# GRAND UNIFICATION AT THE SUBCOMPONENT LEVEL 

I. MONTVAY<br>II. Institut fur Theoretische Physik der Unversitat Hamburg ${ }^{1}$, Fed. Rep. Germany

Received 7 July 1980


#### Abstract

The Casalbuonl-Gatto subcomponent model of quarks and leptons is generalızed allowing for an arbitrary number of subcomponents. It is shown that there are only a limited number of cases where the subcolour can be embedded in a semisimple grand unification scheme. The most interesting models lead to an $\mathrm{SU}(7) \otimes \mathrm{SU}(7)$ grand unification at the subcomponent level. In one of them there is also a natural place for a hypercolour (technicolour) group $\mathrm{SU}(2) \mathrm{hc}$


In a recent paper [1] Casalbuoni and Gatto proposed models for composite quarks and leptons based on the "conventional" idea of confinement. The main assumption is the existence of a confined $\operatorname{SU}(3)_{\text {sc }}$ "subcolour". The quarks and leptons contain three subcomponents in an antisymmetric state under $\operatorname{SU}(3)_{\text {sc }}$ in the same way as baryons are antisymmetric threequark composites in $\mathrm{SU}(3)_{\mathrm{c}}$ (c is colour).

As was shown in ref. [1], there are only four different possibllties if the full gauge group is $\mathrm{SU}(n)$ $\otimes \mathrm{SU}(3)_{\mathrm{sc}}(n \geqslant 6)$ and if the following assumptions are fulfilled:
(1) The subcomponent fermions are in the fundamental $(n, 3)$ representation of $\mathrm{SU}(n) \otimes \operatorname{SU}(3)_{\mathrm{sc}}$. Their antiparticles are in the complex conjugate representation ( $n^{*}, 3^{*}$ ). This assures the absence of triangular anomalies at the subcomponent level.
(2) The quarks and leptons are three-subcomponent spin-1/2 states totally symmetric under $\mathrm{SU}(n) \otimes \mathrm{Sl}(2$, C ), where $\mathrm{Sl}(2, \mathrm{C})$ is the Lorentz group for undotted and dotted Weyl-spinor indices. (The symmetry is the consequence of antisymmetry under $\mathrm{SU}(3)_{\mathrm{sc}}$.)
(3) The gauge group $\mathrm{SU}(n)$ contains $\mathrm{SU}(5) \otimes \mathrm{SU}(n$ $-5)_{\mathrm{H}}$, where $\operatorname{SU}(5)$ is the grand unnfication group of Georgi and Glashow [2] and $\mathrm{SU}(n-5)_{\mathrm{H}}$ is a "horizontal" gauge group connecting the different standard $\left(10 \oplus 5^{*}\right) \mathrm{SU}(5)$ families of quarks and leptons.

[^0](4) The standard $\operatorname{SU}(5)$ families span a representation of the horizontal gauge group $\mathrm{SU}(n-5)_{\mathrm{H}}$.

The basic processes for proton decay: $u+d \rightarrow \overline{\mathrm{u}}$ $+\mathrm{e}^{+}$or $\mathrm{u}+\mathrm{u} \rightarrow \overline{\mathrm{d}}+\mathrm{e}^{+}$, are subconstituent-rearrangement reactions. Consequently, the spatial extension of quarks and leptons (the confinement radius for subcolour) has to be of the order of the inverse of the $\mathrm{SU}(5)$ grand unification mass [3] (in any way, smaller than $10^{-14} \mathrm{GeV}^{-1}$ ) in order to avoid an contradiction with the present lower limit of the proton lifetime $\tau_{\mathrm{p}}$. (For a recent review of experimental limits on $\tau_{\mathrm{p}}$ see e.g. ref. [4].) On the other hand, the confinement radius for ordinary colour is about $1 \mathrm{GeV}^{-1}$. The large difference in the scale parameters of $\operatorname{SU}(3)_{\mathrm{sc}}$ and $\operatorname{SU}(3)_{c}$ makes it rather difficult (if not impossible) to imagine that subcolour and colour could have the same strength at some common grand-unification scale. The situation changes, however, in models with a larger subcolour group $\mathrm{SU}(2 k+1)_{\mathrm{sc}}(k \geqslant 2)$ where quarks and leptons are composed of $(2 k+1)$ subcomponents.

The purpose of the present letter is to look for $\mathrm{SU}(n) \otimes \mathrm{SU}(2 k+1)_{\text {sc }}$ subcomponent models satisfying the above assumptions (1)-(4) with the only change that we allow for any odd number $(2 k+1)$ of subcomponents inside the quarks and leptons. It turns out that, besides a few exceptional cases, there are two infinite series of such models exhausting the full set of possible $k$ values ( $k=1,2,3, \ldots$ ). Among these cases there are, however, only 11 different possibilities with $2 k+1 \leqslant n$, where a sem-simple grand unification in
$\mathrm{SU}(n) \otimes \mathrm{SU}(n)$ is possible. We shall see below that only 2 of these 11 models seem to be interesting for a reasonable grand unification scheme, both of them with $n=7$. The subcolour groups are $\operatorname{SU}(5)_{\mathrm{sc}}$ and $\operatorname{SU}(7)_{\text {sc }}$ in the two cases, respectively.

Let us first look for the possible $\mathrm{SU}(n) \otimes \mathrm{SU}(2 k$ $+1)_{\text {sc }}$ subcomponent models with $2 k+1$ subcomponents in quarks and leptons satisfying the above assumptions. We shall consider only the cases $n \geqslant 7$ because it can be easily shown that for $n=6$ there is strictly speaking no solution. The only possibility would be the $n=6$ model discussed in ref. [1] but it does not really satisfy assumption (4) as the $U(1)_{H}$ quantum numbers are different for the 10 and $5^{*}$ within a $\operatorname{SU}(5)$ family.

According to assumption (2) we have to look for the $(2 k+1)$-subcomponent states totally symmetric with respect to $\mathrm{SU}(n) \otimes \mathrm{Sl}(2, \mathrm{C})$. In the Lorentz group we use undotted and dotted Weyl-spinor indices, therefore $\mathrm{Sl}(2, \mathrm{C}) \equiv \mathrm{SU}(2)_{1} \otimes \mathrm{SU}(2)_{\mathrm{r}}$, where $\mathrm{SU}(2)_{1}$ and $\operatorname{SU}(2)_{\mathrm{r}}$ act on undotted and dotted indices, respectively. We shall denote, as usual, the Young tableau with rows of length $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ by ( $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ ). The low lying spin- $1 / 2$ composite fermion states can belong, in $\operatorname{SU}(2)_{1} \otimes \operatorname{SU}(2)_{\mathrm{r}}$, either to the Young tableau $(a+b+1, a+b, a, a)$ or to the Young tableau $(a+b$ $+1, a+b+1, a+1, a)$ for $a, b \geqslant 0$. In the two cases the spin $-1 / 2$ is provided by the column of length 1 and 3 , respectively. The columns of length 4 and 2 are scalars. In the former case the only possibility is to put 2 undotted and 2 dotted indices in the column, whereas in the latter one it is possible to put either two undotted or two dotted indices. The number of different spin configurations is, therefore, in both cases equal to $2 b+1$.

The total symmetry under $\mathrm{SU}(n) \otimes \mathrm{Sl}(2, \mathrm{C})$ is realized by identical Young tableaus in $\mathrm{Sl}(2, \mathrm{C})$ and $\mathrm{SU}(n)$. For the standard low mass SU(5) families we need either 10 and $5^{*}$ or $10^{*}$ and 5 in the reduction $\operatorname{SU}(n)$ $\supset \mathrm{SU}(5) \otimes \mathrm{SU}(n-5)_{\mathrm{H}}$. In the former case the quarks and leptons have to be composed of the subcomponents in ( $n, 3$ ), whereas in the latter case of the antisubcomponents in ( $n^{*}, 3^{*}$ ). The unwanted right-handed $10 \oplus 5^{*}$ states with $\mathrm{V}+\mathrm{A}$ couplings in the Glashow-Weinberg-Salam $\operatorname{SU}(2)_{\mathrm{v}} \otimes \mathrm{U}(1)_{\mathrm{y}}$ are assumed to have large masses [1]. For the states of the three $(n, 3)$ subcomponents there are four possibilities:
(a) 10 and $5^{*}$ in $\mathrm{SU}(5)$ with equivalent representa-
tions of $\mathrm{SU}(n-5)_{\mathrm{H}}$;
(b) $10^{*}$ and 5 in $\operatorname{SU}(5)$ with equivalent representations of $\mathrm{SU}(n-5)_{\mathrm{H}}$;
(c) 10 and 5 in $\mathrm{SU}(5)$ with complex conjugate representations of $\mathrm{SU}(n-5)_{\mathrm{H}}$;
(d) $10^{*}$ and $5^{*}$ in $\mathrm{SU}(5)$ with complex conjugate representations of $\mathrm{SU}(n-5)_{\mathrm{H}}$.

What is left is a straightforward discussion of the $\mathrm{SU}(5) \otimes \mathrm{SU}(n-5)_{\mathrm{H}}$ reduction of the two sorts of Young tableaux introduced above. In cases (a) and (b) we have to require identical Young tableaux in $\mathrm{SU}(n-$ $5_{)_{H}}$, whereas in cases (c) and (d) the Young tableaux in $\mathrm{SU}(n-5)_{\mathrm{H}}$ have to be complex conjugates of the 10 and 5 in $\operatorname{SU}(5)$. The condition for the complex conjugate Young tableaux can be best imposed on the sequence of "horizontal and vertical separating lines" illustrated in fig. 1. Namely, in complex conjugate Young tableaux both the horizontal and the vertical separating lines have to be equal in opposite order.

The lengthy but otherwise straightforward investigation of all the possibilities gives the following solutions:
(1) In $\operatorname{SU}(7) \otimes \operatorname{SU}(5+2 b)_{\mathrm{sc}}(b=0,1,2, \ldots)$ the Young tableau $(b+2, b+1,1,1)$ with $(b+1)$ different spin structures and $(1)=$ doublet in $\mathrm{SU}(2)_{\mathrm{H}}$.
(2) In $\mathrm{SU}(7) \otimes \mathrm{SU}(3+2 b)_{\mathrm{sc}}(b=0,1,2, \ldots)$ the Young tableau $(b+1, b+1,1)$ with $(b+1)$ different spin structures and $(0)=$ singlet in $\mathrm{SU}(2)_{\mathrm{H}} \cdot b=0$ corresponds to the $\operatorname{SU}(7) \otimes \operatorname{SU}(3)_{\mathrm{sc}}$ model in ref. [1].
(3) In $\mathrm{SU}(12) \otimes \mathrm{SU}(7)_{\mathrm{sc}}$ the Young tableau (2,2, $2,1)[=56628$-dimensional representation of $\operatorname{SU}(12)]$ with one spin structure and $(1,1,1)=35$-plet in $\mathrm{SU}(7)_{\mathrm{H}}$.
(4) In $\mathrm{SU}(10) \otimes \mathrm{SU}(9)_{\mathrm{sc}}$ the Young tableau (3, 3, $2,1)$ [ $=304920$-dimensional representation of $\operatorname{SU}(10)$ ]


Fig. 1. The complex conjugate Young tableaux of $\mathrm{SU}(n-5)_{\mathrm{H}}$ put together in a quadrangle consisting of columns of length $n-5$. The "horizontal separating lines" are dashed, the "vertical" ones are dotted.
with 2 different spin structures and $(3,2,1,1)=175$ plet in $\mathrm{SU}(5)_{\mathrm{H}}$.
(5) In $\mathrm{SU}(8) \otimes \mathrm{SU}(3)_{\mathrm{sc}}$ the Young tableau $(2,1)$ [ $=168$-dimensional representation of $\operatorname{SU}(8)$ ] with 2 different spin structures and $(1)=$ triplet in $\mathrm{SU}(3)_{\mathrm{H}}$. This is one of the models in ref. [1].
(6) In $\mathrm{SU}(10) \otimes \mathrm{SU}(9)_{\mathrm{sc}}$ the Young tableau (3, 2, $2,2)$ [ $=110880$-dimensional representation of $\operatorname{SU}(10)$ ] with one spin structure and $(3,2,1,1)=175$-plet in $\mathrm{SU}(5)_{\mathrm{H}}$.
(7) In $\mathrm{SU}(10) \otimes \mathrm{SU}(9)_{\mathrm{sc}}$ the Young tableau (3, 3, $2,1)=[=304920$-dimensional representation of $\operatorname{SU}(10)]$ with 2 different spin structures and $(3,3,1)$ $=315$-plet in $\mathrm{SU}(5)_{\mathrm{H}}$.
(8) In $\operatorname{SU}(8) \otimes \operatorname{SU}(3)_{\text {sc }}$ the Young tableau $(1,1,1)$ [ $=56$-dimensional representation of $\mathrm{SU}(8)$ ] with 1 spin structure and $(1)=$ triplet in $\mathrm{SU}(3)_{\mathrm{H}} \cdot$ This is one of the models in ref. [1].

If we require $(2 k+1) \leqslant n$, in order to have a semisimple grand unification $\mathrm{SU}(n) \otimes \mathrm{SU}(n)$, then the two infinite sequences in (1) and (2) are reduced to the following cases:
(1a) In $\mathrm{SU}(7) \otimes \mathrm{SU}(5)_{\mathrm{sc}}$ the Young tableau (2, 1,1 , 1) ( $=224$-dimensional representation in $\mathrm{SU}(7)$ ] with one spin structure and $(1)=$ doublet in $\mathrm{SU}(2)_{\mathrm{H}}$.
(1b) In $\operatorname{SU}(7) \otimes \mathrm{SU}(7)_{\mathrm{sc}}$ the Young tableau (3, 2, 1, 1) $[=2940$-dimensional representation of $\operatorname{SU}(7)]$ with two different spin structures and (1) = doublet in $\mathrm{SU}(2)_{\mathrm{H}}$.
$(2 \mathrm{a}) \mathrm{In} \operatorname{SU}(7) \otimes \operatorname{SU}(3)_{\mathrm{sc}}$ the Young tableau $(1,1,1)$ [ $=35$-dimensional representation of $\operatorname{SU}(7)$ ] with one spin structure and $(0)=$ singlet in $\mathrm{SU}(2)_{\mathrm{H}}$. This is one of the models in ref. [1].
(2b) In $\operatorname{SU}(7) \otimes \mathrm{SU}(5)_{\mathrm{sc}}$ the Young tableau (2, 2, 1) $[=490$-dimensional representation of $S U(7)]$ with two different spin structures and $(0)=$ singlet in $\mathrm{SU}(2)_{\mathrm{H}}$.
(2c) In $\operatorname{SU}(7) \otimes \operatorname{SU}(7)_{\text {sc }}$ the Young tableau $(3,3,1)$ [ $=3528$-dimensional representation of $\operatorname{SU}(7)$ ] with 3 different spin structures and $(0)=$ singlet in $\mathrm{SU}(2)_{\mathrm{H}}$.

These are the 11 possibilities mentioned in the introduction.

Among these 11 cases, 3 [(5), (8) and (2a)] have $\mathrm{SU}(3)_{\mathrm{sc}}$ as subcolour group [1] which seems to be too small for a unification with $\operatorname{SU}(3)_{c}$. The rather exotic cases (3), (4), (6) and (7) have a very large number of $\operatorname{SU}(5)$ families which ruin the asymptotic freedom at high energies; therefore we do not consider them any
more here. What is left is either $\operatorname{SU}(7) \otimes \operatorname{SU}(5)_{\text {sc }}$ [cases (1a) and (2b)] or SU(7) $\otimes \operatorname{SU}(7)_{\text {sc }}$ [cases (1b) and (2c)] both leading to an $\mathrm{SU}(7) \otimes \mathrm{SU}(7)$ grand unification.

Semi-simple grand unification in $\mathrm{SU}(7) \otimes \mathrm{SU}(7)$ means that above some point the coupling constants of the two $\operatorname{SU}(7)$ factors become equal. This has to be above the energy of the substructure of quarks and leptons when the subcomponents are the relevant degrees of freedom in the renormalization group equations.
The subcomponents are in the fundamental representation $(7,7)$ of $\mathrm{SU}(7) \otimes \mathrm{SU}(7)$ and for equal coupling constants the lagrangian has a discrete symmetry under the exchange of the two SU(7) factors. Below the grand unification point this symmetry is spontaneously broken in such a way that the subcolour coupling constant becomes large at much higher energies (say, near $M_{\mathrm{x}}=10^{14} \mathrm{GeV}$ ) than the QCD coupling constant $\alpha_{s}$. Below $M_{\mathrm{x}}$ the effective fermion degrees of freedom enterng the renormalization group equations are the standard $\mathrm{SU}(5)$ families of quarks and leptons composed of (5 or 7) subcomponents. The other possible composite states (e.g. higher $\operatorname{SU}(5)$ representations etc.) are assumed to lie near $M_{\mathrm{x}}$.

We begin the qualitative discussion of the renormalization group equations for the coupling constants [5] in the simpler case of $\operatorname{SU}(7)_{\text {sc }}$ subcolour. In the usual notation $\alpha_{j} \equiv g_{j}^{2} / 4 \pi$ we have up to one-loop or$\operatorname{der}\left[t \equiv \ln \left(Q^{2} / \mu^{2}\right)\right]$ :
$\mathrm{d} \alpha_{j}^{-1} / \mathrm{d} t=\beta_{0 j} / 4 \pi$.
The constant $\beta_{0 j}$ depends on the gauge group and on the number and transformation properties of matter fields:
$\beta_{0 j}=\frac{11}{3} C\left(G_{j}\right)-\frac{4}{3} T\left(R_{j}\right)$.
If the generators of the gauge group $G$ satsify
$\left[\lambda_{a}, \lambda_{b}\right]=\mathrm{i} f_{a b c} \lambda_{c}$,
then $C(G)$ is defined by
$f_{a b c} f_{d b c}=\delta_{a d} C(G)$.
Denoting the representation of $G$ spanned by the fermions by $R$ and the generators in the representation $R$ by $\Lambda_{a}$, the definition of $T(R)$ is the following:
$\operatorname{Tr}\left(\Lambda_{a} \Lambda_{b}\right)=\delta_{a b} T(R)$.
Let us assume that the standard $\operatorname{SU}(3)_{\mathrm{c}} \otimes \mathrm{SU}(2)_{\mathrm{v}}$ $\otimes U(1)_{v}$ interactions are first unified in $\operatorname{SU}(5)$ at some
energy scale $M_{\mathrm{x}}$ which coincides with the energy scale of the quark and lepton substructure. (The equality of these two energy scales is plausible because the superheavy $\operatorname{SU}(5)$ gauge bosons mediate the proton decay processes in the same way as subconstituent interchange does [1].) Below $M_{\mathrm{x}}$ we have the effective gauge symmetry $\operatorname{SU}(3)_{c} \otimes \operatorname{SU}(2)_{\mathrm{v}} \otimes \mathrm{SU}(2)_{\mathrm{H}} \otimes \mathrm{U}(1)_{\mathrm{y}}$. Above $M_{\mathrm{x}}$ we have $\mathrm{SU}(5) \otimes \mathrm{SU}(2)_{\mathrm{H}} \otimes \mathrm{SU}(7)_{\mathrm{sc}}$ up to the grand unification point $M_{\mathrm{GU}}$. Above $M_{\mathrm{GU}}$ the full $\operatorname{SU}(7) \otimes \operatorname{SU}(7)$ gauge symmetry is effective. For definiteness let us put $M_{\mathrm{x}} \equiv 2.7 \times 10^{14} \mathrm{GeV}$ corresponding to the recent best estimate of the $\mathrm{SU}(5)$ unification point [6]. (See also refs. [7,8]. Note that in ref. [6] two-loop contributions are also included, whereas here only one-loop equations are considered for a qualitative orientation.) Besides we assume that $\operatorname{SU}(7)$ $\otimes \mathrm{SU}(7)$ grand unification is at the Planck mass $M_{\mathrm{GU}}$ $=M_{\mathrm{P}}=1.2 \times 10^{19} \mathrm{GeV}$. The resulting picture of the coupling constant variation is given in fig. 2.

A general consequence of the scheme is that the value of the coupling constants at the $\operatorname{SU}(5)$ unification point $\alpha \approx 1 / 18$ is larger than usual [6-8]. This follows from the requirement of unification of the ordinary interactions with the subcolour. This is achieved by a larger number of $\mathrm{SU}(5)$ families. In fig. 2 the three $\mathrm{SU}(2)_{\mathrm{H}}$ singlet famules in the $\mathrm{SU}(7) 3528$ plet are put below $M_{0}=2 M_{\mathrm{w}} \equiv 1.6 \times 10^{2} \mathrm{GeV}$, where the integration of the renormalization group equations (1) is started. The other four $\operatorname{SU}(5)$ families from the $\mathrm{SU}(7)$ 2940-plet, which are doublets in $\mathrm{SU}(2)_{\mathrm{H}}$, are put to the mass scale $M_{2}=5.6 \times 10^{3} \mathrm{GeV}$. (Of course,


Fig. 2. The variation of the coupling constants in the $\operatorname{SU}(7)$ $\otimes \operatorname{SU}(7)$ model with $\mathrm{SU}(7)_{\mathrm{sc}}$ subcolour.
in reality the $\mathrm{SU}(2)_{\mathrm{H}}$ doublet $\mathrm{SU}(5)$ families may be spread out in some range around $M_{2}$. This does not, however, change the qualitative picture.) $M_{2}$ is chosen in such a way that the QCD coupling constant $\alpha_{s}$ $\equiv \alpha_{3}$ starts from $\alpha_{3}^{-1}=7$ at $M_{0}[6,8]$ and meets the $\mathrm{SU}(5)$ unification point at $M_{\mathrm{x}}$. The coupling constant of $\operatorname{SU}(7)_{\text {sc }}$ subcolour is started at $M_{\mathrm{x}}$ from the value $\alpha_{7}^{-1}=5$. (This is taken here generally as the "critical value" of the coupling constant in unbroken gauge theories where the abrupt transition to confinement occurs.)

The interesting consequence of this scheme is that the presently known three $\mathrm{SU}(5)$ families are singlets under $\operatorname{SU}(2)_{H}$. They can participate in horizontal weak interactions at most only through a small mixing with the high lying $\operatorname{SU}(2)_{\mathrm{H}}$ doublet families. This explains nicely the present absence of any experimental evidence for honzontal interactions.

Once $M_{0}, M_{2}, M_{\mathrm{x}}$ and $M_{\mathrm{GU}}$ are fixed the change of the coupling constants for all the interactions in fig. 2 are already uniquely determined. The values of the constants $\beta_{01}$ in eq. (1) for the different energy ranges are collected in table 1 . The values of $\alpha^{-1}$ $\approx 56$ and $\alpha_{2}^{-1} \approx 24$ at $M_{0}$ give from the one-loop $\mathrm{SU}(5)$ relations [3]
$\alpha_{\mathrm{em}}^{-1}=\frac{5}{3} \alpha_{1}^{-1}+\alpha_{2}^{-1}$,
$\sin ^{2} \theta_{\mathrm{w}}=\frac{1}{6}+\frac{5}{6} \alpha_{\mathrm{em}} / \alpha_{3}$,
$\alpha_{\mathrm{em}}\left(M_{0}^{2}\right) \approx 1 / 117$ for the electromagnetic coupling constant and $\sin ^{2} \theta_{\mathrm{w}} \approx 0.20$ for the Weinberg angle. The former value is somewhat too large compared to the right one $\alpha_{\mathrm{em}}\left(M_{0}^{2}\right) \approx 1 / 130$ [7]. Two-loop corrections and contributions of possible low mass scalars (dynamical Higgs mesons) are, however, neglected here. The present picture is, therefore, only qualitative.

The qualitative picture of grand unification with $\operatorname{SU}(5)_{\mathrm{sc}}$ subcolour is basically similar to the case of $\operatorname{SU}(7)_{\mathrm{sc}}$. The only essential difference is that in the $\operatorname{SU}(7)$ factor containing $\operatorname{SU}(5)_{\mathrm{sc}}$ there is room for some other interaction besides $\operatorname{SU}(5)_{s c}$. A natural choice is an unbroken $\operatorname{SU}(2)$ factor which is unified with $\operatorname{SU}(5)_{\mathrm{sc}}$ at superhigh energies. Being a smaller group its coupling constant becomes large more slowly, that is at much smaller energies than $M_{\mathrm{x}} \approx 10^{14}$ GeV where the $\mathrm{SU}(5)_{\mathrm{sc}}$ coupling becomes large. It is tempting to identify this $S U(2)$ with the "hypercolour"

Table 1
The constants $\beta_{0 j}$ in eq. (1) for the model with $\operatorname{SU}(7)_{\mathrm{sc}}$ subcolour.

| Group |  | $M_{0}<M<M_{2}$ | $M_{2}<M<M_{\mathrm{X}}$ | $M_{\mathrm{X}}<M<M_{\mathrm{GU}}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{U}(1)_{\mathbf{y}}$ | $\beta_{01}$ | -4 | $-28 / 3$ |  |
| $\mathrm{SU}(2)_{\mathrm{V}}$ | $\beta_{02}$ | $10 / 3$ | -2 |  |
| $\mathrm{SU}(2)_{\mathrm{H}}$ | $\beta_{02 \mathrm{H}}$ | $22 / 3$ | $-8 / 3$ | $8 / 3$ |
| $\mathrm{SU}(3)_{\mathrm{C}}$ | $\beta_{03}$ | 7 | $5 / 3$ | $41 / 3$ |
| $\mathrm{SU}(5)$ | $\beta_{05}$ |  | 21 |  |
| $\mathrm{SU}(7)_{\mathrm{Sc}}$ | $\beta_{07}$ |  |  |  |

("technicolour") $\mathrm{SU}(2)_{\mathrm{hc}}[9,10]$ having a confinement radus about $10^{-4} \mathrm{GeV}^{-1} \equiv M_{\mathrm{hc}}^{-1}$. (This order of magntude is needed for the W and Z masses in $\mathrm{SU}(2)_{\mathrm{V}} \otimes \mathrm{U}(1)_{\mathrm{y}}$.) The pseudoscalar Goldstone bosons due to the spontaneous symmetry breaking of global chiral $\operatorname{SU}(2)_{\text {hc }}$ symmetry could play the role of dynamical Higgs mesons needed for the breaking of $\mathrm{SU}(2)_{\mathrm{v}} \otimes \mathrm{U}(1)_{\mathrm{y}}[9,10]$.

Let us assume that the subcolour $\operatorname{SU}(5)_{\mathrm{sc}}$ and hypercolour SU(2) ${ }_{\text {hc }}$ couplings are equal at some energy $M_{7}$ $>M_{\mathrm{x}}$. Above $M_{7}$ there is the $\mathrm{SU}(7) \supset \mathrm{SU}(5)_{\mathrm{sc}} \otimes \mathrm{SU}(2)_{\mathrm{hc}}$ symmetry. Its coupling constant becomes equal to the coupling constants of $\mathrm{SU}(5) \otimes \mathrm{SU}(2)_{\mathrm{H}}$, contained in the other $\operatorname{SU}(7)$ factor, at some still higher grand unification point which is identified also here, for definiteness, with the Planck mass: $M_{\mathrm{GU}}=M_{\mathrm{P}}$. As before, $\mathrm{SU}(5)$ unification is taken to coincide with the energy scale of the subcomponent structure at $M_{\mathrm{x}}=2.7$


Fig. 3. The vanation of the coupling constants in the $\operatorname{SU}(7)$ $\otimes \operatorname{SU}(7)$ model with $\mathrm{SU}(5)_{\mathrm{sc}}$ subcolour.
$\times 10^{14} \mathrm{GeV}$. This fixes the whole scheme apart from the quark-lepton family content below $M_{\mathrm{x}}$. A simple assumption is that there are now four standard $\operatorname{SU}(5)$ families below $M_{0}=2 M_{\mathrm{w}}$ (where the renormalization broup equations are started). Two of them are scalars in $\mathrm{SU}(2)_{\mathrm{H}}$ with different spin structures and there is one $\mathrm{SU}(2)_{\mathrm{H}}$ doublet [corresponding, respectively, to the cases (2b) and (1a) above]. In order that the SU(5) grand unification point meets at $M_{\mathrm{x}}$ with the QCD coupling it is necessary to assume here that the V + A partners of the four standard $V$ - A SU(5) families occur in the intermediate energy range at $M_{+}$between $M_{0}$ and $M_{\mathrm{x}}$. (In the previous $\mathrm{SU}(7)_{\mathrm{sc}}$ case the $\mathrm{V}+\mathrm{A}$ famules were put to $M_{\mathrm{x}}$.) Putting again $\alpha_{3}\left(M_{0}^{2}\right)^{-1}=7$ and $\alpha^{-1}=5$ as the critical point for the transition to confinement for $\operatorname{SU}(5)_{\mathrm{sc}}$ and $\mathrm{SU}(2)_{\mathrm{hc}}, M_{+}$turns out to be $M_{+}=8.7 \times 10^{5} \mathrm{GeV}$. The resulting picture for the coupling constant variation is given in fig. 3. The values of the constants $\beta_{0}$, in eq. (1) for the different energy ranges are given in table 2 . The obtained values for $\alpha_{1}^{-1} \approx 56$ and $\alpha_{2}^{-1} \approx 23$ at $M_{0}$ correspond in eq. (6) again to $\alpha_{\mathrm{em}}^{-1} \approx 117$ and $\sin ^{2} \theta_{\mathrm{w}} \approx 0.20$. (There is no change compared to fig. 2 because eq. (6) holds in SU(5) up to the one-loop level independently of the number of fermion families.)

There are, of course, also other possibilities for the symmetry breaking patterns in $\mathrm{SU}(7) \otimes \mathrm{SU}(7)$. In particular, it is not necessary to have an intermediate $\operatorname{SU}(5)$ unification of $\operatorname{SU}(3)_{c} \otimes \operatorname{SU}(2)_{v} \otimes U(1)_{y}$. In the $\operatorname{SU}(5)_{\text {sc }}$ model it is possible, for instance, to consider the unification point of $\mathrm{SU}(5)_{\mathrm{sc}} \otimes \mathrm{SU}(2)_{\mathrm{hc}}$ at $M_{7}$ $=9.1 \times 10^{16} \mathrm{GeV}$ simultaneously as a grand unification for the whole $\operatorname{SU}(7) \otimes \mathrm{SU}(7): M_{\mathrm{GU}} \equiv M_{7}<M_{\mathrm{P}}$. The $\operatorname{SU}(5)$ symmetry can be broken already at this point to $\operatorname{SU}(3)_{\mathrm{c}} \otimes \mathrm{SU}(2)_{\mathrm{v}} \otimes \mathrm{U}(1)_{\mathrm{y}}$. This scheme leads at $M_{0}$ to $\alpha_{\mathrm{em}}^{-1}\left(M_{0}^{2}\right) \approx 137$ and $\sin ^{2} \theta_{\mathrm{w}} \approx 0.20$. The V + A families come out in this case near $M_{+}=3.2$

Table 2
The constants $\beta_{0 j}$ in eq. (1) for the model with $\mathrm{SU}(5)_{\mathrm{sc}}$ subcolour.
$\left.\begin{array}{lccccc}\hline \text { Group } & & M_{0}<M<M_{\mathrm{hc}} & M_{\mathrm{hc}}<M<M_{+} & M_{+}<M<M_{x} & M_{\mathrm{X}}<M<M_{7}\end{array} M_{7}<M^{\prime}<M_{\mathrm{GU}}\right)$
$\times 10^{6} \mathrm{GeV}$. What is obviously missing yet is the understanding of the mechanism of symmetry breaking in these models.

Another more technical point where the above discussion can be extended concerns the spin structure of the composite states. Assumption (2) in the introduction was used here in a stronger form. Namely, it was required that the $\mathrm{Sl}(2, \mathrm{C})=\mathrm{SU}(2)_{1} \otimes \mathrm{SU}(2)_{\mathrm{r}}$ symmetry can be extended to a conformal $\operatorname{SU}(2,2)$ symmetry. For $k \geqslant 2$ this is not always necessary. The consequence is that sometimes there are more possibilities for the wave functions.

It is a pleasure to thank G. Kramer, B. Schrempp and F. Schrempp for helpful discussions.

## References

[1] R. Casalbuoni and R. Gatto, Phys. Lett. 93B (1980) 47.
[2] H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 (1974) 438.
[3] H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.
[4] M. Goldhaber, P. Langacker and R. Slansky, Is the proton stable?, Los Alamos preprint LA-UR-80-356 (1980).
[5] H.D. Politzer, Phys. Rep. 14 (1974) 129, and references therein.
[6] T.J. Goldman and D.A. Ross, Phys. Lett. 84B (1979) 208.
[7] A.J. Buras, J. Ellis, M.K. Gallard and D V. Nanopoulos, Nucl. Phys. B135 (1978) 66.
[8] W.J. Marciano, Theoretical aspects of proton decay, Rockefeller Univ. preprint COO-2232B-195 (1980)
[9] S Weinberg, Phys. Rev. D13 (1976) 974
[10] L. Susskind, Phys. Rev. D20 (1979) 2619.


[^0]:    ${ }^{1}$ Supported by Bundesministenum für Forschung und Technologe, Bonn, Fed. Rep. Germany.

