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A method Is described wtuch enables  on e  to take into  account lmlaal state rathataon to the 
process  e +e ---> hadrons.  It treats exactly both the photon etmsslon and the angular  distribution 
of the produced partacles, once this angular  distribution ~s given for the non-bremsst rahlung case. 
The method is such that it can easdy be used m conjunction wuh any  Monte Carlo program for 
the production of hadrons.  

1. Introduction 

With the advent of quantum chromodynarmcs one can construct models [1] for 

the production of jets in e+e - annihilation. Usually the ingredients of such a 
model are translated into a Monte Carlo program which simulates the production 

of the hadronlc events in e + e -  annihilation. These programs generate two, three, 
or possibly four jets consisting of light and heavy quarks and gluons, and contain a 

mechanism to fragment these partons into hadrons. 

In order to minimize the uncertainties in comparing these models to experimen- 
tal data, the radiative corrections should be built in. There are two reasons to 

restrict these radiative corrections to initial state radiation only. In the first place, 

from a comparison to mu-palr production the initial state rachatlon is expected to 
be the dominant contribution for QCD relevant quantities like R and thrust [2]. In 

the second place, only the initial state radiation can be taken into account in a 
model-independent way. 

The standard way in which the experimentalists tend to treat the lmtlal state 
radiation is based on a method introduced by Bonneau and Martin [3], augmented 
possibly with the hadronlc vacuum polarization [4]. This method can be used to 
generate the 4-momenta of the bremsstrahlung photons, once the total hadromc 
cross section o(s ')  for e + e -  annihilation is known as a function of the hadromc 

c.m. energy X/s'. Moving to the hadronlc c.m. frame one would then hke to 
generate the hadrons, as given by the model. The model usually generates particle 
momenta with respect to the beam axis. However, in the hadronic c.m.s., there are 
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now two beam axes, namely of the electron and positron, respectively. So one has 

to extend the treatment of ref. [3] such that one knows how to apply the jet model 
with respect to these axes. In practice, one often makes the additional assumption 

that the photon is emitted along the beam direction, such that in the hadronic c.m. 

frame one just has one beam axis. However, this assumption is not necessary since 

the problem can be treated exactly. 
In other words, the standard treatment only considers o(s ')  in the equations, 

whereas one now requires formulae containing a multldifferential hadromc cross- 

section formula. Then it can be applied to the 2-, 3- and 4-jet angular distributions 

and any other multidifferentlal cross section one wants to consider. 

For non-hadronic final states it xs preferable to include final state radiation as 

well. The simulation of events then becomes more involved [2]. 
The outline of the paper is as follows. In sect. 2 we give the bremsstrahlung 

formulae applicable to differential cross sections, and the virtual corrections. Sect. 

3 then outlines the way events can be generated. The appendices collect some 

calculatlonal details. 

2. The  radiative cross section 

Consider N-particle production in e + e -  annihilation via one-photon exchange. 

The differential cross section for unpolarized beams is obtained from 

d°  o=(2~r)4 ~ P + + P - -  , e , lq  -~s~lM°12d0, (2.1) 

where p + , p _ , q '  denote the 4-momenta of the e÷e - and the hadrons and dp 

denotes the lnvanant phase-space volume for an N-particle final state. Choosing 
some set of independent variables (2.1) leads to a multidifferential cross section of 

the type 

do°  - f ( q l ,  q2 . . . .  ; R,  s ) ,  (2.2) 
dq~ ~2.-- 

where 

Q =  ~ q , ,  P = p +  +p_ , 
! 

R = p +  - p _ ,  

-~= R/IRI. 

s = p 2 =  4E 2 ' 

(2.3) 

From (2.2) the 4-momenta q' can be generated in the hadromc c.m.s. (which now is 
also the lab system) with respect to the axis/~, in this case the positron direction. 
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The square of the matrix element ~s obtained by contracting the lepton tensor 

L°, wxth the hadron tensor H,~: 

Y~lMOl2 = I LO (p+ ,p_)H~(q, . . . .  qU), (2.4) 
s" 

where 

L° (p+ ,p_) =p+,p_~ +p+~p_u - (p+ .p_)g~. (2.5) 

The tensor H ~  depends on the particular model. In general it can be written as a 
hnear combination of form factors, depending on invariants, multiphed with 

certain tensors. These tensors take the form 

, s q~ Q2 Qu q~ Q2 Q~ ' (2.6) a bt a ~ -~- 

Q"Q~ (2.7) 7/,~ =g~,  Qz ' 

where the reqmrement  of current conservation has been imposed. In the following 
it is convement to rewrite the lepton tensor as 

I C°~ = I (  Q . Q ~  - R . R ~  - s g . ~ )  . (2.8) 

In (2.4) the first term of (2.8) does not contribute. Moreover a simplification occurs 
through the vanishing of R o in the hadronlc c.m.s. 

When bremsstrablung is emitted from the mitml state, we find for the process 

e +e ----> y ( k )  + N hadrons ,  (2.9) 

the cross sect,on 

= dkdav(2~r  ) 6 p + + p _ - k +  q' --~lMll2dp, (2.10) 
4,n -2 s t 2s '  

where k denotes both the photon energy and its 4-momentum, ~2 r is the solid angle 
of the photon and 

s ' =  (p+ + p _ - k )  2 = Q2 = 4 E ( E -  k) .  (2.11) 

The square of the bremsstrahlung matrix element takes the form 

y,, i m l l  2 = 1 l , p _ , k ) H " ' ( q ' ,  qU) (2.12) 
( s , ) :  . . . .  
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is gaven m the appendix. Omitting terms contain- The complete expression for L ~  
mg Q one obtains the part relevant for (2.12): 

L~ ~ = --½(h _R~_R ~_ + h  +R~+R+ + h o g ~ ) ,  (2.13) 

where 

R_ = p _  - p +  + k ,  R+ ---p+ - p _  + k ,  (2.14) 

and the functions h are given in appendix A. 
In the hadromc c.m.s., L 1 contains the directions R _ ,  R + ,  which are the electron 

and positron directions in this frame. As is shown in the appendix, the form (2.13) 
allows us to relate the differential cross section for the bremsstrahlung process (2.9) 
to that of the lowest order process: 

do  I = a [ g _ f ( q , , q 2  . . . .  " R _ , s ' )  
dk d~2 v dql dq2. . .  4~Zs 

+ g + f ( q , , q 2  . . . .  ;R+  , s ' ) ] .  (2.15) 

In this formula the hadromc momenta q, are considered in the hadronic c.m.s., 
whereas the photon energy and sohd angle are taken in the lab system. The 
bremsstrahlung cross section is the (mcoherent) sum of two multidifferential cross 
sections evaluated in the hadromc c.m.s, with respect to the directions of e -  and 
e +. The weight of the two distributions m the sum depends on the photon variables 
k, ~2v m the lab system: 

where 

- m 2 k s  ' (s '  + 2 K.v_) 2 
g+_ = ~ +  k (2.16) 

K ~  2 K + K _  ' 

K~_ =P-v- .k .  (2.17) 

When the mult~differential cross section is integrated over the hadron variables we 
obtain 

d o '  = a ( g _ + g + ) o O ( s , )  
dkd~2 v 4~-2S 

oklm2sm2ss2+s2 ] 
~2s 4 K  2 _ 4K----~+ + 8 K + K ~  1 o ° ( s ' ) ,  (2.18) 

where o°(s ') is the total hadronic cross section, obtained from (2.2). This is the 
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result of Bonneau and Martin, written in a form which was given for mu pairs in 

ref. [2]. 
As is well-known, the cross section (2.1 8) or (2.15) integrated over the full photon 

phase space diverges. This infrared divergence cancels if one adds the virtual 
correction to the lepton part  L °. So we consider soft bremsstrahlung isotropically 
emitted up to a photon energy k~ and add the virtual corrections to (2.2). The 
lowest order cross section plus first-order correction then takes the form 

do I do ° 
(1 + 8 A + 8~ + 8, + 8had), (2.19) 

dq, dq2 . . ,  d q l d q 2 . . .  

where the corrections 8 originate f rom soft bremsstrahlung, vertex correction and 

electron vacuum polarization 

8A= f l l n ~  -t- 2°t [13" S -I- t . 1 [~1n~22 grr - ~  , (2.20) 

with 

f l = 2 a / l n - ~ - s -  ~r \ m 2 1),  (2.21) 

and originate from the vacuum polarization due to the #, r and hadrons. 
The latter can be taken from the numerical evaluation [4] of a dispersion 

integral. The others depend on m~ or m r according to 

8~,,, = In mT,~ " . (2.22) 

3. The Monte Carlo simulation of radiative events 

We now discuss the simulation of radiative events, once one has a procedure for 
the generation of non-radiative events. Since the model for the hadronic events is 
known, the dependence of o ° on s '  is known. Assume a dependence of the form 

o ° ( s  ') = c l s ' .  (3.1) 

It  will be seen in the following that this assumption is not essential. 

From the differential cross section for photon emission, the photon spectrum can 
be obtained. In the lab system we use p+ as the z-axis and denote the polar and 
azimuthal angle of the photon by 7) and ~k. Performing the full azimuthal integra- 
tion and then integrating over 7/we find f rom (2.18) 

do  1 
o° ( s  ") 4 m 2 s ' j  1 - 4k2J2 + s 1 + "/3 (3.2) 0t 

- -  _ _  ) 

d k 2 ~sk s 
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where 

1 l ( 
J l  - e - cos rl e + c o s  T/ "]2 = COS "0, [3 = In 

e + cos r/ 

1 e -- cos "0 
(3.3) 

with 

e = p + 0 / I  P+l .  (3.4) 

Inserting the boundaries ( - 1 ,  + 1) in the cos~ integral we find 

s 
JI = m 2  , .]2 2, J3 = 2 In , 

me 

which leads to the photon spectrum 

-d~--Oo(S) ln-ss_2-1 1 +  ~ .  
qr \ me 

(3.5) 

(3.6) 

For not too small k-values this spectrum can be used to generate photon 
energies. When one is interested in generating the non-radiative and radiative 
events at the same time, one has to make the transition to soft photons. This can be 
done in two ways. 

The first method chooses some value k t below which the photon energy can be 
neglected. The total cross section for the region below k~ can be obtained from 
(2.19). The total cross section f rom k~ up to a maximum photon energy km~ x can be 
obtained from (3.6). These two cross sections are used as weights to choose the two 
regions. In the soft photon region one then generates hadrons according to 
do°/dq~ dq2.. ,  with respect to/~.  In the hard photon regmn one generates photon 
energies according to (3.6). In this approach the value of k I should be chosen in 
such a way that the correction 6 m (2.19) is not too large (and negative). 

The second approach avoids the division m two regions by noting that for large 
negative correchons one should exponentiate the leading log part of the correction. 

Instead of 

a'(k < k,) =o°(s)(l + flln~ + SAR), (3.7) 

we take 

where 

at( k < k,)=a°(s)( l + SaR)( ~-~ ) ~, (3.8) 

2a  [ 13 S 1 2 ~ ] 
8 A a = - - [ ~ l n m  - - + ~ r  ~ gqr - - - - j  + 3 ~ + 3 , + S h ~  d (3.9) 
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Although this is strictly speaking only correct for small k I / E ,  we now extend this 
to the hard bremsstrahlung case in the following way. Calhng 

~2 do  I + oO(s)f l lnkff  ' o'(k < k2) = o'(k < k , )  + ~ ,  d k - - ~ -  = F(k2)  (3.10) 

with ol(k < k l )  as  given by (3.7), we now replace (3.10) by 

o l ( k < k 2 ) = F ( k 2 )  --  G ( k 2 ) .  (3.11) 

ThIS reproduces for small k 2 values, eq. (3.8) and for the maximum k-value, eq. 
(3.10). In the case of a 1/s' behavlour of the hadronic cross section F(k) can easily 

be obtained and reads 

F(k)__oO(s)( l+6AR_½fl ln( l  k)_lflk2 E)"  (3.12) 

The integrated spectrum (3.11) can now be used to generate the k-values. 
Generating a random number  ~" E [0, G(km~x) ] and solving numerically 

= G(k) (3.13) 

gwes k. Since we also know for a fixed value k the prirmtive function of the cos 7/ 
integration, i.e., eq. (3.2), we can in the same way generate the cos ~/ value. The 
azimuthal angle finally is a random number  between 0 and 2~r. 

Having generated in this manner  the photon 4-momentum we can then calculate 
the weights g+ and g_ in eq. (2.15). Choosing then the axis /~+ or R _  with a 
probabili ty determined by the weights g+ and g_ ,  we generate the hadron 
momenta  m the hadron c.m.s, with respect to the chosen axis. Finally we have to 
transform the momenta  back to the lab system. 

In the case that the energy dependence (3.1) does not hold, one has to evaluate 
F(k) anew. One case, which is of practical interest, namely that of heavy quarks is 
given m appendix B. If the integrals cannot be done analytically the first method 
should be applied to generate a photon energy directly from eq. (3.6). 

The kind hospitality of the DESY theory group is gratefully acknowledged. This 
investigation is part  of the research program of the "Stichting voor Fundamenteel  
Onderzoek der Materie (F.O.M.)". 
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Appendix A 

For completeness we give the full lepton tensor with bremsstrahlung: 

R v p ' [  h _ R  " R ~ +h+RV+R+ + h o g ~  + h,Q~Q~ +h2(R~_Q~ + _ Q  ) L~ ~ = - ~  

where 

+ h3(R~+Q ~ + R + Q ~ ' ) ] ,  

m 2 s '  
h ± =  - - - q  

K 2 2 K + K  ' 

(A.1) 

m2s ' m2s ' (s '  + 2 K _ )  2 + (s '  + 2 K + )  2 
h o =  - -  + 

K z - Kz+ 2 K + K  

m 2 m 2 s 
h i  - - ~  -'l 

_ K 2 K + K  

g+,- 
h 2 ' 3  = K + K _  " (A.2) 

The following kinematical relations are useful: 

R ~ . Q = 2 K ± ,  (A.3) 

R E = - s '  - 4 K ± ,  

from which we have in the hadronic c.m.s., 

( s '  + 2 K ± )  z 
R z 

~- S '  ' 
(A.4) 

h o = h  R 2 +h+RZ+.  (A.5) 

In the hadronic c.m.s, we find for the no bremsstrahlung case for typical terms in 
]~1M°l 2 - - t h ° s e  obtained from (2.6) and (2.7), respectively: 

i M O ] 2  _ 1 [ ( R . q , ) ( R . q  j ) + s q ' . q ' ]  
2s 2 

and 

1 [ ( ~ . q , ) ( ~ . q : ) + q , . q : ]  

2s 
(A.6) 

iMO12 l (A.7) 
S 
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In the bremsstrahlung case the same terms m H ~" now give rise to 
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£ [ M , 1 2  ~ 1 [ h _ g 2 ( R _  ' _ _ _  .q )(  _ . q S )  
2(s ')  = 

+ h +R2+(/~ + "q ' ) (R_  .qS) + hoq,.q. ,  ] 

1 { h _ R  E [ ( / ~ _ . q , ) ( ~  . q , ) + q , . q , ]  

2S' S' 

and 

X I m ' l  ~ 

+ s [ ( / ~ + ' q ' ) ( R + ' q ' ) + q " q ' ]  ' 

1 [ h _ R  2_ + h  +R2+ - 3ho] 
2(s*) 2 

(A.8) 

l [ h  R 2 h+R2+] 
- - + . ( A . 9 )  

S* S t S'  

Comparing (A.6), (A.7) with (A.8) and (A.9) we find the weights 

g +_ = h +RZ+k, (A. I0) 

where the definition (2.15) for g_+ and the normalisatlon (2.10) have been used. 
It should be noted that for the calculation of L o and L t the ultra-relativlstm llrmt 

has been used, i.e., terms of order rnZ/E 2 have been neglected, except where 
denominators can take similar values. 

Appendix B 

For the production of a heavy quark pair (or a z-pair) the assumed 1/s '  
dependence of o°(s  ') may not be correct, even at PETRA/PEP energies. Calling 
the quark or lepton mass M, one has 

d°°d~ (s ')  = ~ 3 e ~ 2 ( 1 - - ~ 7 ~ ) l / 2 ( l + c 0 s 2 g + ~ 7 ~ s i n 2 8 ) ,  (B.1) 

where eq is the fractional quark charge and 8 denotes the scattering angle. The total 
cross section for massive quark paw production now reads 

oO(s,) = , '  1 - - -  1 + - 7 -  ] St 
(B.2) 
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The first factor m (B.2) is just  the total cross section for light quark pair  p roduc t ion  

4~.e2ct 2 

° ° ( s ' )  = s '  (B.3) 

Expanding  the M 2 / s  ' dependent  factors m (B.2) we see, that  deviations f rom (B.3) 
are of the order 6 ( M E / s ' )  2. For  the b-quarks  for instance, it implies that deviations 

2 of  the beam of more  than 4% arise when the emit ted pho ton  energy is larger than 5 

energy E,  for E = 15 GeV. 
If one wants to consider photons  with larger energies one should replace (3.12) 

by 

F(k )  = o°(s) ( l  + + H ( * ) ) ,  (B .4 )  

where 

( (  k) 2o 
H ( k ) = - f l  --In 1 - - - ~  +21na+----- ~ 

+ 
(2 + 4 M 2 / s ) a  

l + a  k 
1 +y  EY 

where 

4 M  2 )1 /2  
y =  l -  s---7-- ] . (a .6)  
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