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Analytical expressions for a number of distributions in the process e+e - ~/z +tz-(3') are given. 
A procedure is outlined to simulate events for this reaction by using the analytical distributions. This 
method then numerically provides any other distribution and makes it possible to impose any 
experimental constraint to radiative correction calculations. Besides examples for pure QED 
situations, the corrections to R and to the thrust distribution for hadronic events are also discussed. 

The  processes  

1. Introduction 

e+(p+) + e - (p_ )  ~ / z  +(q+) + t z - ( q - ) ,  (1.1) 

e+(p+)+e- (p_)~  ~+(q÷)+ iz - (q_)+'y(k  ) , (1.2) 

are of  interest for  various reasons.  In the first place they test the s tandard  mode l  [1] of 

unified e lec t roweak interactions.  Secondly,  the theoret ical  t r ea tment  of (1.1) and 

(1.2) can be carr ied over  to a final state with two jets with bremss t rah lung  of a pho ton  

or  gluon. 

For  testing e lec t roweak interact ions one  concentra tes  on the fo rward-backward  
a symmet ry  of react ion (1.1). It is, however ,  unavoidable  that  events of react ion (1.2) 

contr ibute  to this quanti ty.  For  the case where  the m u o n  evdnts are selected on the 
basis of a threshold energy  (Eth) and acollinearity angle (~') requi rement ,  this has 

been  dealt  with in the l i terature [2, 3]. The  differential cross section dtr /d/ '2,  for  

react ion (1.1) is ob ta ined  up to o rder  ot 3 and depends  on the parameters  Eth and ~', 
which de te rmine  the al lowed phase  space for react ion (1.2). Over  the latter phase 

space a th ree-d imens iona l  integrat ion is carr ied ou t  numerically.  The  weak  mixing 
angle can then be extracted f rom the exper imenta l  data.  

A l though  the energy  and acollinearity requi rements  are quite reasonable ,  it would  
be bet ter  for the analysis of exper iments  to have radiative correct ion calculations 
which are applicable in more  general  situations. The  most  natural  solut ion is to have 
a numerical  m e t h o d  to simulate events of react ion (1.1) and (1.2) at the same time. 

The  N genera ted  events must  be such that  they  approximate  the multidifferential  
cross sections for  (1.1) and (1.2), when N becomes  large. The  events which have 
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momenta  such that they could not be seen in a specific experiment  can then be 
omitted. Of the remaining events, one knows the cross section and therefore the 
radiative correction. Of  course, the event generator  can also be used to evaluate the 
cross section for those events which would never simulate a cross section for reaction 
(1.1), e.g., very acoltinear or acoplanar events. 

When reactions (1.1) and (1.2) are considered with quarks in the final state, certain 

Q C D  relevant quantities like R or a thrust distribution for jets are extracted from the 
data. Since a good knowledge of these quantities for tests of Q C D  is important,  the 
initial state radiation of a photon should accurately be taken into account. This is 
particularly so, since often the initial state Q E D  correction is of the same order of 
magnitude as the physically more interesting final state Q C D  correction. 

It turns out that the analytical knowledge of a certain number  of distributions 
makes  a numerical generation of events possible. In principle, various choices for 
these distributions can be made. If one is only interested in either initial state 
radiation or final state radiation, choices for the distributions can be made for which 
it is easy to find analytical expressions. In the case, where one is also interested in the 
interference between initial state and final state radiation, a compromise  in the 

choice of variables has to be made. We shall calculate analytically &r/dS2~, dk, where 
.O~, is the solid angle of the/z  + and k is the photon energy. This distribution has the 
advantage that it can be directly used for a one-dimensional  numerical integration 
over  k to give the radiative corrections to d o ' / d ~ , ,  depending on Eth and (. This is 
faster than the previous more-dimensional  integration method for the same quantity 

[2, 31. 
The outline of the paper  is as follows. In sect. 2 the known virtual corrections and 

bremsstrahlung cross section are summarized. In sect. 3 a number  of analytic 
formulae for distributions and for the total cross section are given. Sect. 4 describes 

the scheme used for the generation of events. In sect. 5 a number  of numerical results 
are presented, e.g., acollinearity and acoplanarity distributions and radiative cor- 
rections to dtr/d/'2,. 

2. Virtual corrections and bremsstrahlung 

Expressions for the virtual and soft bremsstrahlung correction to reaction (1.1) can 
be found in ref. [4]. The sum of both corrections is expressed in a correction 8A, 
where A denotes the fact that the correction is known analytically: 

do" dcro 
- -  (1 + a A ) ,  (2.1) 

dO,, d ~  

where the lowest order cross section is given by 

&r0 a 2 
d~u  = 4-~ (1 + c2), (2.2) 

with c = cos/9, O being the angle between e + and/z  +. 
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The correction 8A can be written as 

8 A = ( / 3 , + f l f + / 3 i n t ) l n ( _ ~ ) + 2 a , 1 3 ,  s s \ { 7--2~ | ln  ----~ + In ----T } + ½~ "2 --92s 
17" I 12. \ m e  m ~ , l  

2 2 In ( s i n e ) ]  1 C ~[c(lnE(sin½0)+ln2(c°s½0))+sin2101n(c°s10)-c°sE!O 10 

10 (sin E 10) + LiE (cos 2 ½0)} + 2 In 2 (sin 1 0 ) -  2 In E (cos ~ ) -LiE 

with 
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(2.3) 

~i = 20/ ( I n  --~$2 -- 1~ , 
\ /n  e / 

Bf =--2a(ln SE -- 1 ) ,  (2.4) 
/7 m ~  

~[~int = 80¢ In (tan 10), 
77" 

me and rn,` being the electron and muon mass, and LiE denoting the dilogarithm. The 
expression for 8A contains contributions from the vertex corrections, the vacuum 
polarization due to an electron and muon loop, and two box diagrams. Moreover,  
the soft isotropically emitted bremsstrahlung up to a maximum photon energy kl is 
contained in 8A. In the evaluation of 6A it is assumed that 

sin 0 >> m,`/E, rnJE << 1. (2.5) 

More involved expressions not using this approximation can be found in ref. [3]. 
The values k 1 for which 8A is a good approximation to the radiative corrections are 

limited from below by the necessity of exponentiation and from above by the 
necessity of taking hard bremsstrahlung into account. 

For too small values of kx, 6A becomes large and negative such that it becomes 
necessary to estimate higher order corrections, which is done by exponentiation of 
the leading log part of 8A. One then takes as an approximative formula to the 
corrections 

dO,` = dO,, (1 + BAR ) (2.6) 

For too large values of kl the factorized matrix element for the bremsstrahlung which 
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is used in the derivation of (2.3) is no longer a good approximation for the real (hard) 
bremsstrahlung. An idea of the k values for which this happens can be derived from 
an expression for the total cross section for reactions (1.1) and (1.2), given in sect. 3. 
One finds for the difference between the exact total cross section and the one  
evaluated on the basis of the soft photon approximation 

20/ / k 1 s + / k 2 \ \  
O" . . . .  t--O'soft = - -  tro/---~ n ~ O1-~11  , (2.7) 

where the lowest order total cross section 

40/271 - 
t ro= (2.8) 

3s 

is factorized out. The requirement  that this difference is less than 1% of tr0 gives, for 

energies where m J E  << 1, 

x ~ -  In , (2.9) 

e.g., k / E < ~  0.18 for E = 20 GeV. 
To eq. (2.6) other contributions should be added, namely the vacuum polarization 

due to a r - loop  (3r), the one due to hadrons (Shad), and Z-3~ interference from the 

electroweak interactions. These contributions are 

8r 2a(½1n s 5) = - -  - - ~ - ~  , ( 2 . 1 0 )  
m r  

where my = 1782 MeV, 

s _o'(s') 
t~ha d : -2 Re ~ ( s )  : ~ J4m2 S -- S'  d s ' ,  ( 2 . 1 1 )  

where the dispersion integral over  the total e+e - hadronic cross section has to be 
evaluated numerically [5]. 

The weak-electromagnetic  interference cross section takes the form 

d o  ,.w o/2 
d~l~, = 4---s 2 x ( g 2  (1 + c 2) + 2g2AC ) , (2.12) 

where 

X = g s _ M ~  , 

M 2 z = (4g sin 2 (20w))-1, 

gv = - 1  + 4  sin 2 0w,  

g A = - - I  , 

g = 4.4 × 10 -11 MeV -2 . 

(2.13J 
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This weak effect can be expressed in terms of 
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8 w  = j , (2.14) 

which has to be added to ~AR in eqs. (2.3) or (2.6). 
This is the only place where the weak interactions occur in the present treatment.  

For P E T R A / P E P  energies this is sufficient. For higher energies it first becomes 
necessary to deal with the full Z-exchange amplitude and the Q ED  corrections 
(virtual and bremsstrahlung) to it, then also to take the width of the Z in the 
propagator  into account, and finally to apply the weak virtual corrections to the Q E D  
amplitude [6]. 

Besides the expressions for virtual and soft bremsstrahlung corrections we need 
the hard bremsstrahlung cross sections. Two choices of the kinematical variables will 
be convenient, one set consisting of solid angles of ~z ÷ and y and the photon energy k, 
another set using the solid angle of the tz +, an azimuthal angle of the photon and the 
energies qO, qO of the tz ÷ and t~-, respectively. We have 

d o  "B _ a 3 [q+[k A 

df/~, dg2 v dk - 2~-Zs 2p ° - k + k cos 0v ' 
(2.15) 

& r  B a 3 

dO~, dq ° dq ° - dq~ 27r2 s A ,  (2.16) 

with [7] 

l L+_u 2 r2+u ( t +u '2 t,2+u2 
A -  2 s , Z k ( p _ . ~ - ~ + ( p + . k ) 2 )  -m"~ k - ~ .  k) z+ (q+.k)z)  

t2 + t'2 + U2 + U'2 [ S S' t 

+ 4ss' L ( p + . k ) ( p _ . k )  ÷ ( q + . k ) ( q _ . k )  ( p + . k ) ( q + . k )  

t t //t U ] 

(p_.  k)(q_,  k) q (p_.  k)(q+, k) + (p+. k)(q_,  k) ' (2.17) 

and 

t = ( p + _ q + ) 2  U, = ( p _ _ q + ) 2  S = ( p + + p _ ) 2  

t ' =  ( p _ - q _ ) a  u = (p+_q_)2 s, = (q+ +q_)2 
(2.18) 

2 2 2 2 In this expression for o -B terms of O ( m e / E  ) and O ( m J E  ) have been neglected 
except where denominators can take the same small values. The terms arising from 
initial state radiation, final state radiation and the interference of the two can be 
easily recognized. 
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3. Analytical expressions for certain distributions 

In this section analytical results will be given for do-/d/2~, dk, do'/dk, do-/dq ° and 
O'tot- The first distribution is useful for reproducing the standard radiative cor- 
rections. Moreover, it can be used to generate events numerically according to the 
procedure of sect. 4. Using numerically generated events one can obtain all other 
distributions. Nevertheless, we give here the analytic expressions for do-/dk and 
do-/dq ° in order to demonstrate the importance of hard photons and the influence of 
initial state radiation versus final state radiation on do-/dq ° which is of relevance for 
the thrust distribution of jet production. An analytical expression for o-tot also gives a 
good idea of the size of the bremsstrahlung correction. 

For the do'/d/'/~, dk distribution we have to integrate (2.15) over dS2~. As a 
coordinate system we use the q+ momentum as z-axis and q+ ^ p+ as y-axis. The 
angles 0v and q~v are the polar and azimuthal angles of the photon momentum k. For 
the integration it is useful to separate (2.17) into five parts, originating from the 
electron mass term, muon mass term, the remaining initial state radiation, final state 
radiation and the electron-muon interference part. The latter gives a contribution to 
the forward-backward asymmetry. We write accordingly 

3 do- 
dO,  df2v dk 81rZs (xme +Xm~ +Se'4-Xtz + X i n t )  , (3.1) 

where the functions X can be written in appropriate forms for the integration: 

4m2kk ' ( 2 ~  2c+ + 1 2 ) + ( c . _ c ) ,  (3.2) 

2~2kk'cs / 1 1 \ 
X,,,~, Y~- ~(~+. k)2 + ~ )  , ~  (3.3) 

1 [16k'2cs 8y-ok' 4(1+k'2)]  4k 
3 ~- + ( c ~ - c ) - - - ,  (3.4) X ~ = ( ~ + - ~ .  )~ ~-~ Y ~-~ } y2 

2kk'  1 {2k 2 sin 2 0 sin 2 0 v COS 2 ~,,/ x,, = y~ (~+. £)(3-  ~) 

+ (4k2c sin 0 cos 0 v sin Ov +4kxc sin O~ sin O) cos ¢~ 

+4xZcs+8(1 - x  - k ) + 4 k x ( 1  +c  2 cos 0~,)+2k2(1 +c  2 cos 2 Or)}, (3.5) 

k c_ -------~llc+\[4x3c~-4x2y-~ +4x(1 + k '2 ) /~) _ 4x 2c'~,] 
X i n t : - ~ [ ( ~ - ~ , k - O _ . k ]  \ ( i f +  , k )  - 2 x  (1[~- " + 4xc 

16k'Zcs , 8y-ok' 4 (1+k  '2) /~)] 
- y 2 ( / ~ + . / ~ ) - ' - ~ -  (/~+. ~) +2(/3_. - (c ~ - c )  . (3.6) 

The notation (c ~ - c )  means that the previous expression should be added with c 
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replaced by - c  and ~v by ~v + 7r. In eqs. (3.1)-(3.6) dimensionless quanti t ies have 

been  used, i.e., for  masses and the pho ton  energy  

S t 
rne m ,  =--k° k '  = 1 - k = - -  , (3.7) 

m =-~-- ,  /z = - ~ - ,  k E '  s 

for  4 - m o m e n t a  

~ = p ± / E ,  ~ = q ± / E ,  fc = k / E .  (3.8) 

For  the m u o n  energies we have 

0 qo 
q+ 2k '  x '  

x = - ~ ' =  Y , = ~ - = 2 - x - k  (3.9) 

with 

y = 2 - k + k  cos Or. 

The  fol lowing o ther  nota t ions  have been  used: 

c ± = l + c ,  c s = l + c  2 y . ~ c = 2 - k + k c  , • (3.10) 

It  should be no ted  that  in eq. (3.9) the m u o n  mass has been  neglected.  The  exact 

relat ion is 

2k ' (2  - k) - k cos G,[4k  '2 + / z 2 ( k  2 cos 2 0~ - (2 - k)2)] 1/2 
x = (3.11) 

(2 - k) 2 - k 2 cos 2 0,  

For  cos 0v = ~:1 this exact relat ion becomes  simple: 

- ~ /  / - t l - k + a '  (3.12) 

with 

A = /x2k  (3.13) 
4 k ' '  

The  max imum k-va lue  for which the pho ton  can still be isotropically emit ted  is 

i~o 2 - 2 ~  = 1 kmax = 1 / ~ ,  (3.14) 
2 - / x  

whereas  the real max im um  pho ton  energy  is 

kmax= 1 - / z  2 (3.15) 

iso 
For  cos 0v = +1,  eq. (3.9) is a good  approximat ion  even up to k . . . .  as follows f rom 
eq. (3.12). However ,  for  general  0v values (3.9) is only a good  approximat ion  to 

(3.11) - within 1% - when 

k < l - 5 ~ .  (3.16) 
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0 . 5 ~  

0.4 " 

0.3 - 

0.1 

o . 0 ~  
-1.0 -0.5 0.0 0.5 1.0 

COS 0 

Fig. 1. The distribution Cro 1 dtr/dO~, dk versus cos/9 for three different values of k: (1) k = 0.05, (2) 
k = 0.95 and (3) k = 0.5 for E = 15 GeV. 

i so  It should be noted that for k > kmax there are, in fact, 2 solutions for x, the one given 
in (3.11) and one where the sign of cos 0v is changed. In the range (3.16) we shall 
perform the integrations. When using (3.9) in the propagators for the muons one 
should either use the real boundaries (3.12) in the integration, or neglect A in the 
boundaries [as (3.9) tells] but use the modified expressions 

c~_. ~ = 2 ( 1 - x + a ) ,  

,L" ~- = 2 ( x - ~ ' + , a ) ,  
(3.17) 

where A has been added. 

3.1. THE DISTRIBUTION do/dO,,  dk 

3 do- o~ 
dO,, dk =8--~s (z'~ + z " "  + Z e + Z , ,  +Zint) , (3.18) 

where the functions Z are given in the appendix. The ev integral has been performed 
over the full [0, 27r] interval. The cos 0v boundaries can still be chosen in such a way 
that they correspond to a specific acollinearity requirement for the muons. For the 
case where the full cos 0v integration is carried out, the angular distribution (3.18) is 
shown in fig. 1 for a set of k-values. For very high k-values this distribution takes the 
form of the e+e T M  --> yy angular distribution, which is understandable for hard photon 
emission from the initial state. As a comparison the angular distribution for the 
lowest order process with virtual and soft corrections [eq. (2.1)] is shown in fig. 2. 
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cos 0 

Fig. 2. The distribution OrO 1 &r/dC/,, according to eq. (2.1) with kl = 0.01E with E = 15 GeV. 

3.2. THE DISTRIBUTION d ~ r / d k  

In principle, this distribution can be obtained f rom (3.18) by integration over  cos 0. 
The interference part  gives zero and the muon part  is easily obtained from integrat- 
ing (A.41) and (A.42). The electron part  is harder to obtain in this way. It  is easier to 
per form first the ~v and c integral, giving rise to eqs. (A.44) and (A.45) and then to 
per form the cos 0 v integral. The resulting distributions are 

where 

do" do" = do" ~ 
+ ~  (3.19) 

dk dk dk ' 

do "~ / 1 1 1\ 
Ok --'- tr0/3i[~- + ~k-7- ~} ,  (3.20) 

do" ~ 1 1 2a  

In fig. 3 the above three quantities are shown. 

3.3. THE TOTAL CROSS SECTION 

We first calculate.the contribution in the interval [k 1, k2], where k 1 is a value below 
which eq. (2.1) is valid and k2 = 1-5/.t. Therefore ,  kl can be neglected everywhere 
except in In kl: 

are = trofli[ln (k2~ - !  \ k l ]  2 In (1 - k 2 ) - ½ k 2 ]  , (3.22) 
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1 0 0 [  ' " ' ' ~ " '~ ' 

| 

0.0 0.2 0.4 0.6 0.8 1.0 
k 

Fig. 3. The photon spectrum Cro ] d~/dk according to eq. (3.19) (solid curve) and the photon spectrum 
due to initial state (upper line) and due to final state radiation (lower line) for E = 15 GeV. 

12] 
+--a  ( - 2  L i 2 ( k 2 )  + 1(1 - k 2 ) ( 3  - k2)  In (1 - k2)  + a-k2 2 -- gk2)  . (3.23) 

z¢ 

When adding the virtual corrections to these expressions (electron loop to o "e, m u o n  
loop to or") we find for the total cross section with a radiated photon energy less 
than k2:  

<k2=t r0[ f l , ( lnk  ! 1 c~(,3 s , 2 2s~.] o.e(k 2- -2  In ( 1 ,  k 2 ) - g k E ) + - - / w  In --T+gzr - ~ - r  , [ "/T\ /'T/e / J  

(3.24) 

m ~  

- k2)(3 - k2)In (1 - k2)+ 3k2- ¼k 22) ] .  (3.25) +½(1 

The total cross section up to k2 is given by 

cr(k < k2) = fro(1 + 8, + 3h,a) + tre(k < k2) + or" (k < k2). (3.26) 

In case one wants to neglect final state radiation, one should take 

o ' ( k  < k2)  = o'0(1 + 8. + 8,- + t~had) 4- ore(k < k 2 ) .  (3.27) 
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In the region 1 -5 /z  < k < 1 - tzZ  the behaviour of d o ' " / d k  is smooth and therefore 
the contribution to the total cross section negligible. The latter can be obtained by 
taking k z - *  1. For the electron part this is not the case. In order to evaluate the 
contribution of d o . ~ / d k  in this region to the total cross section, we use the reasoning 
of Bonneau and Martin [8] to get the initial state radiation cross section (cf. 
appendix) 

do, ~ , / 1 1 1\ 
= flio.o(S ) ~ + ~ - ~ - ~ ) .  (3.28) 

dk 

This equation has neglected some rn 2 terms but is still exact as far as t~ 2 terms are 
concerned. When we now do the same for o.o(S') ,  we have instead of (2.8) 

4.trot2 / . / 2  1 / 2 ,  1 j[./2 
o.o(S') = ~ ( 1 - ' ~ - 7 ) ( U +  2 - ~ )  " (3.29) 

We see that for small tx [eq. (2.5)] and k in the region (3.16) the previous distribution 
(3.20) is reproduced. Integrating (3.28) from kz to kmax with the help of (3.29), and 
adding this to (3.22) we find 

o.e = o'0/3i(ln ~-----~ + 21- In m~ -- 4 ) . (3.30, 

Insertiofi of kmax in eq. (3.22) gives a result which differs in the constant (not kl and 
z /z dependent) terms. It should be noted that our result disagrees with that of ref. [9], 

where instead of _4 the number 19 - i~  is obtained. The total muon bremsstrahlung for 
k > kl now reads 

o.~, =o.0[/3,(1o 1 3 ~-~1-~) + ~  (-½zr2 +~)] . (3.31) 

+ -- 
Adding the virtual corrections, qne finds for the total cross section for/~ /~ and 
t~ +/~-7 final states the expression 

O'tot = o.o(1 + 6a-) = o.0(1 + 6~ + 6~ + 6, + 6h~a), (3.32) 

where 

e - + - -  tgrr -gg) ,  (3.33) 
7/" 

6v 2 a / 1  4 13\ 
= -~-- ~ In ~-~- ~-~) , (3.34) 

where 6 Te contains the electron vacuum polarization and 6 .  r the muon vacuum 
polarization. Omitting the latter, one would obtain from vertex correction and 
bremsstrahlung alone 

gT = 3a 
/x 4~" ' (3.35) 
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TABLE 1 

Total correction to the lowest order total cross section in % for the processes 
e+e - ~  tz +IX-, e+e --~ r+r  - denoted by 8T(~) and 8T(~'), respectively 

_ •  Energy 
(GeV) 

Contr. ~ 10 25 50 100 
(%) 

8e 3.0 3.3 3.5 3.7 
8.  1.4 1.7 1.9 2.1 
8~ 0.5 0.8 1.0 1.2 
8haa 4.3 5.6 6.6 7.5 
8-~ (~) 44.3 57.6 68.7 80.7 

0.2 0.2 0.2 0.2 
8T(/~ ) 53.7 69.2 81.9 95.4 
~(z) 17.8 28.8 38.1 48.3 
ST(Z) 27.2 40.4 51.3 63.0 

The various contributions to the total correction are also listed. 

which is a well-known result from the gluon bremsstrahlung to the total QCD cross 
section (the factor ~ being cancelled by colour): 

O't0t = Ror0(X "~- ~ )  = R t r 0 ( l +  8OCD) • (3.36) 

At  this point it is useful to illustrate numerically the implications of the total 
cross-section formulae. 

In table 1 8T is given for various beam energies both for mu-pair and z-pair 
production. Moreover,  the various contributions to 8T are given, i.e., the leptonic 
and hadronic vacuum polarizations Be, 8,,  87, 8had, the vertex correction and 
bremsstrahlung for the initial state ~ and final state ~ .  The latter are (3.33) and 
(3.34) without Be, 8~,, respectively. The large difference between the total corrections 
for mu-pair and z-pair production is entirely due to the ½/3i In (4//z 2) term in (3.33). 
It is clear from the table that for the correction to the total cross section the vertex 
correction and bremsstrahlung for the final state can be neglected. 

With these large corrections it is of interest to see which regions of phase space give 
the large contributions. Table 2 lists 8T for mu-pair production for various maximum 
photon energies and/~ ÷ angular ranges. In the latter case the lowest order cross 
section to which the correction applies is similarly reduced in angular range. The hard 
bremsstrahlung region is responsible for the large correction, as was already clear 
from the difference between mu- and z-pair production. 

The formulae for the total mu-pair cross section can also be used to obtain a rough 
estimate of the total correction to the hadronic cross section. The hadronic cross 
section can be taken as Rtr0, where R (s') is roughly a step function with the following 
w ' =  x/s' intervals: (0.28, 1), (1, 1.5), (1.5, 4.5), where in the first interval the p 



• + - 

F.A. Berends, R. Kletss / e e --,tz+tt-(y) 249 

TABLE 2 

Total correction to the lowest order cross section in % for the process e+e - -*/x +/~-, as a function of 
the photon energy range and the tz + scattering angle range 

km~, 
E (GeV) 10 25 50 100 

0 range (°) 

0-180 26.1 29.7 32.4 35.0 
1-179 26.1 ± 0.3 29.6 + 0.4 32.4 + 0.5 35.0 ± 0.6 

0.95 10-170 25.4 ± 0.3 29.0 ± 0.4 31.7 ± 0.4 34.2 ± 0.4 
30-150 23.4 + 0.2 26.7 ± 0.3 29.3 ± 0.3 31.7 ± 0.3 

0-180 18.4 21.2 23.4 25.4 
1-179 18.8 ± 0.3 21.2 ± 0.3 23.3 ± 0.3 25.4 ± 0.3 

0.8 
10-170 18.7 ± 0.3 21.1 ± 0.3 23.2 ± 0.3 25.3 ± 0.3 
30-150 18.0 ± 0.3 20.5 ± 0.2 22.6 ± 0.2 24.6 ± 0.3 

0-180 10.0 12.0 13.5 14.9 
1-179 10.0 ± 0.2 11.8 ± 0.2 13.4 ± 0.2 14.8 ± 0.2 

0.5 
10-170 10.2 ± 0.2 11.9 ± 0.2 13.4 ± 0.2 14.8 ± 0.2 
30-180 10.1 ± 0.2 11.9 ± 0.5 13.4 ± 0.2 14.7 + 0.2 

The values for the full angular range are obtained from eq. (3.26), for the restricted range a 
numerical integration of eq. (3.18) has been performed. 

domina tes ,  in the  second  and third R -~ 1, 2 respect ively .  A b o v e  4.5 G e V ,  R -~ 4. 

Since we apply the 8T at high energies ,  the decrease  of  R towards  lower  energ ies  

implies  a r educ t ion  of  8T with respect  to the pure  mu-pa i r  case. T h e  con t r ibu t ion  of  

the p - m e s o n  is given by 

9Fezr 
t r e (p -mes°n)  = Orhad~i 2 a = M R  (s)" (3.37) 

Fo r  a b e a m  energy  of  10 G e V ,  the  cor rec t ion  8T to O ' h a  d = Rtr0 is roughly  3 8 % .  Of  

course,  an accura te  numer ica l  in tegra t ion  of  (3.28) with the known  hadron ic  cross 

sect ion is p re fe rab le .  

Fo r  had ron  p roduc t ion  it may  be of  m o r e  in teres t  to see which p h o t o n  angular  

ranges  main ly  con t r ibu te  to the  cor rec t ion .  W h e n  one  excludes  in the  b remss t rah lung  

express ion  (3.28) pho tons  which m a k e  an angle  of less than  10 ° with the b e a m  

direct ion,  use of eq. (A.53) shows that/3i  is r educed  by a fac tor  of  4 at 10 G e V .  Thus,  

e.g., when  at a b e a m  ene rgy  of  10 G e V  8T is 53 .7% for  mu-pa i r  p roduc t ion ,  the 

reg ion  2 ~< k ~< kmax cont r ibu tes  4 0 %  to this. W h e n  in this reg ion  pho tons  within 10 ° 

of the b e a m  d i rec t ion  are exc luded,  the total  cor rec t ion  b e c o m e s  23 .7% or, appl ied 

to the had ron  case m e n t i o n e d  before ,  the co r rec t ion  of 38% is r educed  to 2 0 % .  So, in 

m a n y  e xpe r imen t a l  cases the  Q E D  cor rec t ion  will be  at least  as impor t an t  as the 

Q C D  cor rec t ion  (3.36), which amoun t s  to abou t  7 % .  
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3.4. THE MOMENTUM SPECTRUM OF THE MUON dtr/dx 

We give here an analytical formula for the/z ÷ momentum distribution caused by 
initial state radiation. It is obtained, just like do'/dk, from (A.43)-(A.45), where now 
an integration over k has to be performed. For the true momentum spectrum the 
minimum k-value is 1 - x. If one is interested in the momentum spectrum of the most 
energetic muon, which is the quantity which may fake a thrust distribution if one does 
not discard bremsstrahlung events, then the minimum k-value is 2(1 - x ) .  Since the 
/z ÷ and /x -  momentum distributions are the same a factor 2 also arises in the end 
result. Thus, the momentum distribution of the most energetic muon becomes 

do. 6a__~0r lnS[  2 ( l - x )  2 1 - x  l + ( 1 - x )  2 5 - 6 x +  3X 2 
dx zr [ ~2~2/ 3kam ÷ k 2 km + 6 ( l - x )  

km ½(x2+( 1_x)2 ) 1 - k m ]  
+x(x - 1)In 2(1 - x------) In 2--~-~/ 

x2-2x  +3 1 + 8 ( 1 - x )  2 4 ( 1 - x )  ÷ ½ ( 1 - x ) -  
3k3m k2m kra 3(1 - x )  

1 - k m  [ km 2x-111 (3.38) 
+½1n~x_--~ x ( x - 1 ) l n  1 - k m 2 - 2 x J . l '  

where km is the maximum photon energy one is interested in. Expression (3.34) 
should be compared to the thrust distribution, calculated in QCD from gluon 
bremsstrahlung [10] 

1 do" 2as[2(3T2-3T+2) 2 _-1 3 ( 3 T - 2 ) ( 2 - T ) ]  (3.39) 
o.o dT ' In 1 - r  " 

In fig. 4 do./dT and dcr/dx are presented for various beam energies. The maximum 
photon energies are chosen in such a way that s' is still large enough to produce jets 
(~/s' > 7 GeV). In this region R(s') can be taken constant such that eq. (3.38) can be 
applied. Again it is seen that QCD and QED effects can be comparable in size. 

4. A procedure to generate events 

When one wants to generate x-values in an interval (a, b ) according to a prescribed 
distribution f(x), there are various ways to follow. Each method should produce a 
number N(x) of points per interval/ ix which approaches f(x)Ax for a large total 
number of generated events. 

One method would be to divide the interval (a, b) into a large number of 
sub-intervals Ax,-, each of such a size that Sir(x) dx over the interval is of about the 
same magnitude for every interval. One could then at random generate the number i 
and choose a point in Axi. 
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Fig. 4. The thrust distribution tro l d~/dTfakedbyinitialstateradiationforthreebeamenergiesE= 10, 
15, 25 GeV and the QCD thrust distribution tro 1 do'/d T (dashed line). For the first distribution photon 

energies are allowed up to that value which gives a Clq pair of an invariant mass of 7 GeV. 

Another  way would be to generate at random points (x, y), where x ~ (a, b) and 
y ~ (fl , /2),  where f l  and f2 are the minimum and maximum values of f in the interval 
(a, b). When for a generated point (x, y) y <f(x) ,  the value x is accepted, otherwise 
not. 

A third method is to calculate analytically 

Io: F ( z )  = / (x) dx,  (4.1) 

to generate a random number r/~ [0, F(b)] and to solve numerically the equation 

n = F ( x ) .  (4.2) 

In the multidimensional case, similar methods can be used. When a differential 
cross section has narrow and high peaks in various variables, the third approach will 
have some advantages. The explicit integration amounts effectively to the intro- 
duction of new variables so that the distribution becomes fiat, Without the explicit 
integration one could, of course, directly introduce variables which would transform 
away some peaks, and then use any of the other two methods. However, there are 
more peaks than variables which can be chosen independently so that some peaks 
remain in the newly chosen variables. 

So, ideally one should perform the five integrations of eq. (2.15) step by step and 
then generate each kinematical variable by using eqs. (4.1) and (4.2) in five steps. 
When one wants to do this for eq. (2.15) to the very end, one runs into two problems. 
The first is that, in a small region above zero photon energy, eq. (2.15) is not 
applicable and only the cross section integrated over the photon energies is known 
[eq. (2.1) or (2.6)]. The second problem is that it is not easy to integrate eq. (2.6) 
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analytically over c = cos 0, so that the procedure with (4.2) cannot be done using 
analytical equations. Now it is most important to use analytical formulae for those 
integrals which have the strongest peaks. Those are the q~ and cos 0 v integrals. 
Therefore  we adopt the following procedure. 

In the phase space which is only restricted for 0(c)-values by (2.5) and k-values by 
(3.16) we use eq. (3.18) from a certain k-value on and eq. (2.6) for very low k-values 
(soft region). A two-dimensional k, c histogram is created numerically for which 
integrals like (4.1) are known. 

First a k-value is created; if it is in the soft region, the k-value is negligible and can 
be set to zero for experimental purposes. A c-value is generated from (2.6). Outside 
the soft region it is eq. (3.18) which gives the c-value numerically. With the generated 
k, c-values it is then possible to use the primitive functions Z to generate cos 0~ and 
the functions Y to generate Cv. 

One improvement to this scheme must be made. When the kl value at which the 
soft region ends is changed, the result is not the same since in the soft region the cross 
section is changed by exponentiation, whereas in the other part it is not. This problem 
would not have occurred if eq. (2.1) were used in the soft region. For small k-values 
the created events would then, however, be too few. The solution is that (3.18) 
should be modified in such a way that upon k integration it obtains a similar factor as 
eq. (2.6). Writing (3.18) formally as 

do- _ do-o ( / 3 + d h ( k ) )  (4.3) 
d ~ ,  dk d~2~, \ k  dk 

the cross section up to kl with exponentiation is assumed to be 

dd~ (k < kl) = dd-~ (l + 6AR + h(k~))k~ . (4.4) 

Differentiating, we now find for (4.3) the exponentiated version 

do" k~ (4.5) do -eX = do-o (6AR.,{_ h (kl))flka1-1 + dO~, dk~l 
dl2, dkl  dF2~, 

t do- /36AR do'o ~ k f (4.6) 

For generating events we use (4.6). The term with h (k2) is of higher order  than the 
last term and is small in the region where exponentiation is most important. It can 
therefore be neglected. An evaluation would be involved. It is (4.6) which is used to 
generate k and c. The photon variables are then generated from do-/d/2~, dk alone, 
as described before. The main purpose of this procedure is to redistribute the events 
for small k-values, since we know that higher order corrections become necessary 
there. If one is only interested in hard bremsstrahlung the use of (4.6) is not necessary 
but using it does not affect the results. As an illustration, the effect of exponentiation 
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Fig. 5. The photon spectrum with (solid curve) and without (dashed curve) exponentiation for E = 
15 GeV. 

like in eq. (4.5) is shown for the photon spectrum in fig. 5. In fig. 6 the exponentiated 
form of o,(k < kl) is compared to the form without exponentiation. 

The distribution (4.6) can also be used for a fixed scattering angle. One then 
generates the k-values from a one-dimensional histogram. If one had chosen a 
different order  of integration, this would not have been possible. 

If one is exclusively interested in either initial or final state radiation, another order  
of integration is possible leading, e.g., to eqs. (A.43)-(A.47), for which all primitive 
functions are known. Then the corresponding transition from (4.5) to (4.6) has not to 
be made and no starting histogram has to be created. When using the earlier 
mentioned step-function approximation to R (s), it is easy to generate the momenta  
of a real and a massive virtual photon, which is useful to calculate the radiative 

1.5 

1.0 

0.5 

I ' ' I i I I' ' ' 

0 . (~  , , , , I I . . . .  

0.0 0.2 0.4 0.6 0'.8 1.0 
k 

Fig. 6. The integrated photon spectrum ~r(k)= o-e(k)+~r~'(k) with (solid curve) and without (dashed 
curve) exponentiation, in units of ~ro. 
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correction to R. If one is interested in hadron jets, information on how the virtual 
photon decays into a qCl pair is also required. The chain of integrals leading to (A.43) 
should then be used in order to generate the 4-momenta of the quark and antiquark. 
The hadrons coming from the qC 1 pair can then be obtained by using one of the 
current Monte Carlo programs [11]. 

5. Numerical examples of radiative corrections and distributions 

5.1. R A D I A T I V E  CORRECTION TO dtr/d/2~, 

As mentioned in sect. 1, we can use the expressions for do/dOg dk to perform 
numerically an integration over that part of phase space where the muon energies are 
larger than a prescribed value Eth: 

o q0 
q + ,  ~ > E t h ,  ( 5 . 1 )  

and where the angle between the muons lies in the region 

~r-~ <~/_(q+,q-)<~1r. (5.2) 

The lowest order differential cross section do'o/dO,, then obtains a total correction 
ST, which contains virtual corrections, hadronic vacuum polarization and brems- 
strahlung. The results are in agreement with those of refs. [2, 3, 12]. In fig. 7 the total 
QED correction 8T is given to which 8w (2.14) should be added to obtain the total 
electroweak asymmetry (fig. 8). The latter is shown for two energies, the change 
coming m~inly from the weak interference part. This is the only calculation in this 
paper where 8w is included, everywhere else pure QED with (~had is considered. 

lO 

C 

-2 

3O 

i i 

I I 

60 90 

0 

J 
I 
l~ 150 

Fig. 7. The total QED radiative correction 8T in % for E t h  = 0.5E and ~" = 10 ° for various scattering angles 
0 and E = 15 GeV. 
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0 
Fig. 8. The forward-backward asymmetry, now including'the electroweak interference 8w for E = 15 and 

19 GeV. The same Eth and ~" are used as in fig. 7 and sin 2 0w = 0.22. 

5.2. THE PHOTON ENERGY DISTRIBUTIONS 

A l t h o u g h  we have  given in sect.  4 an exact  d i s t r ibu t ion ,  eq. (3.19), which  is p l o t t e d  

in fig. 3, the  even t  g e n e r a t o r  shou ld  r e p r o d u c e  the  s ame  d is t r ibu t ion .  G e n e r a t i n g  

10 000 even t s  in a phase  space  d e t e r m i n e d  by  

0.5°~<0<~175.5 ° ,  0 ~ < k ~ < 0 . 9 6 ,  (5.3) 

the  p h o t o n  s p e c t r u m  is tha t  given in fig. 9. I t  shou ld  be  n o t e d  tha t  in con t ras t  to  eq. 

(3.19) the  r eg ion  (0, k l )  with very  smal l  k l  is inc luded  in the  sample ,  as was d iscussed  

' I ' I I I ' I 

3000 

1000 

300 

100 

3 0  , I i , , I , I 

0.0 0.2 0.4 0.6 0.8 1.0 
k 

Fig. 9. The photon spectrum, including soft photons, as generated numerically for E = 15 GeV. 
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Fig. 10. The numerically generated acollinearity distribution for E = 15 GeV. ~" in degrees. 

in sect. 4. The  agreement  be tween the exact distr ibution and the genera ted  his togram 

is good.  A similar check was made  on fig. 4. 

5.3. THE ACOLLINEARITY DISTRIBUTION 

Using the same event  sample as above  one can obtain do-/dr,  where  ( is the 

acollinearity angle (5.2). The  resulting his togram is depicted in fig. 10. 

5.4. THE ACOPLANARITY DISTRIBUTION 

Defining an acoplanar i ty  angle ~ be tween  the two planes fo rmed  by the beam and 
+ 

t he / z  , / z -  respectively, a distr ibution like the one  in fig. 11 is obtained.  The  angle 

• r - @ is the angle be tween p+ A q+ and p_ A q_. 

10000 , , , i , 

1000 

100 

[q ~ l ~ q  

1 . . . .  i . . . . .  ] [ ,  ~ - . 1  
O0 50 ~ i00 150 

Fig. 11. The acoplanarity distribution as generated numerically for E = 15 GeV. @ in degrees. 
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Appendix 

In this appendix formulae are given relevant for the integration order q~, cos 0v 
and the order q~v, c. Furthermore, a separate treatment of the initial state radiation 
only is made. 

I N T E G R A T I O N  O V E R  ~o~ 

The functions X in eq. (3.1) are integrated over q~v. Denoting the integrals by 

Y = ; X d~p~, (A.1) 

we find 

Y..  r(2c ,  A2, 

Y~--1--~-[[16k'2C~y2k I.[ y2 8y-~k_______'y +4(1 +k'2))I~ - 

t2 
+~/16k-~ c~ 8y+ck'y +-4(1 + k'2))I~ - -4k213]  , (A.3) 

where 

2 R 1/2 ] 
IT = b-iTr,,:~ arctan [ ~  tan ( ~ )  , 

1 ( b~sinq~v + a j : ) ,  
I~ = ~ a~ + b:~ cos ~pv 

I3 = ~v, 

a:~ = k lt,+]I ~: c cos 0~ ~ e • c cos 0v, 

b~ = ;:sin 0 sin 0v, 

2 2 R~: = a:~ -b~ = (ec ~cos  0~)2+ m 2 sin 2 0. 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 
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Furthermore, the muon part gives 

Y,.~ = X. ,  I3, (A. 10) 

2kk '  [(4x2c~+ 8(1 - x - k ) + k 2 s i n  2 0 sin 2 O~ Y,, = y2(q+./~)(q_. ~) 

+ 2k2(1 + c 2 cos 2 0v) + 4kx (1 + c 2 cos 0v))/a 

+ (x + k cos G)(4kc  sin 0 sin Ov)I4 + (½k 2 sin 2 0 sin 2 G)I5],  (A. 11) 

with 

14 = sin ¢~ (A.12) 

15 = sin 2¢~. (A.13) 

The interference term reads 

Yi,,t = l [ (~-S--2-7-~-S2-7)[(4x3cs-4x2y-c + 4x(1 + k'2))I~ - 
y t \ q + ' t ~  q - ' x /  

- 2k2x((1 + c cos G)I3 +sin 0 sin G/4) -4xZckI3] 

[16k'2c~ 8y_~k' I-4(1+k'2)]I~ - +4xkcI3 
- t  y 

+c  cos 0~)I3 + (sin 0 sin 0~)I4]] -(c--* - c ) .  (A.14) +2ka[(1 

The definite integrals over the interval [0, 27r] are obtained from the above expres- 
sions by taking 

2~- 2~ra=; IF =O1/2,..:~ I i  R3/2 , I 3 = 2 ~  -, I4=I5  = 0 .  (A.15) 

INTEGRATION OVER cos 0~ 

The definite integrals Y with eqs. (A.15) inserted are integrated over cos G- The 
resulting integrals are denoted by Z :  

Z = f Y d c o s  0~. (A.16) d 

In particular 

Z,,o 8rrk' /2c  2 2c+ 1 \ w 
= - - - / - - - z - - - - ' y -  +--~/~-~_/2 + (c -, - c ) ,  

k \Y+c Y+c Y+c/ - 

Z ~  = ~-~ [4k'2c~f4 - 2 y - ¢ k ' f 3  + (1 + k ' 2 ) f 2  + (c  --, - c ) ]  +87r, 
Y 

(A.17) 

(A.18) 
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_ !  zr 1 1 ] 
Z, , ,  -2-cst~ L l - x + a  x - k ' + A J  ' 

(A.19) 

[ 1+k'2 ( x - k ' + A \  2k' ] 
Z , , = - T r  c s - - - - - ~ l n  - 1 ~ )  -2xcs+-(3c2-1)x ' (A.20) 

where 

1 
f ,  ( n _ l ) a 2 ( - g , , _ l + ( 2 n - 3 ) y o f , _ l - ( n - 2 ) f , _ 2 ) ,  (n > 1 ) ,  

kR1/2 
gn - -  n 

Y 

r 2 y ( w + R f f 2 )  ] 
fl = 1 I n  [(y ~-~ao ~ ) 2 J  ' ao 

(A.21) 

(A.22) 

(A.23) 

W = COS 0 v -  e c ,  

yo = 2 -  k + kec,  

ao = [y2+ k2m2 sin 2 0] 1/2 " 

(A.24) 

The interference term gives 

Zint = 4"n'[2Cs(C-Q3 - c+R3) - 2(c-Q2 - c+R2)y-c 

+ 2(l +k,2)(c_Ql_c+R1)+½kU 2k'c2 
Y 

- ½k (c-S1 - c+ T1) - kc (c-$2 - c+ T2) 

- -  8 k ' 2 c s f 4  -t- 4 y - c k ' f 3  - 2(1 + k ' 2 ) / 2 ]  - ( c  --> - c ) ,  
d 

where 

(A.25) 

i n - - 1  p (2k)  . k _ 
O,, 2-~ ~ - ~ . t ,  + 1 + i - ~  tJ,,- 1, (n >1),  (A.26) 

1 
Q1 4(1+A')  2 ( 2 ( 1 + A ' ) f 2 + f 1 -  V) ,  (A.27) 

A' = A I k ' ,  

_ !12k,V,-,¢ R .  - -2~ / j .+l  + (1 + A ) R . _ , ,  (n > 1), (A.28) 

I +A  
R~ = -½f2--7-;7,, ( f ~ -  W ) ,  

z..i. K • 

(A.29) 

[ 2y l (w+Rl j2 )  1 
V = lal In [ ( y ~  k--R~_/2)Ej , (A.30) 



260 F.A. Berends, R.  Kleiss / e +e- --* ~z +t~ - (y)  

and W is obtained from V by replacing al,  Yl by a2, Y2, where 

ax = [)72 + rn:k 2 sin: 0] 1/2 , (A.31) 

a2 = [)72 + m2k 2 sin 2 011/2, (A.32) 

yl = y - 2(1 + A'), )71 = Yo- 2(1 + A'), (A.33) 

2k' 2k' - - - ,  Y2=Y I + A '  )72=Y° I + A  (A.34) 

81 = -~  c+ In (x - k ' + A )  + - ~  (kc+-2c)  , (A.35) 

2 

T1 = ~-'~7 In (1 - x  +A)+ k (kc+-2c)  , (A.37) 

T2 = ~ [ln (1 - x  + A ) + x  +½x2], (A.38) 

1 [½xZ(kc+_ 2c) + 2cxk'] (A.39) u = - ~ - ~  . 

For the definite integrals some simplifications occur. For Z,,~ the cos 0~ dependent 
factor becomes 2, in Ze we have 

f l ( 1 ) - f l ( - 1 ) = - l l n ( k ' m 2 )  ao \ yo2 / .  (A.40) 

The muon parts become 
k' 

Zm. (1) - Zm. ( -  1) = -4~'cs -~- (A.41) 

= 27rcs(1 + k'2~ ( 4__~k2' ) Z~,(1)-  Z , , ( -  1) \ - - - ~ 1  In -87rc2k.  (A.42) 

Next, we give a result which is obtained by integration of Y over the full c-range 
and the azimuthal angle of the/~+ (just a factor of 2~r): 

do" 2kk'  do- 2kk'  do" 
d k d c o s 0  v y2 d k d x  y2 d x d x '  

a 3 t a 3 2kk'  
= ~ J Y dg/. --- ~ - 7  H, (A.43) 

2 

H,~ = - ~  [2k' - x 2 - x '2] (A.44) 
k 
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1 k') - 2 k 2 k  ') - k 2 ] , +~-~ ((2k2+ 12k')(xx'- (A.45) 

H, . ,  32 2 2[ 1 1 \ = - T z r  tz ~ ~ + ~ J ,  (A.46) 

H ,  = ~zr 2 4 (x 2 + x'2). (A.47) 
(q+" 

When the photon direction is not near to the Ix* direction, Hm, can be neglected. 
These formulae are in agreement with those of ref. [9]. 

To conclude, we give some formulae relevant for the initial state radiation. Using 
now p+ as z-axis, calling the polar and azimuthal angle of the photon rl and 4~ and 
denoting k°/E by k we have 

do "e ak , ,,[ 2(1 + k '2) m2k ' m2k ' 1] 
(A.48) dOvdk=~2°'°~s)[(~+.l~)(~_.~c) (~+.-~ ( f f - -_7~-  J • 

Integrating over the full ~b range and then integrating over cos 7/gives 

with 

dcr o~ O,o(S,)[_m2k,Jl_k2j2+(l + k,2)ja], (A.49) 
dk 2zrk 

f l  = 
1 1 

e - c o s  "r/ e + c o s  1"1 ' 

3"2 = cos n (A.50) 

j3 = in (e  +cos r/) 

For the interval (-1,  +1) the integrals J /give 

and therefore 

4 s 
J1 = ----~, J2 = 2 ,  J3 = 2 In 2 , (A.51) 

m m e  

d°'e ~ o ( S ' ) ( l n  s 2 - 1 )  l + k ' 2  
dk -- me ~ '  (A.52) 

which is the same as (3.28). For a restricted angular range, e.g., ( -z ,  z) we obtain 
instead of (A.52) 

do-e a , , l + k  '2 (e+z~_kz)  
dk =~cr0(s  )~-----~ In \ e - z J  " (A.53) 
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