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We study the width of the confining string between static quarks in abelian lattice gauge theories 
using strong coupling expansions. We consider gauge groups Z,  and U(1) in 3 and 4 dimensions. 
This extends previous work with Liischer, where SU(2) and Z2 were studied. In v -- 3 dimensions we 
find evidence for a roughening transition. It is characterized by a divergence of the string width for an 
infinitely far separated quark-antiquark pair, while the string tension remains non-zero. In v = 4 
dimensions for the abelian groups we do not have evidence for a roughening transition away from a 
phase transition. 

1. Introduction and summary o|  results 

In a recent work with Liischer [1] the width o.2 of a chromo-electric flux tube 
between widely separated static quarks in pure gauge theory has been studied. The 
strong coupling expansion for o,2 in four-dimensional SU(2) lattice gauge theory 
indicates that for values of the coupling parameter/3 above 1.9 the width o .2 diverges 
with the separation between the quarks. This phenomenon is a kind of surface 
roughening transition. The surface which fills out the euclidean Wilson loop then 
fluctuates so strongly that its transversal width diverges when the loop size goes to 
infinity. A related phenomenon occurs in the three-dimensional Ising model, where 
the width of a magnetic domain wall diverges at a roughening temperature well 
below the critical point [2]. By duality this implies a roughening transition for the 
three-dimensional Z2 gauge theory. Using the same method as for SU(2) we also 
observed this transition [1]. On the other hand for Z2 in v = 4 dimensions we found a 
roughening temperature which appears to be equal to the self-dual point, where the 
theory is supposed to undergo a first-order phase transition. 

In this paper we extend our study of the roughening phenomenon to the abelian 
gauge groups Z,, all n, and U(1) in v = 3 and 4 dimensions. These models are briefly 
reviewed in sect. 2. Using the same methods as in ref. [1 ], the high-temperature series 
for the string width 0 .2 in the case of an infinite separation between the static quarks 
are calculated up to 12th order. Based on these series we estimate the inverse 
roughening temperatures/3R, where o.2 diverges. Our results are discussed in detail 
in sect. 3. 

1 Supported by the Deutsche Forschungsgemeinschaft. 
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In v = 3 dimensions we find values of/3R well below the phase transition point/3¢ 
for all groups under consideration. This indicates the existence of a roughening 

transition. On the other hand for v = 4 the obtained values of/3R are so near the 
lower phase transition points/3~ that it is not possible to decide whether  they are 
equal or not. 

The roughening transition in three-dimensional  lattice gauge theories has also 
been investigated independently by A. and E. and P. Hasenfratz [3]. Their  
conclusions are similar to ours. The possible importance of roughening transitions in 
gauge theories has also been emphasized by Itzykson [4]. 

2. The models  

We study euclidean gauge theories with gauge group G = Z .  or U ( 1 ) o n  a 

hypercubical lattice in v = 3 and 4 dimensions. The gauge field variables U(b) ~ G are 
attached to the links b of the lattice. The product  of the variables U(b) for the four 
links b on the boundary of an elementary plaquette p is denoted by U(p). We use the 

standard Wilson action [5] 

1 
L =21-/3 Y. (U(p)  + U(p) ) ,  fl = - ~ ,  (2.1) 

p g 

where the sum extends over all unoriented plaquettes. 
In v = 3 dimensions the Z2, Z3 and Z4 lattice gauge theories are mapped  by 

duality [6, 7] onto the corresponding Zn spin systems, which are known to undergo a 
single phase transition at certain critical temperatures  [8]. The corresponding critical 

couplings for the gauge theories are 

Z2: B2c = 0.76,  

Z3:/33~ = 1.09, (v = 3) ,  (2.2) 

Z4: O4c = 1.52 = 2BEe. 

For Z, ,  n/> 5 in v = 3 dimensions Monte Carlo studies [9] show a single phase 
transition. The critical couplings/3,c seem to tend to/3 = oo as n ~ oo. For/3 </3~ the 
theories confine static quarks, while for/3 >/3~ this is not the case. For U(1), v = 3 no 
transition has been found [9]. The model apparently confines at all values of B. 

In v = 4 dimensions the Z2, Z3 and Z4 lattice gauge theories are self-dual [6, 7]. 
They are supposed to undergo a first-order transition at their self-dual couplings 
[10]. From self-duality one finds 

Z2: /32c  = 0.44,  

Z3:/33c = 0 .67,  (v = 4) ,  (2.3) 

Z4: B4c = 0 . 8 8  = 2B2c. 
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For n ~> 5 in u = 4 dimensions the Z ,  lattice gauge theory is supposed to have two 
phase transitions [10, 11]. As n increases the higher transition coupling/~c moves to 
infinity, while the lower/3c tends to a certain finite limit. This is equal to the transition 
coupling of the U(1) model which is supposed to have a single phase transition 
[10-12] from a confining to a spinwave phase. Monte Carlo studies [10] indicate that 
the lower transition couplings for these models are all around/3 = 1: 

Z,,  n ~>5; U(1): /3c= 1,  ( u = 4 ) .  (2.4) 

3. Roughening temperatures 

For small values of fl pure lattice gauge theories are known to confine static quarks 
by a potential which rises linearly for large separations. The slope of the potential is 
the string tension a. In ref. [1] the width 0 .2 of the flux tube connecting a static 
quark-ant iquark pair has been defined through the electric field energy density 
between them. Its high-temperature expansion can be calculated using the same 
graphs which appear in the expansion of the string tension ot [13]. 

The natural expansion parameters in high-temperature series are the coefficients 
0 <~ ar( f l )< 1 in the Fourier expansion, 

exp (/3 Re U ) =  N(/~)(1 +r~0 a~(13)xr(U)).  (3.1) 

The sum extends over all inequivalent non-trivial irreducible representations of the 
group G, labelled by r. X, denotes the corresponding characters and N(/3) is a 
normalization factor. The inequivalent irreducible representations for Z ,  and U(1) 
are 

U ~  U r = x , ( U ) ,  (3.2) 

where r = 0, 1 . . . . .  n - 1 for Zn and r ~ Z for U(1). 
Using orthogonality relations for characters one finds [14] 

ar([3 ) = cr(13 ) / Co(~ ) , (3.3) 

where 

c,(B) = ~c d U U - r  exp (/~ Re U ) ,  (3.4) 

d U  is the Haar  measure on G. 
In the following we write 

x = a1(/3), y = aE(fl), z = a3(/3). (3.5) 
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In particular, 
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for Z2: x = tanh/3 ,  

for Z3: x = y = (1 - e x p  ( - I / / ) ) / ( 1  + 2  exp ( - ~ / / ) ) ,  

for Z4: x = z = tanh ½fl, y = x z , (3.6) 

fo rZs :  y = z ,  

for g(1) :  a,(/3) = L ( ~ ) / I o ( f l ) ,  

(L = modified Bessel function).  

First we consider the high-temperature  series for the string tension a. For gauge 
groups Z2, Z3 and U(1) in v = 3 dimensions they have been given by Drouffe up to 
16th order [15] (see also [16-18])*. For Zz, v = 4 the series has been calculated in 
[16, 17], for Z3, I / = 4  in [18]. For n I>4 and U(1) the series are up to 12th order: 
for z, = 3: 

a l n x + 2 x 4 + 2 x 4 y + l O x S + 9 x l O _ 8 x S y + 1 2 x 6 y Z + 2 y 5  . 314 12 - -  = "t -  " X " X  

- 50x lOy + 20xSyZ + 8 x 4 y 4  + x 9 z  _ 2(2 - 8n4 )y  6 + 2(1 - 8n4)ySzx -1  ; 

(3.7) 
for v = 4: 

- a = In x + 4 x  4 + 4xay + 56xS + 54x1° + 56xay + 24x6y2 + 4y5 

+ ~ x  12_ 92x lOy + 76xSy2 + 16xay4 + 6xgz - 4 ( 2 -  8n4)y6 

+ 4(1 - 8n4)y  5ZX-1.  ( 3 . 8 )  

The series can be expanded in terms of x. The resulting expansions are summarised in 

tables 1, 2. In figs. 1 and 2 we plot the curves corresponding to (3.7) and (3.8) for Z2 to 
Z5 and U(1)**.  High- tempera ture  series for the string tension of several hamiltonian 
lattice gauge theories have been calculated in ref. [19]. In v = 3 dimensions the 
curves go to zero below the critical couplings, whereas the true string tension is 
supposed to vanish at the critical coupling. This effect might be associated with the 
roughening transition [3], which we are going to discuss. In v = 4 dimensions the 
series appear  to converge to non-zero values for a at the lower transition couplings. 
This indicates that the transition is a first-order one. 

Next we discuss the high-temperature  series for the string width ~r 2. Tables 3, 4 
contain the series in terms of x for all groups under consideration up to x 12. For Z4 
and Zz the series in x for cr z (as well as for a )  coincide in both u = 3 and v = 4. In v = 3 
dimensions this is due to the fact that the Z4 model decouples into two independent  
Z2 models [7, 20]. The possibility that the same is true for ~, = 4 is under investiga- 
tion. 

* The 14th order term for Z2, v --- 3 in [16] differs from the one in [15]. 
** The  curves for Zn, n ~>6 and U(1) are practically indistinguishable. 
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TABLE 1 

String tension series in v = 3 dimensions 

k a = - i n x -  Y. akX 
k~.4 

17 

GFoup• k °tk 

4 5 6 7 8 9 10 11 12 

242 
Z2,  Z 4 2 0 2 0 10 0 16 0 -y- 

Z3 2 2 0 0 22 - 7  29 6 
1 31 1 395 27_.7.7.! 174557 

Z 5 2 0 1 ~ ~- ~ 4-8- 2016 2016 
125 401 249~ Z6 2 0 1 0 1-F 0 4-g 0 2as 

Z7 2 0 1 0 3~ 1 39....77 J_ 124139 
60 48 40 1440 

Z8 2 0 1 0 31 5957 124147 
3 0 720 0 1440 

397 1 124139 
Z9 2 0 1 0 3 ~ 0 4--a- 2520 1440 

31 397 1737947 
Zlo 2 0 1 0 T O 4-~ 0 20160 

31 397 124139 Z.,  n~> l l  2 0 1 0 T 0 4-V O 1440 

U(1) 

TABLE 2 

String tension in v = 4 dimensions 

GFoup• k °tk 4 5 6 7 8 9 10 11 12 

3616 Z2, Z4 4 0 4 0 56 0 144 0 3 
5968 Z3 4 4 0 0 80 62 130 20 7 -  

2 170 1 2123 16889 1208429 
Z5 4 0 2 ~ ~ -  ~ 24 1008 lOOS 

341 2129 173179 Z6 4 0 2 0 ~ -  0 24 0 144 
170 1 2125 1 862619 

Z 7 4 0 2 0 ~ -  3-0 24 2-0 720 
170 31877 862627 

Z8 4 0 2 0 ~ -  0 360 0 720 
170 2125 1 862619 

Z9 4 0 2 0 ~ -  0 24 126o 720 
170 2125 12076667 

Z l o  4 0 2 0 ~ -  0 24 0 10080 
170 2125 862619 

Z. ,  n I> 11 4 0 2 0 ~ -  0 24 0 720 

u(1) 

T h e  s e r i e s  f o r  0 -2 a r e  all  i n c r e a s i n g  w i t h  x. T h e y  s t a r t  w i t h  x 4 so  t h a t  t h e y  a r e  in  f ac t  

s h o r t  s e r i e s .  W e  l o o k  f o r  a d i v e r g e n c e  o f  o .2 w i t h  t h e  h e l p  o f  d i f f e r e n t  m e t h o d s .  

F i r s t l y ,  as  in  [1]  w e  s t u d y  t h e  i n v e r s e  s t r i n g  w i d t h  m e a s u r e d  in a l e n g t h  s ca l e  g i v e n  b y  

t h e  s t r i n g  t e n s i o n ,  i .e. ,  t h e  q u a n t i t y  

(02. ~)-1. 
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Fig. 1. The string tension for groups Z2, Z3, Z4, Zs, U(1) in v = 3 dimensions as given by the 
high-temperature series eq. (3.7) and refs. [13, 15-18]. 

, r 

i ! zz i z~ u., 
0 n2c 05 % n~c 10 15 

P 

Fig. 2. The string tension for groups Z2, Z3, Z4, Zs, U(1) in v =4  dimensions as given by the high- 
temperature series eq. (3.8) and refs. [13, 16-18]. 

We calculate its asymptotic expansion in x. A zero of ( o r 2 0 ( )  - 1  then indicates that 0 -2 

diverges there and yields a value for the inverse roughening temperature.  For Z2 in 3 
dimensions the value obtained [1] is in good agreement with the Ising model 
calculations [2], which supports the reliability of the procedure. 

Secondly, we look for poles in different Pad6 approximants to the series for F(x) ,  
where 

0-2(x) ~ x 4 F ( x  ) . (3.9) 

We consider poles for real x between 0 and 1. The [0, 8] approximants corresponding 
to the inverse series F - l ( x )  are also included. Because' the series for Zn, n >16 are 
numerically practically the same as for U(1), they are not discussed separately. 

As mentioned above, the series are short. Results from Pad6 methods are only 
reliable if they are stable for different approximants. This is indeed the case for Z2 in 



G. Miinster, P. Weisz / Roughening transition 

T A B L E  3 

Series for the string width in v = 3 dimensions 

0 -2 = ~ Ork xk 
k ~ 4  

Group• 
~ Ork 

k 4 5 6 7 8 9 10 11 12 

19 

Z2,  Z 4 2 0 6 0 40 0 148 0 854 

Z3 2 2 4 0 64 - 8  196 48 1154 
1 121 1 3127 1529 47955 

Z5 2 0 5 ~ T g 24 504 56 
485 1565 4 9 3 2 ~  

Z6 2 0 5 0 1~- 0 12 0 576 
121 1 391 1 61~937 

Z7 2 0 5 0 ~ -  6~ ~ -  4~ 720 
121 469~1 615941 Z8 2 0 5 0 T 0 360 0 720 
121 391 1 615937 Z9 2 0 5 0 ~ -  0 T 2520 720 
121 391 17246237 

Zlo 2 0 5 0 -3- 0 T 0 20160 
391 61~9~7 Z. ,  n ~ > l l  2 0 5 0 ~ 0 T 0 720 

U(1) 

TABLE 4 

Series for the string width in v = 4 dimensions 

or k 

4 5 6 7 8 9 10 11 12 

Z2, Z4 4 0 12 0 120 0 552 0 4700 

Z3 4 4 8 0 168 72 600 208 6524 
Z5 4 0 1 0  2 362 1 5623 5897 389201 

3 3 3 12 252 84 
7 5  2813 0 1335719 

7-,6 4 0 10 0 6 0 6 288 
362 1 1406 1 1667377 

Z7 4 0 1 0 0 T aT - ~ -  2~ 360 
362 84361 1667381 

Z8 4 0 10 0 ~ -  0 -18o 0 360 
362 1406 1 1667377 

Z9 4 0 1 0  0 T 0 3 1260 360 
362 ~ 46686557 

Zlo 4 0 10 0 ~ -  0 3 0 1oo8o 
362 1406 1667377 Z . , n ~ > l l  4 0 10 0 -T- 0 -W- 0 360 

UO) 

v = 3 dimensions where a long series is available [2], which yields the same results as 
extracted from the low-order terms. 

Table 5 contains the obtained values for XR, and the corresponding BR, for 
different groups and for v = 3 and 4. First we discuss the case v = 3. Gauge group Z2 
was considered already in (1). Due  to the above-ment ioned factorization property 
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v = 3 dimensions 
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TABLE 5 

Roughening points [values of XR (/~R)] 

XR from Pad6 for o2 xR from 
(t~a) (t~R) 

M] [4, 4] [3, 4] [2, 4] [3, 5] [2, 6] [1, 7] [0, 8] (o2 a)-I  

Z2 0.459 0.461 0.459 0.455 0.460 
(0.50) (0.50) (0.50) (0.49) (0.50) 

Z3 0.460 0.435 0.449 0.443 0.443 0.423 no real no real 
(0.85) (0.80) (0.82) (0.81) (0.81) (0.78) pole pole 

Z4 0.459 0.461 0.459 0.455 0.460 
(0.99) (1.00) (0.99) (0.99) (0.99) 

Z5 0.459 0.460 0.458 0.459 0.458 0.467 0.456 0.458 
(1.03) (1.03) (1.03) (1.03) (1.03) (1.05) (1.02) (1.03) 

U(1) 0.458 0.459 0.458 0.455 0.459 
(1.03) (1.04) (1.03) (1.03) (1.04) 

v = 4 d i m e n s i o n s :  

XR from Pad6 for o .2 XR from 
(/3R) (aR) 

~ M ]  [4, 4] [3, 4] [2, 4] 5] [2, 6] [1, 7] [0, 8] [3, (o.2a)-I 

Z2 0.394 0.405 0.401 0.392 0.401 
(0.42) (0.43) (0.42) (0.41) (0.43) 

Z3 0.391 0.383 0.394 0.388 0.388 0.382 no real no real 
(0.72) (0.70) (0.72) (0.71) (0.71) (0.70) pole pole 

Z4 0.394 0.405 0.401 0.392 0.401 
(0.83) (0.86) (0.85) (0.83) (0.85) 

Z5 0.395 0.407 0.407 0.407 0.401 0.408 0.393 0.399 
(0.86) (0.89) (0.89) (0.89) (0.87) (0.89) (0.85) (0.87) 

U(1) 0.395 0.407 0.402 0.393 0.400 
(0.86) (0.89) (0.88) (0.86) (0.87) 

[7] the  Z 2 resul ts  also ho ld  for  Z4. T h e y  ind ica te  a roughen ing  t rans i t ion  at  

Z4, v = 3: B R ~  1 . 0 0 ,  (3.10) 

well  b e l o w  the  cri t ical  poin t .  

F o r  U ( i )  and  Z , ,  n >t 5 we ob ta in  

v = 3: B R ~  1 . 0 3 ,  (3.11) 

which  is far  away  f rom the  cri t ical  point .  
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The case of Za is somewhat delicate. In contrast to Z2, Z4 or U(1) the Z3 series also 
contains non-negligible odd orders and the coefficients behave somewhat irregularly. 
The inverse series F - l ( x )  as well as (o'2a) -1 up to the 8th order do not have zeros for 
real x between 0 and 1. Instead they show a minimum around x ~ 0.41 correspond- 
ing to/3 --- 0.75. Up to the next lower orders on the other hand, these series do have a 
zero near fl ~ 0.75 (7th order) and/3 ~ 0.80 (6th order). The Pad6:approximants 
show a pole around /~ ~0 .8 .  With some reservations one might conclude the 
existence of a roughening transition at 

Za, u = 3 : / 3R~ 0 .8 .  (3.12) 

Now we come to ~, = 4 dimensions. As mentioned above our series for Z2 and Z4 
are identical. Z2 has been studied in ref. [1]. The obtained values for/3R are all very 
near the transition coupling/3c. For U(1) and Z~, n ~ 5 the values are 

~, = 4 : / 3 R ~  0 . 8 7  . (3.13) 

The transition couplings are not known exactly for these groups. The range, where/3c 
is estimated from Monte Carlo calculations [10], is consistent with the above value 
for/3R. For Z3 we encounter  the same phenomenon as in 3 dimensions. (0-2a)-1 as 
well as F ( x )  -1 only show a minimum near/3 ~ 0.8. The Pad6 approximants, however, 
all have poles around/3 = 0.7. This value is slightly above the critical point/3c = 0.67 
and shows that Z3 has to be handled with special care. 

4. Conclusions 

The high-temperature expansions for the string width 0 -2 suggest that three- 
dimensional lattice gauge theories with gauge groups Zn or U(1) possess a roughen- 
ing transition. It is characterized by a divergence of 0 -2 a t  a roughehing point /3R 
below the critical point. As stressed before [1, 3] the roughening phenomenon is 
probably not a deconfining transition, that is, the string tension is supposed not to 
vanish at fiR. We observe that the corresponding values XR are very much the same 
for all groups including Za (see [3] for a discussion of this point). 

In 4 dimensions the obtained values for/3R are near the transition couplings and do 
not strictly allow one to decide whether Zn and U(1) lattice gauge theories have a 
roughening transition distinct from the known phase transition. 

We thank M. L/ischer and G. Mack for discussions, and P. Hasenfratz for sending 
us the manuscript of his paper with A. and E. Hasenfratz before publication. 

Note added in proof 
After  submission of this work we received a paper by C. Itzykson, M. Peskin and 

J.B. Zuber  entitled Roughening of Wilson's surface, Saclay Dph-T/94 ,  in which the 
roughening transition in SU(2) and Z2 lattice gauge theories is investigated. 
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