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HOW THICK ARE CHROMO-ELECTRIC FLUX TUBES? 
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We analyse the space dependence of the expectation value o~ the chromo-electric energy 
density in the presence of a static quark-antiquark pair by means of the strong coupling expansion on 
a lattice and by the relativistic string model. Both methods indicate that the transversal width of the 
field energy distribution increases without bound, when the quark-antiquark separation goes to 
infinity. 

1. Introduction 

It is a widespread belief that the confinement of quarks is associated with the 
formation of color electric flux tubes. Thus, the chromo-electric field energy density 
(above the vacuum) 

~'(x) ~ (q#l T r  g(x)21q( l )  - (q#lq~t)(ol T r  E ( x ) 2 ] 0 )  (1) 

in the ground state Iqq) of the gluon field in the presence of an infinitely heavy 
quark-antiquark pair is expected to be supported essentially on a tube-like region as 
shown in fig. 1. Outside this region, 8"(x) falls off exponentially with a characteristic 
length inversely proportional to the glueball mass. A convenient measure for the 
width of the flux tube is 

2 l d 2 x ± x ~ ( x )  
tr = Sd2x±~,(x) , x ±=(xa ,  x2) ,  x 3 = t L  (2) 

(the quarks are supposed to be located at x = 0 and x = (0, 0, L) respectively). 
2 • o" is a renormalization group invariant, because 8~(x) is only multiplicatively 

renormalized. In other  words, 

cr 2 = L : f ( A L )  , (3) 

where A is a physical mass parameter  such as the square root of the string tension. 
When L << 1/A, the flux tube of fig. 1 degenerates to a ball with the quark-antiquark 
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Fig. 1. Support of ~(x). 

pair at its center. The chromo-electric field inside the ball is then essentially equal to 

an electrostatic dipole field so that 

L << 1 ) .  (4) 

On the other hand, if L >> 1/A, perturbat ion theory is not applicable. From the flux 
tube picture we rather expect 002 to grow much slower than L 2 as L ~ o0. It  is even 
possible (and in fact true in strong coupling lattice gauge theories) that 0 °2 approaches 
a constant 002 < oo in this limit. 

In this article we address the question of whether or not limL-.~ O -2 = 2 00~ is finite (in 
2 (where oz is the continuum). If indeed 002 were finite, we would expect that a • 00~ 

the string tension) extrapolates smoothly from the strong to the weak coupling 
domain on the lattice. This, we find, is not the case: the 12th order strong coupling 

2 2 -1 expansion of 00~ presented in sect. 2 rather indicates that (a • 00oo) vanishes at 
a relatively large value of the bare coupling constant g2. 002 can also be estimated 

from the string model approximation to the Wilson loop correlation functions (sect, 
3). Although the string model assumes an infinitely thin bare string connecting the 
quark with the antiquark, tr 2 comes out to be non-zero,  because the quantum 
mechanical wave function of the string has a non-vanishing width. In sect. 4 we 
summarize and comment  on our results. 

2. Strong coupling expansion of ~r~ 

In this section we consider the standard pure SU(2) gauge theory on a four- 
dimensional euclidean lattice [1]. Our  notation is as in ref. [2]. Thus, the link 
variables are denoted by U(b) and expectation values of gauge-invariant combina-  
tions ~ of the bond variables are given by 

1 
(~7) = -Z I ~ dU(b )~? exp ~LP, (5) 

S~' 1 2 4 
= ~/3 Y~ Tr  U(15), g = ~ = bare coupling constant .  (6) 

P 

The sum in eq. (6) extends over all unoriented plaquettes p on the lattice and U([a) is 
the product of the link variables associated with the boundary of p. 
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T --[c lx'  x3 

Fig. 2. A Wilson loop ~g located in the (x3, x4) plane at xa = x2 = 0. 

Suppose cg is a rectangular Wilson loop as shown in fig. 2. The euclidean 
equivalent of eq. (1) then reads* 

g'(x) = 1 lim (Tr U ( ~ ) T r  U(I~x))-(Tr U(qg))(Tr U(lb~)) (7) 
r-,o~ (Tr U(~')) 

Here, U(~)  denotes the ordered product of the link variables along c~ and p~ is a 
plaquette at x parallel to the (x3, x4) plane. The leading contribution to 8'(x) in the 
standard strong coupling expansion comes from the minimal connected surface of 
plaquettes bounded by c¢ and passing through Pc. 8"(x) therefore decreases 
exponentially, when x goes to infinity in a direction perpendicular to the plane 
containing c~. We thus expect (but did not prove rigorously) that for sufficiently small 
/3 

I g(x)[ ~< ca exp [-c2([x1[ + Ix2[)], (8) 

where ca and c2 are constants independent of L. It follows that o .2 is finite in the 
strong coupling domain. 

We now proceed to calculate o.~ up to 12th.order in/3. First note that ~'(x) is a 
function of Xl and x2 alone for L = 0o. Taking this into account, we may rewrite eq. (7) 
as  

0 
~oo(X1, X2) = - - - " ~  Or' (/3, ~ ,  XI,  X2)]/3=/3 , (9) 

0/3 

where a(/3,/3, Xl, x2) is a generalized string tension: 

1 
a(/3,/3, xa, x2) = - lim - - l n  (Tr U(~))d. ..... • (10) 

r,L-.~o T • L 

The expectation value (...)t~, .... 2 is defined as ( . . . )  [eq. (5)], but with all couplings/3 
replaced by/3 along the two-dimensional plane parallel to c¢ and passing through 
(x a, x2, 0, 0). The point of this manipulation is that the generalized string tension (10) 
can be calculated in precisely the same manner as the ordinary string tension. In 
particular, the strong coupling graphs needed are exactly those of ref. [2]. Only the 

* For simplicity, we only take the contribution of the component  Us of the electric field parallel to the 
flux tube into account. 
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activities change somewhat to include the dependence on /~ and xl, x2. As an 
expansion parameter,  we use the variable* 

I2(B) ¼3+0(/3  3) (11) 
z1(3) 

instead of 3 (Iv denotes a Bessel function, cf. ref. [3] sect. 8.445). The results of our 
computations are 

du 
~oo(0, 0) = ~-~ {U -1 -- 4U 3 -- 24U 5 -- 92U 7 

5 3 9 6 0 U 9  3 0 7 8 3 3 2  1 1  121s u + ' " } ,  (12a) 

du . 6 8  7 ,  2 1 5 2 4  9 8 5 2 4 3 6  1 1 ,  f f o o ( 1 , 0 ) = - ~ { u 3 + 2 u S * ~ - u  * 4--~r-u + 1-~3-u t . . . } ,  (12b) 

du ~9_u11 ~oo(1.1) = ~-~{2u7+ 12u9+ + ' "  "}, (12c) 

du l~Sull geo~(2, 0) = ~-~{u7 + - + "  "}, (12d) 

~oo(2, 1) = d~  {4ul1 +" " "}' (12e) 

g~oo(3, 0) = ~ {u 11 + . . . } .  (12f) 
ctO 

When Ix11 + ]Xz] >t 4, ~oo(xl, x2) vanishes to the order considered. 
On a lattice, the defining formula (2) for o .2 takes the form 

oo 2 2 
2 Xxl,x2=-~ (x1+x2)~o(xl, x2) 

o.oo = ~,~,~2=-oo ~oo(Xl, x2) (13) 

Inserting the expansions (12) yields 

2 * r  4 . ~ 6 . 9 2  8 , 3 7 7 2 4  1 0  , 1 4 1 2 5 5 1  1 2  o.oo ='~lu + z u  -eTu * 4-X6~u * ~ T g - u  + . . . } .  (14) 

We have plotted this polynomial in fig. 3. As expected, o2  is rising monotonically 
2 from zero at/3 = 0 to about 0.5 at B = 2. For/3 ~ 2, o-~ rises steeply, but in that region 

the strong coupling expansion is hardly reliable: according to the celebrated Monte 
Carlo calculations of the string tension by Creutz [4], a rapid crossover from strong to 
weak coupling behaviour takes place just there. 

• This choice is motivated by the expansion of the Boltzmann factor in eq. (5) into characters of SU(2); 
see ref. [2] for details. 
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Fig. 3. P lo t  of o '~  for the  SU(2)  guage  t heo ry  in v = 4 d i m e n s i o n s  [eq. (14)]. a and  b d e n o t e  the  10th  and  
12th o r d e r  curves  respect ive ly .  

2 d 0.0o < oo in As explained in sect. 1, t~ • 0.0o should approach a constant for/~ ~> 2, " 2 
the continuum limit. Using the strong coupling series for t~ obtained in ref. [2], we get 

(a " 0.~°)-1 = 4u'-lln u {1-  2 u 2 - 4 u 4 ( ~  -Q+ 1 ) I n  u 

+4u6 /2179  + 2__2_) a /244903 
\ 4 0 5  l n u / - U  ~ 1 - ~  

48 16  1 +  / 
l nu  ( lnu) 2] " " J  " 

(15) 

The corresponding 6th (a) and 8th (b) order curves are shown in fig. 4. Rather than 
approaching a constant, (a . 0 -2)-1 seems to vanish at about* 

OR----- 1.9. (16) 

This value is just below the crossover region B ~> 2 so that we are inclined to conclude 
2 that 0.0o diverges at BR. 

To check whether our procedure to determine fiR is significant, we have also 
calculated (a 2 -1 • 0.0o ) for the Z2 gauge theory in u = 3 and 4 dimensions. With 
x = tghB, the results are respectively 

- ~  1 - 3 x 2 - x  4 11+ 

+X6( 19 + ln4_~x)- xS(42 18 4 + 
lnx  (lnx) 2) " ' ' } '  (~ ,=3) ,  

(17) 
* W e  choose  the  symbo l  /~R because  the  p h e n o m e n o n  o b s e r v e d  h e r e  is ve ry  m u c h  the  s a m e  as the  

sur face  r o u g h e n i n g  of  a phase  b o u n d a r y  in th ree  d imens ions  (see below).  
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SU(2) , ) )=4 

30 

2O 

( o,2..,.)-1 

1 1.5 2 

4 

F ig .  4 .  P l o t  o f  ( a  2 -1  • cr~o) versus fl for the SU(2) gauge theory in v = 4 dimensions [eq. (15)]. a and b denote 
the 6th and 8th order curves respectively. 

,o 1 {l x x4i  +4x) 
• ~roo) = 4x 41nx 

40 
+ x 6 ( 1 5 + l n - ~ ) - x 8 ( 1 7 6  l n x  / ,  

(v = 4 ) .  (18) 

The  corresponding  curves plot ted in figs. 5 and 6 suggest (with subjective errors) 

/3R= 0.51 q-0 .02,  (V = 3 ) ,  (19) 

/3R = 0.44 + 0 .02 ,  (V = 4) .  (20) 

For  v = 3, the width o '2  measures  the thickness of an interface be tween two regions 

of opposi te  magnet izat ion in the dual Ising model  at inverse t empera tu re  / 3 " =  
1 - ~  In x. The  width of the interface has previously been found  to diverge a t / 3 "  -~ 0.39 

cor responding  to/3R ~ 0.50 [7]. This value is in good  agreement  with our  result (19). 

Note  also that  f i r  is well below the critical inverse t empera tu re  tic = 0.76 . . . .  which 
makes  the reliability of the s trong coupling expansion plausible• Concern ing  the 
four-dimensional  case, we remark  that/3R is practically equal  to the self-dual point  
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Z2,  ~ ' : 3  
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P 

Fig. 5. Same as fig. 4, but for the Z2 gauge theory in v = 3 dimensions. 

/3c = 0.44 . . . .  This coincidence is hardly accidental, but we have no explanation for it 
at present. Altogether,  the Z2 results encourage the conclusion that the roughening 
transition we found for the SU(2) model is not a mere artifact of our procedure. 

2 3. String model predictions for eg 

3.1. APPROXIMATE CALCULATION OF g'(x) 

The string model provides an approximation for correlation functions of Wilson 
loops, which is expected to be sensible for large, smooth loops [5, 6]. By eq. (7), g'(x) 
is proportional to 

O(r¢, ~ ) =  <Tr U(C¢)Tr U ( ~ ) > - ( T r  U(~) ) (Tr  U(~)>,  (21) 

where ~ is the Wilson loop shown in fig. 2 and ~ is a small loop located at x. In its 
crudest form, the string model gives 

(7(c¢, ~)ocexp [-M2A(C¢, c~)], (22) 

where M 2 is the string tension and A(C¢, ~)  denotes the area of the smallest 
connected surface with boundary c8 U 8. 
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Z z , "~=i. 
I I I i I 

30 

20 

(o,2.~,) -1 

10 

0.3 0.t. ~ 0.5 
Pc 

P 

Fig.  6. Same as fig. 4,  b u t  f o r  t he  1'2 g a u g e  theory in ~, = 4 dimensions. 

It is impossible to calculate A ( ~ ,  4 )  in general. Since we are only interested in 
what happens, when ~ is much larger than ~ and the distance between c¢ and the xl, 
x2 = 0 plane, we may replace ~ by a large circle of radius R. For ~ we choose a small 
circle parallel to cg with radius r and center (h, 0, 0, 0), h >t 0 (el. fig. 7). For such an 
arrangement of loops ~ and 4,  the minimal surface can be determined explicitly. 

X4 ~---- C 

I 

Fig.  7.  C o n f i g u r a t i o n  of  Wilson loops used to calculate o .2 f r o m  the string model. ~ and ~ are circles in the 
planes xl  = 0 a n d  xl = h, respectively. 
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Namely, it is a surface of revolution about the xl axis: denoting the aximuthal angle 

by ~o, we have 

x(z,~,)=(z,O,p(z)cos~o,p(z)sinq,), O~z~h,  (23) 

p(z) = 1 ch oJ(z - Z o ) .  (24) 
03 

The constants oJ and Zo must be adjusted such that 

p(0) = R  = 1 ch ~OZo, (25a) 
to  

1 p(h) = r = --  ch ~o(zo- h ) .  (25b) 
to  

The area of the surface (23) is 

A = ~ {h + R+~/~o 2R 2_ 1 - sign ( z o -  h ) r + ~ } .  (26) 
¢o 

For  fixed h, r and R -* oo, the transcendental equations (25) can be solved, 

to--~-ln + 0  In , z o ~ h ,  (27) 

so that 

: [( A=Ir(R2-r2)+~ln(R/r---~)4-O In . (28) 

From this result we first of all see that ~'(x) approaches a value independent of h in 
the limit R = oo, h, r fixed. More precisely, 

8 , (x )ocexp[_M ~ e x~ ] In (R/r)J' (R >> Ix±l, r) (29) 

so that the width 

2 In (R/r) 
o. (30) 

diverges logarithmically for R -* oo. In other words, the string model suggests that 

o.2 ~ o.o2 In (L/A) for L ~ o o ,  (31) 

for some constants o .2 and a. The acutal value for A cannot be extracted from the 
string model, because this would require to take the local limit r - ,  0, whereas the 
string approximation assumes Mr >> 1. 
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3.2. H A M I L T O N I A N  C A L C U L A T I O N  OF T H E  W I D T H  OF T H E  STRING W A V E  

F U N C T I O N A L  

We here present an alternative derivation of the scaling law (31) by a straight. 
forward quantum mechanical argument. We thus consider a string 

Xk(S) = ( XI(S), X2(s), L s )  , 0 <~ s ~< zr, (32) 

with fixed ends 

x±(0) = x±(zr) = 0 ,  

As a hamiltonian we choose* 

x± = (xl, Xz). (33) 

H = M2L +2--M- ~ ds(p 2 +Max'_2), x± = d-s x± (34) 

where p j_ is the canonical momentum 

8 
p ~ ( s )  = - i - -  (35) 

8 x ± ( s )  " 

Correspondingly, the ground-state wave functional 0[x±] is gaussian: 

O[x±]=exp [-½ IodS drx±(s) . x±(r)H(s, r) ] , (36) 

H(s, r) = 2M2 ~ n sin (ns) sin (nr). (37) 
77" n = l  

We now ask for the probability P(x±) d2x ± that the string passes through an area d2x± 
at x = (xl, x2, ½L) (see fig. 8). This will give us a measure for the width of the wave 
functional (31). P(x±) is also gaussian, of course, and a little algebra gives 

1 / x ~  
P(x±) = ~-~  exp ~ - ~ } ,  (38) 

1 
Fig. 8. Fluctuating string passing through the area d2x± at x = (xl, x2, iL).  

* This is the gaussian approximation valid for small fluctuations x± to the full hamil tonian of the 
relativistic string model. 
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1 k=.,, 1 
8 = ,rM------ ~ k~'o= k + ½' k=~, = L / A .  

11 

(39) 

Here, we introduced a lower cutoff A on the wavelengths of the string vibrations. One 
can interpret A as an intrinsic thickness of the string or merely as an effective 
parameter, beyond which the string model is no longer applicable to chromo-electric 
flux tubes. We now see that as L-* oo, the width 8 2 of the string wave functional 
diverges logarithmically 

82 1 In L (40) 

Note that this is an infrared divergence: as L ~ 0o more and more vibrations have 
wavelengths l larger than A. The sum (34) can then be approximated by 

82 ~ 1 fLdl  
~ - - ~ L  T' (41) 

which diverges for large wavelengths I. In particular, the divergence of the width 8: is 
independent of precisely how the cutoff h is introduced. 

4. Conclusions 

Our strong coupling calculations suggest that the SU(2) lattice gauge theory in four 
dimensions undergoes a "roughening" transition at about BR= 1.9, where the 
transversal width of the field energy distribution g'(x) of an infinitely long flux tube 
diverges. This transition is very similar to the roughening of a phase boundary in the 
three-dimensional Ising magnet [7, 8], which in fact is dual to the Z2 gauge theory. 
Based on this correspondence, Itzykson [9] and Hasenfratz [10] have recently 
pointed out that transitions of the roughening type might be a common phenomenon 
in gauge theories, too. 

The significance of the roughening transition for the continuum gauge theory is 
that the width cr 2 of the gluon field energy distribution g'(x) in the presence of a static 
quark-antiquark pair separated by a distance L diverges as L ~ co. How precisely o "2 
diverges, is difficult to derive from the lattice gauge theory. The string model 
approximation to the Wilson loop correlation functions, on the other hand, predicts 

o" 2--o'Zo In ( L ) ,  (L-,  oo) (31) 

with some constants O'o 2 and A. If we take the string model literally, the divergence 
(31) is explained to arise from the large, quantum mechanical fluctuations of a thin 
"bare" flux tube connecting the quark with the antiquark. We finally mention that 
the string model has its counterpart in the theory of phase boundaries, where it is 
called the drumhead model [11]. 
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We are indebted to J.-M. Drouffe, C. Itzykson, G. Mack and D.J. Wallace fol 
useful discussions. 
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