ o ) +  E [W1 ~', Wt*]/-[ - '  "' = . . . ,  ( n , ! )  ~ ( W , )  . ( 3 . 1 7 )  
(VCff,, . . . .  Wff  ,~ ) i 

The cumulant function [ ] has the property that it is zero unless the W~ form a 
connected set. We shall call such a rigid object of W~'s a supercluster. Because of 
translation invariance along the plane z 0 the contribution of each supercluster is 
multiplied by 1-'-01- Therefore we get the important result 

A f f i f ( d 2 , d 3 )  ffi 2 exp(-al-~ol), I-~01 ~d2d3 .  (3.18) 

Aa is independent of the size of -~o to the order n of the expansion, which we 
consider. The largest possible superclusters to order fl" have a diameter smaller 
than n. They appear in the expansion of Aa, because the diameter of ~0 is larger 
than n. On the other hand, in higher orders of the expansion Aa depends on the 
size of z o. This is due to the fact that superclusters of an extension larger than -'-0 
cannot contribute then. 
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In  subsect .  3.3 we shall  see that  the d u s t e r  expans ion  converges  for  smal l  8.  

Thus,  the  supposed  l imit ing behav iou r  as [Z o] ---> oo of the vor tex  free energy at  high 

t empera tu res  is con f i rmed  to al l  o rders  of 13. The  l imit  

a ~ = -  l im  ( d 2 d 3 ) - ' l n f ( d 2 , d 3 )  ( 3 . 1 9 )  
d2,d3---~oo 

exists a n d  we have for  f inite la t t ices  A 

+ d =  min(d ,d3). (3.20) 

N o w  that  we know tha t  fA exponent ia tes  in the fo rm (3.18), we can  go back  to 

the or iginal  expans ion  in terms of  clusters.  T o  c ompu te  aoo we on ly  cons ider  terms 

p ropo r t i ona l  to I ~o 1: 

fA = 2 exp ( - - ao l -~o l ) (  1 -- A ~ ' I ~ o l  + . . .  } .  (3.21) 

This  gives us the cor rec t ion  Aa. As  an  example  take  a single po lyme r  .--, which is a 

p lane  with two separa te  cubes  as decora t ions .  The  cubes  are  no t  a l lowed to 

over lap .  See fig. 2. In  p = 3 d imens ions  the  n u m b e r  of  poss ib le  a r rangements  is 

21-'%1(I-~ol- 5 ) / 2  + I~01(I-~ol- 1). T h e  te rm p ropo r t i ona l  to  I-~ol is x = - 6 .  W i t h  
the  ac t iv i ty  ¢ b ( ~ ) = ~ ( r - o ) . a l / 2 ( f l ) 8 = : d p ( r , . . o ) . ¢ p ( Z . )  we get  a con t r ibu t ion  - 6  

a l / 2 ( f l )  s to - A a .  In  the a p p e n d i x  we have l is ted all  clusters con t r ibu t ing  to Aa up  

to o rde r  fl12. The  act ivi t ies  of  the po lymers  a n d  the coefficients  ~ are  given for  

gauge  groups  Z 2 a n d  SU(2) in I, = 3 and  4 d imensions .  Summing  these cont r ibu-  

t ions we get  the fo l lowing results  for a ~  [32]. 

F o r  gauge  group SU(2) we wri te  u = a l l  2, v = a l ,  w = a 3 / 2 .  

p = 3 d imens ions :  

a ~  -- - l n u  - 2u 4 + 4u 6 --  6u4v - lOu s + 4u  l° + 24uSv - 36u6v 2 - 6v  5 

- - ~ - u  t2 + 204ul°v - 36u8v 2 - 24u6v 3 - 24u4v 4 + 181) 6 

- -  8 U 9 W  - 12vSwu-1 + . . .  ; (3.22) 

r ffi 4 d imens ions :  

aoo = - l n u  - 4u  4 + 8u 6 - 12u4v - 56u s + 120u l° - 168uSv - 72u6v 2 - 12v 5 

- -  4~-'---~2 U12 4" 8881/101)  - -  396uSv 2 - -  4 8 u 6 1 )  3 - -  4 8 u 4 1 )  4 + 361) 6 

_ 4 8 U 9 W  _ 2 4 v S w u -  l . . .  

176_ 8 10936. tO 1532044_ t2 ( 3 . 2 3 )  - - - - - - l n u - - 4 u 4 - - - - ~ - u  - - ~ u  i ~  u . . . .  
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Fig. 2. Polymer --', which is a plane with two separate cubes as decorations. Illustration to the example 
following 0.21). 

For  gauge group Z 2 with x = t anh f l :  

1, = 3 dimensions:  

otoo ---- - - l n x  -- 2x 4 -- 2x  6 -- 1Ox s -- 16x l° -- ~2x12 . . . .  ; (3.24) 

r = 4 d imensions :  

aoo = - In x - 4x 4 - -  4 X  6 - -  5 6 x  s - 144x 10 - -  -~---~6X12 . . . .  (3.25) 

We shall discuss our  results in later subsections.  

3.3.  E Q U A L I T Y  O F  a A N D  T H E  S T R I N G  T E N S I O N  

With  the help of cluster expansions,  Osterwalder and  Seller [12] proved that  the 

Wi lson  cri ter ion for conf inemen t  of static quarks in  pure lattice gauge theories is 

fulfilled at high temperatures.  They  proved the convergence of the cluster expan-  

sion for 

O~(~)  __-- ( X l / 2 ( U ( ( 3 ) ) )  , ~---- a ~  o, a closed loop ,  (3.26) 

at high temperatures  and  proved the area law 

6"d~((3) < KI exp(-K21-~ol )  (3.27) 

for suitable constants  K l, K 2 > O. 
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In this subsection we study the high-temperature expansion of ~ ( ~ )  for C a 
rectangular path parallel to the x 2, x 3 axes. We shall demonstrate that 

l n ~ ( C )  = -~'1-%1 +~lO~01 + c, ~ ' > o .  (3.28) 

To order fl" of the expansion a', ~" and c are independent of the size of -'-0, if the 
diameter of g0 is larger than n. a'  is the string tension. It gives the slope of the 
linear potential V ( r )  = a ' .  r + . . .  between far separated static quarks. We shall see 
that a '  is equal to the coefficient a which appeared in the area law for the vortex 
free energy. For simplicity we consider a plane -~0 of size d:  x d 3 parallel to the 
x 2 - x  a plane. We write all formulae for gauge group SU(2). The analysis is valid 
also for other groups. We have 

> -- z - , f  H dU(b)x,/2( U ( e ) )  exp L 

= : Z - 'Z(  e ) .  ( 3 .29 )  

Z(C) can be expanded like Z in terms of polymers. See sect. 2 and ref. [12]. There 
are two types of polymers, namely closed polymers as in the expansion of Z and 
polymers ,~ which possess O~ 0 as their boundary. Each graph contributing to Z (~ )  
consists of one polymer .~ with boundary C-- ~ 0  and several closed polymers. All 
polymers are mutually disconnected. 

Now we define two new types of polymers X i, Yi in a similar way as in subsect. 
3.2. Polymers Y, consist of 

(i) a decoration fitted into some hole in -~0; 
(ii) closed polymers which do not touch the decoration (i), but touch Zo such that 

the intersection is contained completely in the hole to which the decoration is 
attached. For an example see fig. 3. Polymers X~ are usual closed polymers. The 
graphs in the expansion of Z(C)  can be thought of as built of polymers X i and Yi, 
such that they are mutually disconnected and the X i do not touch ~ 0. The 
expansion is of the form 

( ) z ( c )  = d , / # ( - % )  1 + E Y. (m!)- 'h(Wl . . . . .  *(W3 , 
m > 0  W 1 . . . . .  W m " =  

(3.30) 

where W~ is any polymer of type X or Y and ~(~,.) are well-defined activities. The 
function h equals 1, if the W i form an admissible graph, otherwise it is zero. On the 
other hand we have as in sect. 2 

Z =  1 + ~] ~] ( m ! ) - ' e ( W ,  . . . . .  Wm) ~ (I)(Wi), (3.31) 
m > O  W I . . . . .  Wm i - -  1 
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I • 
[ -- 

decoration 

smatt potymer 

Fig. 3. Polymer of type Y in the cluster expansion for the  Wilson loop expectation value. See the 
discussion before (3.30). 

where the function e equals 1, if all W~ are of type X and are mutually discon- 
nected, otherwise e = 0. With the help of the moment-eumulant transformation we 
get for the logarithms 

k 

ln(Z(e)/di/2¢~(~o)) ~,, ]~(W~ 1 Wff k ) H --1 /11 = , . . . .  ( . , ! )  o ( w , )  , 

(V¢In,, . . . .  Wt~* ) i-- 1 

(3.32) 

l n Z  = 
k 

Y. ~(w?,, . . . .  w p )  H (~,!)-~¢(w,)  ~'. 
(~VI nt, . . . .  W,~,) i-- 1 

(3.33) 

The hat denotes the corresponding cumulants. This yields 

ln( Z( e ) / dt/2dO( ~o)Z ) 

Y. I I ( n , ! ) - " ~ ( x , ) " { - ~ ( x T ' ) +  Y~ " ", "* - } .  = h(X i ,Y~ )II(n,!) l@(Yk)" 
(X~') i (yffk) k 

(3.34) 
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/~ has the property of being zero unless the occurring polymers form a connected 
configuration. Furthermore,/~(X~',) = ~(XT, ) if the polymers X i are not connected 
with N 0. This is due to the fact that in this case the moments h and e coincide for 
subsets of {X~',}. Therefore, we end up with an expansion in terms of graphs which 
consist of connected objects attached to N 0. If we had perfect translation invari- 
ante  we would get the result that In °2ff(~) is proportional to IN01. But in our case 
the graphs are not allowed to move freely near the boundary of N 0. We have to 
subtract the contribution of graphs which are forbidden by this boundary effect. 
On the other hand there are graphs which only exist at the boundary lines or 
corners of -~0. These effects lead to terms proportional to I SN0l and to constant 
terms. In this way we get the result (3.28). a', • and c do not depend on the size of 
N 0 to order/3" of the expansion, if n is smaller than the diameter of -~0. Compare 
the discussion in subsect. 3.2. 

Now consider a lattice A with periodic boundary conditions and let N 0 be a cross 
section Nx,,(x, ) of A as in subsect. 3.2. The expansion of lnG~ff(~) is as above, 
except that now the boundary effects are different. But the coefficient a '  of the area 
I z0l is seen to be the same. In the range of small 13 where the cluster expansion 
converges the limit 

a~of f i -  lim IN0l-~ln°21f(C), (3.35) 

which is the string tension, exists. 
Our next aim is to show that the coefficient a in the area law for the vortex free 

energy is equal to the string tension a', at least in the range of validity of the 
expansion. The partition functions Z^ffi:Z+ and Z^,rf f i :Z_ with periodic and 
twisted boundary conditions respectively, can be represented as 

with 

Z+ = Zi + Z2, Z_ ffi Z~ - Z2, 

Z , = £  I I  ~ ( X ) ,  Z 2 - - ~  IX @(X). (3.36) 
% X~% ,ai) 2 X~@ 2 

°'D l is any set of mutually disconnected polymers X, such that I I x ~ 6 ~ ( X )  is the 
same for periodic and twisted boundary conditions, while in the case of ~2 the 
corresponding expression changes its sign by a change of the boundary conditions*. 
Z 1 is of order 1, while Z 2 is of order t8 I-%1, as we have seen earlier. We get 

I n ( Z _ / Z + )  -- In((1 -- Z 2 / Z , )  / (1 + Z 2 / Z , )  ) 

= + 

= - 2 ( z = / z + ) ( 1  + (3.37) 

* Here w e  consider polymers with a definite assignment of characters to  their plaquettes. 



Gernot Mi~nster / High-teraperature exlmmions 43 

Corrections of order 13 I-'-°1 will be neglected from now on. Then Z 2 is of the form 

Z 2 = ~ ~ O(-'-~/!O,,))Z(A\ ~(0 ~ (3.38) -x,,O,4)/• 
x] , (x4)  i 

Z~i,{tx,) are large polymers which descend from Zx,,o,, ) by decorations. Z(A \ -~il!(x,) ) 
is the partition function which one gets by taking into account only those polymers 
that do not touch .-<i) This yields, with l = d l, (did4) ,  ~xl,(x,t )" 

fA-~'l--I x X2~(~(it!(x4))Z(k\~(ffi!(x4))z+l. ( 3 . 3 9 )  
xl , (x4)  i 

Translation invariance in x l, x 4 leads to 

f^ = 2 ~ O(~.(°)Z(A \ Z t° )Z+ 1. (3.40) 
i 

Here the large polymers Z(i) descend from some fixed plane N o. Up to boundary 
effects (see the earlier discussion) this expression is equal to the expansion of 
~(~Zo) as given by Osterwalder and Seiler [12]. From this we conclude that the 
coefficient a in the area law (3.18) for f^ is equal to the string tension o~' to order fin 
of the high-temperature expansion, as long as n is smaller than the diameter of Z 0. 
The proof of the convergence of the cluster expansion for °2ff(O~0) [12] applies in 
the same way for fA in (3A0). So we get as final result 

' ( 3 . 4 1 )  tXoo --~ 0~oo 

within the range of convergence of the high temperature expansion. The string 
tension of SU(2) lattice gauge theory in i, = 3 dimensions has been calculated 
previously by Duncan and Vaidya [14] up to order fl]4. Our results are in 
agreement with theirs. 

3.4. DISCUSSION OF RESULTS 

As we discussed in ref. [11] the free energy of vortices per unit extension might 
serve as a convenient quantity for the characterization of different phases in lattice 
gauge theories. Usually the confinement phase is defined by an area law behaviour 
of the Wilson loop expectation value. On the other hand, according to Mack and 
Petkova [8] and to 't Hooft [9] the confinement phase of pure lattice gauge theories 
is distinguishable by the fact that the free energy of vortices per unit extension falls 
off exponentially with the thickness of the vortex container. The high-temperature 
expansion, which we performed in this work, confirms this criterion. In the 
high-temperature region, where confinement is known to occur [12], the vortex free 
energy indeed falls off exponentially with the cross section of the container. 
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Furthermore, we obtained the result that in the high-temperature expansion the 
coefficient a in this area law is equal to the string tension up to small corrections 
which vanish in the limit of an infinite cross section. Such a relation was predicted 
by 't Hooft  [9] on the basis of more general arguments. 

The numerical results for the expansion of a will be discussed in the two 
following subsections. 

3.4.1. String tension of SU(2) lattice gauge theory in p--4 dimensions. Here the 
lattice spacing a is not set equal to 1. As we mentioned earlier the string tension of 
SU(2) lattice gauge theory in I, = 3 dimensions has been calculated previously up to 
order ill4 in the high-temperature expansion by Duncan and Vaidya [14]. They 
discuss the series extensively and we shall not elaborate on this further. 

More interesting is the case of SU(2) in i, -- 4 dimensions. This is the number of 
space-time dimensions of the physical world and it is believed that the SU(2) gauge 
theory reflects the general properties of a gluon field theory with gauge group 
SU(3). There are some indications that l, = 4 is the critical dimension for non-abelian 
lattice gauge theories [22, 13]. This means that the strong coupling confinement 
phase extends down to zero coupling. The point g = 0 would then be a critical 
point of the theory. 

One would like to know if the theory possesses a continuum limit with persisting 
confinement property. Due to asymptotic freedom [23] the continuum limit of 
SU(2) or SU(3) lattice gauge theories is supposed to be related to the weak coupling 
behaviour [24, 10]. It is expected to be a limit, where the lattice spacing a and at the 
same time the bare coupling g go to zero in a way determined by renormalization 
group equations. If asymptotic freedom in the form predicted by perturbation 
theory holds in the physical theory, and confinement persists in the continuum 
limit where the bare coupling parameter fl---> oo, then the string tension should 
behave like [13] 

- 2  6 ¢r2z,~ ,~x 
a ~ a  exp - - - i - i - [ /~ - - / J  ) , (3.42) 

at large fl, where/~ is some constant. 
The connection between strong and weak coupling regions wa~ studied by 

several authors [25, 13, 14, 26, 27]. Of special interest is the intermediate coupling 
region where a transition from strong coupling to weak coupling behaviOur of, e.g., 
the string tension should take place. Monte Carlo calculations for SU(2) in p = 4 
dimensions [13] indicate a rather sharp changeover. In Mack's theory of quark 
confinement [27], which uses the assumption that confinement of static quarks is 
due to condensation of vortices [3-9], the transition signals the appearance of a 
non-empty range of distances a < d < dc(fl ) where perturbation theory applies. For  
values of B above it vortices need a certain thickness dc(fl)> a in order to 
condense. 
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In fig. 4 we have plotted a2a according to (3.23) and the points given in ref. [13]. 
The high-temperature series is in very good agreement with the Monte Carlo data 
in the intermediate coupling region between fl = 1.6 and fl = 2.25. At fl = 2.25 the 
curve matches nicely the weak coupling fit of Creutz. Above fl = 2.3 the data of 
Creutz follow the weak coupling asymptotic freedom behaviour (3.42) with/~ ~ 2. 
In the weak coupling region a becomes exponentially small compared to the strong 
coupling region. There the correct behaviour is not reproduced by the high- 
temperature series (3.23) which in fact goes through zero near fl = 2.4. 

In conclusion we see that high-temperature expansions yield accurate values of 
the string tension at strong and intermediate coupling and their prediction joins 
smoothly to the expected behaviour at weak coupling. Furthermore, fitting the 
weak coupling curve to the high-temperature series as in fig. 4 allows an estimate of 
/~ ~ 2. This constant is important because it relates the string tension to a renormal- 
ization scale in the following way. If one uses a renormalization scheme, where the 
string tension a is held fixed while the lattice spacing a and the coupling g go to 
zero, one gets 

g2 127r2 for small a .  (3.43) 
l l  lnam ' 

The constant mass m is a renormalization scale. It is related to the string tension by 

m = a 1/2 exp -- 3¢r2/~ ~ 4.6- 10 - 3 a l / 2 .  (3.44) 

In a recent paper A. and P. Hasenfratz [28] discuss the relation of m to the 
renormalization scale parameter A of perturbative gauge theory. 

The question of an extrapolation of the cluster expansion series might arise. We 
would like to add some remarks on this point. First one should notice that the 
series (3.22)-(3.25) are not necessarily diverging in the intermediate coupling 
region. The fact that the Wilson loop expectation value on a finite lattice is 
represented by a convergent expansion supports this point of view. The series 
(3.22)-(3.25) are not power series in ft. Instead by using as expansion parameters 
the Fourier coefficients 0 < aj < 1 one is in effect doing a partial resummation of 
the usual high-temperature series in ft. These coefficients are much smaller than fl 
in the intermediate coupling region. The series has a finite convergence region, but 
it is not possible to extract its extension from the first few terms. Second the 
application of extrapolation methods (Pad6, Borel, etc.) requires some properties 
which are not known to be true in our case. Furthermore knowledge of the 
asymptotic behaviour of the numerical coefficients is necessary. Without this 
information any use of extrapolation methods is not justified*. 

A partial resummation by M6bius inversion (see subsect. 2.2.4.) has been 
performed, but gives only very small changes. 

* I thank J. Zinn-Jl~fin for a remark on this point. 
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Fig. 4. The string tension a times the lattice spa~ng  squared as a function of/~ - 4 / g  2 for SU(2) lattice 
gauge theory in p = 4 dimensions. The solid line represents the result of cluster expansions up to 12th 
order according to (3.23). The dots are results of a Monte Carlo c~culaf ion of Creutz [13]. The dashed 

lines are the lowest-order high-temperature curve and the weak coupling fit of ref. [13]. 



Gernot Miinster / High-temperature e:q~ansions 47 

In order to illustrate the contributions of the different orders in the expansion of 
a2a we plotted the series up to orders 8, 10 and 12 in fig. 5. 

3.4.2 String tension of Z 2 lattice gauge theory. When this paper was in prepara- 
tion we received a preprint by Kimura [15], who calculated the high-temperature 
series for the string tension of Z 2 lattice gauge theory in ~, = 3, 4 and 5 dimensions 
up to order x 14 in x - t a n h f l .  The 14th order terms are - l 1 4 x  14 in J ,=3  and 
-4196x=4 in ~, = 4 dimensions. The results are discussed extensively in ref. [15] and 
we shall add a few remarks only. 

The Z 2 lattice gauge theory is known to undergo a phase transition at tic -- 0.76 

in 1, = 3 and pc =½1n(1 + X/2) ~ 0 . 4 4  in i, = 4 dimensions [29]. For  small values of 
B it is in the confinement phase. At large values of/~ it is in a Higgs phase, where 
the string tension vanishes. The phase transition at/~¢ is of second order in 1, = 3 
[29] and is supposed to be of first order in J , -  4 dimensions [30]. Therefore the 

SUI2), v--~, 

a2o< 

' I ' I ' 

2 -- 

I]' 
. . . . . . . . . . . . . . . . . . . . . . .  

I I , I , I 
0 I 2 

P 

Fig. 5. Results of cluster expansions up to 8th (curve I), lOth (curve II) and I2th order (cm-ve Ill) fol 
a2a for SU(2) lattice gauge theory in p = 4 dimensions. Plotted axe the com~sponding poi~omials in u 

v and w. See (3.23). 
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Z 2 , ~=3 

i i , T I i 
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a2~ 
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o.s Pc 

P 

Fig. 6. Results of high-temperature expansions up to order x 14 (x = taahfl)  for a2a for Z 2 lattice gaug~ 
theory in p = 3 dimensions, including the 14th order terms of Kimura [15]. The critical couplings ~8 c ar~ 

indicated. 

string tension should go to zero at//c for p = 3, whereas in v = 4 dimensions it mighl 
have a discontinuity at ~/c. In this case the value of a just below ~8¢ is not zero. This 
value plays an important role in Mack's theory of confinement [27]. It can be 
estimated with the help of the high-temperature series (see fig. 7). For /~  >//¢ the 
series still gives non-vanishing values for a while the true value is zero. This is due 
to the first-order nature of the phase transition. 

In the case of v = 3 dimensions the situation is different. The string tensio~ 
already vanishes at some value/~ <//~ in the high temperature expansion (3.24). B5 
duality [31, 29] the three-dimensional Z 2 gauge theory is transformed into the 
three-dimensional lsing model. The string tension a at inverse temperature 1~ in the 
gauge model is by duality equal to the surface tension of the Ising model at inverse 
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Fig. 7. /~ fig. 6, but for ~, = 4 cS~¢nsiom. 

l Inta~fl [16]. Therefore, the series (3.24) is also a low- temperature fl* = - 

temperature series for the surface tension of  the Ising model.  Its vanishing well- 

below the critical temperature  T~, while the true surface tension is supposed to 

vanish at To, indicates the existence of  a " roughening  temperature"  T R < T c for the 
three-dimensional  Ising model  [33]. 

In  figs. 6 and 7 the high- temperature  series for  a in v = 3 and v = 4 dimensions 
are plot ted including the 14th order  terms of  K imura  [15]. 

I would  like to thank Prof. G. Mack  very much  for constant  support.  He  
discussed the subject with me m a n y  times. 
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NOTE ADDED 

Drouffe sent to me an unpublished paper (Numerical analysis of transitions in 
3-dimensional lattice gauge systems, Stony Brook preprint ITP-SB-78-35, 1978), in 
which he calculates high-temperature series for the string tension of several 
3-dimensional models up to 16th order, including the case of SU(2) and Z 2. My 
results are in agreement with his. The 14th order terms of Kimura [15] and Drouffe 
do not agree. 

Appendix 

GRAPHS IN THE EXPANSION OF a 

On the following pages we show the graphs which contribute to the string tension 
a in SU(2) or Z 2 lattice gauge theories in v = 3 or 4 dimensions up to order/312. 

First the clusters C consisting of a single polymer E i are listed. The pictures show 
the corresponding decorations to the plane -%. The dashed lines indicate, where the 
decorations are fitted to "~o. Lines which are not parallel are meant to be 
orthogonal. The table gives the activities ~ ( E i ) =  ~b(~i).¢(~0) - I  in terms of the 
variables u, v, w for SU(2) [see (3.22)] and in terms of x = tanh/~ for Z 2. Further- 
more it gives the counting factors x for p = 3 and 4 dimensions. See the explanation 
following (3.21). 

Next follow the clusters C consisting of a large polymer E~ and one and two 
small polymers X;, respectively. The combinatorical factors a(C) are displayed. 

G=Z X = .  G=SU(2 

i _ ,  $ ($~x : v=3 v=,- 

I ! ~.~,~ u 4 z 2 4 

IF~ Fz 
- F  2 V U 3U/'V 

2 , u v 3vS / 2 /. 

Ft w v 6 vSwu -1 

3 , ( t C 7 2 ~  u 6 6 4 8 

u 8 8 2 t, 

I 
u 8 8 / 8 

u 8 8 / 32 

u 8 8 /, 8 

u 8 8 8 16 
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Ouster C = (-~o, X =. X I , X' R Xt ) 

v = 3  p - -4  
(a) XA X' -~b  a(C) =- 1 - 1 4  - 4 8  
Co) X n X' = single link 

XA X ' n  --0-~b a(C) = 2 4 8 
(c) X n X'-single link 

X n X' n -~o =#~ a(C)= 2 4 24 
(d) X f) X' = plaquette 

X n  X ' n Z o =  ¢ a(C)= l 2 12 
(e) X n X' - plaquette 

X f) X' f3.~o ~ q  a(C) = 2 5 46 
(f) X - X '  a ( C ) -  1 2 4 
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