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The Casalbuom-Gatto subcomponent model of quarks and leptons is generalized allowing for an arbitrary number of sub- 
components. It is shown that there are only a limited number of cases where the subcolour can be embedded in a semi- 
sinlple grand unification scheme. The most interesting models lead to an SU(7) ® SU(7) grand unification at the subcom- 
ponent level. In one of them there is also a natural place for a hypercolour (tecbnicolour) group SU(2)hc. 

In a recent paper [1 ] Casalbuoni and Gatto propos- 
ed models for composite quarks and leptons based on 
the "conventional" idea o f  confinement. The main as- 
sumption is the existence of  a confined SU(3)sc "sub- 
colour". The quarks and leptons contain three subcom- 
ponents in an antlsymmetric state under SU(3)sc in 
the same way as baryons are antisymmetric three- 
quark composites in SU(3)c (c is colour). 

As was shown m re f. [ 1], there are only four dif- 
ferent possibilities if the full gauge group is SU(n) 
®SU(3)s c (n/> 6) and if the following assumptions are 
fulfilled: 

(1) The subcomponent fermions are in the funda- 
mental (n, 3) representation o f SU(n) ® SU(3) sc" Their 
antiparticles are in the complex conjugate representa- 
tion (n*, 3*). This assures the absence of  triangular 
anomalies at the subcomponent level. 

(2) The quarks and leptons are three-subcomponent 
spin-l/2 states totally symmetric under SU(n) ® S1(2, 
C), where S1(2, C) is'the Lorentz group for undotted 
and dotted Weyl-spinor indices. (The symmetry is the 
consequence of  antisymmetry under SU(3)sc. ) 

(3) The gauge group SU(n) contains SU(5) ® SU(n 
- 5)n, where SU(5) is the grand unification group of  
Georgi and Glashow [2] and SU(n - 5)H is a "horizon- 
tal" gauge group connecting the different standard 
(10 ~ 5*) SU(5) families of  quarks and leptons. 

1 Supported by Bundesministenum fiir Forschung und Tech- 
nologle, Bonn, Fed. Rep. Germany. 

(4) The standard SU(5) families span a representa- 
tion o f the horizontal gauge group SU(n - 5)H. 

The basic processes for proton decay: u + d ~ fir 
+ e + or u + u ~ a + e +, are subconstituent-rearrangement 
reactions. Consequently, the spatial extension of  quarks 
and leptons (the confinement radius for subcolour) 
has to be o f  the order of  the inverse o f  the SU(5) 
grand unification mass [3] (in any way, smaller than 
10 -14 GeV -1) in order to avoid an contradiction with 
the present lower limit of  the proton lifetime rp. 
(For a recent review of  experimental limits on rp see 
e.g. ref. [4] .) On the other hand, the confinement 
radius for ordinary colour is about 1 GeV -1. The large 
difference in the scale parameters of  SU(3)s c and 
SU(3)c makes it rather difficult (if not impossible) to 
imagine that subcolour and colour could have the same 
strength at some common grand-unification scale. The 
situation changes, however, in models with a larger 
subcolour group SU(2k + 1)s c (k I> 2) where quarks 
and leptons are composed of  (2k + 1) subcomponents. 

The purpose of  the present letter is to look for 
SU(n) ® SU(2k + 1)s c subcomponent models satisfying 
the above assumptions (1) - (4)  with the only change 
that we allow for any odd number (2k + 1) of  sub- 
components inside the quarks and leptons. It turns out 
that, besides a few exceptional cases, there are two in- 
finite series of  such models exhausting the full set of  
possible k values (k = 1, 2, 3 . . . .  ). Among these cases 
there are, however, only 11 different possibilities with 
2k + 1 <~ n, where a semi-simple grand unification in 
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SU(n) ® SU(n) is possible. We shall see below that 
only 2 of  these 11 models seem to be interesting for a 
reasonable grand unification scheme, both of  them 
with n = 7. The subcolour groups are SU(5)s c and 
SU(7)s c in the ' two cases, respectively. 

Let us first look for the possible SU(n) ® SU(2k 
+ 1)s c subcomponent models with 2k + 1 subcompo- 
nents in quarks and leptons satisfying the above as- 
sumptions. We shall consider only the cases n I> 7 
because it can be easily shown that for n = 6 there is 
strictly speaking no solution. The only possibility 
would be the n = 6 model discussed in ref. [1] but it 
does not really satisfy assumption (4) as the U(1)H 
quantum numbers are different for the 10 and 5* with- 
in a SU(5) family. 

According to assumption (2) we have to look for 
the (2k + 1)-subcomponent states totally symmetric 
with respect to SU(n) ® S1(2, C). In the Lorentz group 
we use undotted and dotted Weyl-spinor indices, there- 
fore S1(2, C) = SU(2) 1 ® SU(2)r, where SU(2)I and 
SU(2)r act on undotted and dotted indices, respec- 
tively. We shall denote, as usual, the Young tableau 
with rows of  length ;kl, ;k2 . . . . .  ;k s by (~1, ~2 . . . .  , ;ks). 
The low lying spin-l/2 composite fermion states can 
belong, in SU(2)I ® SU(2)r, either to the Young tableau 
(a + b + 1, a + b, a, a) or to the Young tableau (a + b 
+ 1, a + b + 1, a + 1, a) for a, b />  0. In the two cases 
the spin-l/2 is provided by the column of  length 1 and 
3, respectively. The columns of length 4 and 2 are 
scalars. In the former case the only possibility is to 
put 2 undotted and 2 dotted indices in the column, 
whereas in the latter one it is possible to put either two 
undotted or two dotted indices. The number of  dif- 
ferent spin configurations is, therefore, in both  cases 
equal to 2b + 1. 

The total symmetry under SU(n) ® S1(2, C) is real- 
ized by identical Young tableaus in S1(2, C) and SU(n). 
For the standard low mass SU(5) families we need 
either 10 and 5* or 10" and 5 in the reduction SU(n) 
D SU(5) ® SU(n - 5) H. In the former case the quarks 
and leptons have to be composed o f  the subcompo- 
nents in (n, 3), whereas in the latter case of  the anti- 
subcomponents in (n*, 3*). The unwanted right-hand- 
ed 10 • 5* states with V + A couplings in the Glashow-  
Weinberg-Salam SU(2)v® U(1)y are assumed to have 
large masses [1]. For the states of  the three (n, 3) sub- 
components there are four possibilities: 

(a) 10 and 5* in SU(5)with equivalent representa- 

tions of  SU(n - 5)n;  
(b) 10" and 5 m SU(5) with equivalent representa- 

tions of  SU(n - 5)H ; 
(c) 10 and 5 in SU(5) with complex conjugate rep- 

resentations of  SU(n - 5)n;  
(d) 10" and 5* in SU(5) with complex conjugate 

representations of  SU(n - 5)n. 
What is left is a straightforward discussion of  the 

SU(5) ® SU(n - 5)n reduction of  the two sorts of  
Young tableaux introduced above. In cases (a) and (b) 
we have to require identical Young tableaux m SU(n-  
5) H, whereas in cases (c) and (d) the Young tableaux 
in SU(n - 5)H have to be complex conjugates of  the 
10 and 5 in SU(5). The condition for the complex 
conjugate Young tableaux can be best imposed on the 
sequence of "horizontal and vertical separating lines" 
illustrated in fig. 1. Namely, in complex conjugate 
Young tableaux both the horizontal and the vertical 
separating lines have to be equal m opposite order. 

The lengthy but otherwise straightforward investi- 
gation of all the possibilities gives the following solu- 
tions: 

(1) In SU(7) ® SU(5 + 2b)s c (b = 0,, 1, 2 , . . . )  the 
Young tableau (b + 2, b + 1, 1, 1) with (b + 1) different 
spin structures and (1) = doublet in SU(2)H. 

(2) In SU(7) ®SU(3 + 2b)s c (b = 0, 1, 2 . . . .  ) the 
Young tableau (b + 1, b + 1, 1) with (b + 1) different 
spin structures and (0) = singlet in SU(2)H. b = 0 cor- 
responds to the SU(7)® SU(3)s c model in ref. [1]. 

(3) In SU(12) ® SU(7)s c the Young tableau (2, 2, 
2, 1) [=56 628-dimensional representation of SU(12)] 
with one spin structure and ( I ,  1, 1) = 35-plet in 
SU(7) n • 

(4) In SU(10) ® SU(9)sc the Young tableau (3, 3, 
2, 1) [=304 920-dimensional representation of  SU(10)] 

n sf 
Fig. 1. The complex conjugate Young tableaux of SU(n - 5) H 
put together in a quadrangle consisting of columns of length 
n - 5. The "horizontal separating lines" are dashed, the 
"vertical" ones are dotted. 
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with 2 different spin structures and (3, 2, 1, 1) = 175- 
plet in SU(5)H. 

(5) In SU(8) ® SU(3)s c the Young tableau (2, 1) 
[= 168-dimensional representation of SU(8)] with 2 
different spin structures and (1) = triplet in SU(3)H. 
This is one of the models in ref. [ 1 ]. 

(6) In SU(10) ® SU(9)s c the Young tableau (3, 2, 
2, 2) [= 110 880-dimensional representation of SU(10)] 
with one spin structure and (3, 2, 1, 1) = 175-plet in 
SU(5) n- 

(7) In SU(10) ® SU(9)s c the Young tableau (3, 3, 
2, 1) = [=304 920-dimensional representation of 
SU(10)] with 2 different spin structures and (3, 3, 1) 
= 315-plet in SU(5)H. 

(8) In SU(8) ® SU(3)s c the Young tableau (1, 1, 1) 
[= 56-dimensional representation of SU(8)] with 1 
spin structure and (1) = triplet in SU(3)H. This is one 
of the models in ref. [ 1 ]. 

If we require (2k + 1) ~<n, in order to have a semi- 
simple grand unification SU(n) ® SU(n), then the two 
infinite sequences in (1) and (2) are reduced to the fol- 
lowing cases: 

(la) In SU(7) ® SU(5)sc the Young tableau (2, 1, 1, 
1) (= 224-dimensional representation in SU(7)] with 
one spin structure and (1) = doublet in SU(2)H. 

( lb)  In SU(7) ® SU(7)sc the Young tableau (3, 2, 
1, 1) [=2940-dimensional representation of SU(7)] 
with two different spin structures and (1) = doublet 
in SU(2)I_ t. 

(2a) In SU(7) ® SU(3)s c the Young tableau (1, I, 1) 
[= 35-dimensional representation of SU(7)] with one 
spin structure and ((3) = singlet in SU(2)H. This is one 
of the models m ref. [1]. 

(2b) In SU(7) ® SU(5)s c the Young tableau (2, 2, 
1) [= 490-dimensional representation of SU(7)] with 
two different spin structures and (0) = singlet in 
SU(2) H. 

(2c) In SU(7) ® SU(7)s c the Young tableau (3, 3, 1) 
[=3528-dimensional ¢epresentation of SU(7)] with 3 
different spin structures and (0) = singlet in SU(2)H. 

These are the 11 possibilities mentioned in the in- 
troduction. 

Among these 11 cases, 3 [(5), (8) and (2a)] have 
SU(3)s c as subcolour group [1] which seems to be too 
small for a unification with SU(3)c. The rather exotic 
cases (3), (4), (6) and (7) have a very large number of 
SU(5) families which ruin the asymptotic freedom at 
high energies; therefore we do not consider them any 

more here. What is left is either SU(7) ® SU(5)s c [cases 
(la) and (2b)] or SU(7)®SU(7)sc [cases (lb) and (2c)] 
both leading to an SU(7)®SU(7) grand unification. 

Semi-simple grandunification in SU(7) ® SU(7) 
means that above some point the coupling constants 
of the two SU(7) factors become equal. This has to be 
above the energy of the substructure of quarks and lep- 
tons when the subcomponents are the relevant degrees 
of freedom in the renormalizafion group equations. 
The subcomponents are in the fundamental representa- 
tion (7, 7) of SU(7)®SU(7) and for equal coupling con- 
stants the lagrangian has a discrete symmetry under the 
exchange of the two SU(7) factors. Below the grand 
unification point this symmetry is spontaneously 
broken in such a way that the subcolour coupling con- 
stant becomes large at much higher energies (say, near 
M x = 1014 GeV) than the QCD coupling constant a s. 
Below M x the effective fermion degrees of freedom 
entering the renormalization group equations are the 
standard SU(5) families of quarks and leptons com- 
posed of (5 or 7) subcomponents. The other possible 
composite states (e.g. higher SU(5) representations 
etc.) are assumed to lie near M x- 

We begin the qualitative discussion of the renor- 
malization group equations for the coupling constants 
[5] in the simpler case of SU(7)sc subcolour. In the 
usual notation aj =g2/47r we have up to one-loop or- 
der It = In (Q2//a2)] : 

da] --1/dt = ]30j/4~r . (1) 

The constant ]30/depends on the gauge group and on 
the number and transformation properties of matter 
fields: 

]301 = ~ C(G/) - ~ T(RI)  . (2) 

If the generators of the gauge group G satsify 

[Xa, Xb] = i f a b c ~ ,  (3) 

then C(G)  is defined by 

fabcfdbe = 8 ad C(G ) . (4) 

Denoting the representation of G spanned by the fer- 
mions by R and the generators in the representation 
R by A a, the definition of T(R)  is the following: 

Tr (A a Ab) = 6ab T ( R ) .  (5) 

Let us assume that the standard SU(3)e ® SU(2) v 
®U(1)v interactions are first unified in SU(5) at some 
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energy-scale M x which coincides with the energy scale 
of the quark and lepton substructure. (The equality of 
these two energy scales is plausible because the super- 
heavy SU(5) gauge bosons mediate the proton decay 
processes in the same way as subconstituent inter- 
change does [1].) BelowM x we have the effective 
gauge symmetry SU(3)c ® SU(2)v ® SU(2)H ® U(1)y. 
Above M x we have SU(5) ® SU(2) H ® SU(7)s c up to 
the grand unification point MGU. Above MGU the full 
SU(7) ® SU(7) gauge symmetry is effective. For de- 
finiteness let us pu tM x = 2.7 × 1014 GeV correspond- 
ing to the recent best estimate of the SU(5) unifica- 
tion point [6]. (See also refs. [7,8]. Note that in ref. 
[6] two-loop contributions are also included, whereas 
here only one-loop equations are considered for a 
qualitative orientation.) Besides we assume that SU(7) 
® SU(7) grand unification is at the Planck mass MGU 
=Mp = 1.2 × 1019 GeV. The resulting picture of the 
coupling constant variation is given in fig. 2. 

A general consequence of the scheme is that the 
value of the couphng constants at the SU(5) unifica- 
tion point ct ~ 1/18 is larger than usual [6-8] .  This 
follows from the requirement of unification of the 
ordinary interactions with the subcolour. This is 
achieved by a larger number of SU(5) families. In fig. 
2 the three SU(2)H singlet famlhes in the SU(7) 3528- 
plet are put belowM 0 = 2M w = 1.6 × 102 GeV, where 
the integration of the renormalization group equations 
(1) is started. The other four SU(5) families from the 
SU(7) 2940oplet, which are doublets in SU(2)H, are 
put to the mass scale M 2 = 5.6 × 103 GeV. (Of course, 
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Fig. 2. The variation of the coupling constants m the SU(7) 
®SU(7) model with SU(7)sc subcolour. 

in reality the SU(2)H doublet SU(5) famihes may be 
spread out in some range around M 2. This does not, 
however, change the qualitative picture.)M 2 is chosen 
in such a way that the QCD coupling constant a s 

= ct 3 starts from t~ -1 = 7 at M 0 [6,8] and meets the 
SU(5) unification point at M x. The coupling constant 
of SU(7)s c subcolour is started at M x from the value 
t ~  1 = 5. (This is taken here generally as the "critical 
value" of the coupling constant in unbroken gauge 
~eories where the abrupt transition to confinement 
O c c u r s . )  

The interesting consequence of this scheme is that 
the presently known three SU(5) families are singlets 
under SU(2)H. They can participate in horizontal weak 
interactions at most only through a small mixing with 
the high lying SU(2)H doublet families. This explains 
nicely the present absence of any experimental evi- 
dence for honzontal interactions. 

Once M 0, M 2, M x and MGU are timed the change 
of the coupling constants for all the interactions m 
fig. 2 are already uniquely determined. The values of 
the constants/~01 m eq. (1) for the di'fferent energy 
ranges are collected in table 1. The values of a -1 

56 and or21 ~ 24 a tM 0 give from the one-loop 
SU(5) relations [3] 

o~ 1 = ~ oti-1 + o~ 1 , 
(6) 

_ 1  $ 
sin20w - g + g Ctem/a3 , 

aem(M 2) ~ 1/117 for the electromagnetic coupling 
constant and sin20w ~ 0.20 for the Weinberg angle. 
The former value is somewhat too large compared to 
the right one aem(M02) ~ 1/130 [7]. Two-loop cor- 
rections and contributions of possible low mass 
scalars (dynamical Higgs mesons) are, however, neglect- 
ed here. The present picture is, therefore, only qualita- 
tive. 

The qualitative picture of grand umfication with 
SU(5)s c subcolour is basically similar to the case of  
SU(7)s c. The only essential difference is that in the 
SU(7) factor containing SU(5)sc there is room for 
some other interaction besides SU(5)s c. A natural 
choice is an unbroken SU(2) factor which is unified 
with SU(5)s c at superhigh energies. Being a smaller 
group its coupling constant becomes large more slow- 
ly, that is at much smaller energies than M x ~ 1014 
GeV where the SU(5)s c couphng becomes large. It is 
tempting to identify this SU(2) with the "hypercolour" 
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Table 1 
The constants 13ol in eq. (1) for the model with SU(7)sc subcolour. 

Group Mo < M < M2 M 2 < M < M x" M x < M < MGU 

U(1)y ~o I 
SU(2)v 302 
SU(2)H ~O2H 
SU(3)c 303 
SU(5) 3os 
SU(7)sc 307 

-2813  
10/3 -2  
22/3 -813 
7 5/3 

8/3 

41/3 
21 

("technicolour") SU(2)h c [9,10] having a confine- 
ment radius about 10 -4 GeV -1 = M~-c 1. (This order of  
magmtude is needed for the W and Z masses in 
SU(2)v ® U(1)y.) The pseudoscalar Goldstone bosons 
due to th~ spontaneous symmetry breaking of  global 
chiral SU(2)h c symmetry could play the role o f  dy- 
namical Higgs mesons needed for the breaking of  
SU(2)v ®U(1)y [ 9 , 1 0 1 .  

Let us assume that the subcolour SU(5)s c and hyper- 
colour SU(2)h c couplings are equal at some energy M 7 
> M  x. AboveM 7 there is the SU(7) D SU(5)sc ® SU(2)h c 
symmetry. Its coupling constant becomes equal to the 
coupling constants of  SU(5) ® SU(2)H, contained in the 
other SU(7) factor, at some still higher grand unifica- 
tion point which is identified also here, for definite- 
ness, with the Planck mass: MGU = Mp. As before, 
SU(5) unification is taken to coincide with the energy 
scale of  the subcomponent structure at M x = 2.7 
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Fig. 3. The variation of the coupling constants in the SU(7) 
® SU(7) model with SU(5)sc subcolour. 

× 1014 GeV. This fixes the whole scheme apart from 
the quark- lepton family content below M x. A simple 
assumption is that there are now four standard SU(5) 
families belowM 0 = 2M w (where the renormalizatlon 
broup equations are started). Two of  them are scalars in 
SU(2)H with different spin structures and there is one 
SU(2)H doublet [corresponding, respectively, to the 
cases (2b) and ( la)  above]. In order that the SU(5) 
grand unification point meets at M x with the QCD 
coupling it is necessary to assume here that the V 
+ A partners of  the four standard V - A SU(5) families 
occur in the intermediate energy range at M+ between 
M 0 and M x. (In the previous SU(7)s c case the V + A 
famlhes were put to M x.) Putting again a3(M2) -1 = 7 
and a -1 = 5 as the critical point for the transition to 
confinement for SU(5)s c and SU(2)h c, M÷ turns out 
to beM÷ = 8.7 X 105 GeV. The resulting picture for 
the coupling constant variation is given in fig. 3. The 
values of  the constants 301 in eq. (1) for the different 
energy ranges are given in table 2. The obtained values 
for ai-1 ~- 56 and a~-I ~. 23 at M 0 correspond in eq. 
(6) again to a e  1 -~ 117 and sin20 w ~ 0.20. (There is 
no change compared to fig. 2 because eq. (6) holds 
in SU(5) up to the one-loop level independently of  
the number of  fermlon families.) 

There are, of  course, also other possibilities for the 
symmetry breaking patterns in SU(7) ® SU(7). In 
particular, it is not necessary to have an intermediate 
SU(5) unification of  SU(3)c ® SU(2)v ® U(1)y. In the 

, SU(5)s c model it is possible, for instance, to consider 
the unification point of  SU(5)s c ® SU(2)h c at M 7 
= 9.1 × 1016 GeV simultaneously as a grand unifica- 
tion for the whole SU(7) ® SU(7): MGU = M  7 < M p .  
The SU(5) symmetry can be broken already at this 
point to SU(3)c ® SU(2)v ® U(1)y. This scheme leads 
a t M  0 tOaem 1 (M2)~  137 and sinZ0w ~ 0.20. The V 
+ A families come out in this case near M+ = 3.2 
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Table 2 
The constants flOl in eq. (1) for the model with SU(5)se subcolour. 

22 September 1980 

Group 

U(1)y floa 
SU(2)v flo2 
SU(2)H fl02H 
SU(3)e flo3 
SU(5) flos 
SU(5)sc ~osse 
SU(7) flo7 

Mo < M  <Mhc Mhc < M  <M+ M÷ < M  < M  x 

-16/3 -20/3 -12 
2 2/3 -14/3 
7/3 1 --4 
17/3 13/3 - 1  

Mx < M < M 7  M7 < M < M G U  

8/3 8/3 

41/3 41/3 
41/3 

21 

X 10 6 GeV. What is obviously missing yet  is the un- 
derstanding o f  the mechanism of  symmetry breaking 
in these models. 

Another more technical point where the above dis- 
cussion can be extended concerns the spin structure 
of  the composite states. Assumption (2) in the intro- 
duction was used here in a stronger form. Namely, it  
was required that the S1(2, C) = SU(2)I ® SU(2)r sym- 
metry can be extended to a conformal SU(2, 2) sym- 
metry.  For k />  2 this is not always necessary. The 
consequence is that sometimes there are more pos- 
sibilities for the wave functions. 

It is a pleasure to thank G. Kramer, B. Schrempp 
and F. Schrempp for helpful discussions. 
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